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Abstract

Probabilistic models with weighted formulas, known as
Markov models or log-linear models, are used in many do-
mains. Recent models of weighted orderings between ele-
ments that have been proposed as flexible tools to express
preferences under uncertainty, are also potentially useful in
applications like planning, temporal reasoning, and user mod-
eling. Their computational properties are very different from
those of conventional Markov models; because of the tran-
sitivity of the “less than” relation, standard methods that ex-
ploit structure of the models, such as variable elimination,
are not directly applicable, as there are no conditional inde-
pendencies between the orderings within connected compo-
nents. The best known algorithms for general inference in
these models are exponential in the number of statements.
Here, we present the first algorithms that exploit the available
structure. We begin with the special case of models in the
form of chains; we present an exact O(n3) algorithm, where
n is the total number of elements. Next, we generalize this
technique to models in which the set of statements are com-
prised of arbitrary sets of atomic weighted preference formu-
las (while the query and evidence are conjunctions of atomic
preference formulas), and the resulting exact algorithm runs
in time O(m ∗ n2 ∗ nc), where m is the number of preference
formulas, n is the number of elements, and c is the maximum
number of elements in a linear cut (which depends both on the
structure of the model and the order in which the elements are
processed)—therefore, this algorithm is tractable for cases in
which c can be bounded to a low value. Finally, we report
on the results of an empirical evaluation of both algorithms,
showing how they scale with reasonably-sized models.

Introduction

Many modern applications of AI run across the problem of
reasoning about different ways in which elements can be
ordered—common examples include planning (actions must
be ordered with respect to execution precedence), tempo-
ral reasoning (objects in a domain are ordered relative to a
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timeline), recommender systems (items are ordered with re-
spect to user preferences), semantic search (query results are
ordered with respect to relevance and also potentially user
preferences), social choice (where options to choose from in
an election are ordered with respect to feedback from a pop-
ulation), and sports (where we might want to order players
or teams with respect to ability, or know the likely outcome
of a match, which is central to betting), among others.

Since such applications often also must work under uncer-
tainty, it is natural to explore how probabilistic models can
be extended to work in cases where, instead of having pos-
sible worlds defined over truth values for a set of Boolean
variables, there are possible worlds over the (linear) order-
ings of elements of interest. As in conventional probabilis-
tic models, this would allow us to answer conditional prob-
abilistic queries about any combination of elements given
any others. Even though tools to represent and reason with
probability distributions over Boolean variables have been
well studied and are quite mature, distributions over linear
orderings have received much less attention; tractable, flex-
ible tools are still lacking. The main hurdle to overcome is
thus essentially a KR one—while the former have a local in-
dependence structure that can be exploited, the latter have
no such local independence (cf. Example 3 below), but still
have structure. Applications of representations of such struc-
tured spaces can be found in the literature of various areas;
see, e.g., (Bozga and Maler 1999) and (Kisa et al. 2014).

In this paper, we continue recent work (Lukasiewicz,
Martinez, and Simari 2014), where we proposed a novel
Markov model akin to Markov Logic (Richardson and
Domingos 2006) in which weighted formulas express pref-
erences among different elements. Though the knowledge
expressed in such models may also be expressed in other
formalisms (e.g., probabilistic logic programs (Raedt, Kim-
mig, and Toivonen 2007), with the addition of transitivity
and other axioms, which makes them impractical), this lan-
guage is especially designed for reasoning about probabil-
ity distributions over linear orderings based on incomplete
and uncertain information. The complexity of the algorithms
proposed in (Lukasiewicz, Martinez, and Simari 2014) for
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inference in weighted preference models involves exponen-
tial factors in the number of statements in the model; here,
we show how we can exploit the structure of the models to
do exact inference much more efficiently when the model is
comprised of atomic formulas and the query/evidence are
conjunctions of atomic preference formulas. Even though
the worst case complexity of our algorithms is exponential,
the dominating factor is the linear cut size of the model (a
measure similar to treewidth, as explained below); on the
other hand, our previous algorithms are exponential in the
number of statements in the model. Thus, even when the
linear cut size can be bounded, for connected models the
number of statements depends directly on the number of el-
ements, so the algorithms from (Lukasiewicz, Martinez, and
Simari 2014) cannot scale in the same way.

The following example serves as a simple introduction
to Markov models over weighted orderings, applied to
the domain of reasoning with preferences for user model-
ing (Chomicki 2003; Rossi, Venable, and Walsh 2011).

Example 1. Suppose we receive the following informa-
tion from a user of an online movie rating system regarding
movie category preference: (i) they very likely prefer come-
dies over dramas; (ii) they generally prefer comedies over
action films; and (iii) they almost always prefer action films
over horror movies. Such information may come in the form
of quantitative assessments obtained by automated analysis
of user activity, directly from the user in the form of weights
or probabilities, or a combination of the two.

We may want to know how likely it is for this user to
prefer comedies over horror films; note that this information
is stated only implicitly. �

We refer the reader to the related work section for a dis-
cussion on existing models for this kind of reasoning and
their relation to the one adopted here.

Preliminaries

We now discuss necessary preliminary concepts on conven-
tional Markov models and weighted preference formulas.

Markov Random Fields

The semantics of Markov models over weighted preference
statements is defined in terms of classical models known as
Markov random fields (MRFs), or Markov networks (Koller
and Friedman 2009), which are probabilistic models that
represent a joint probability distribution over a (finite) set
of random variables X ={X1, . . . ,Xn}. Each Xi may take on
values from a finite domain Dom(Xi). A value for X =
{X1, . . . ,Xn} is a mapping x : X → ⋃n

i=1 Dom(Xi) such that
x(Xi)∈Dom(Xi); the domain of X , denoted Dom(X), is the
set of all values for X . Thus, a value for X consists of an
assignment of a value to each Xi. An MRF is defined in
terms of a set of potential functions φ j, where each is a func-
tion from a subset of the variables into the non-negative real
numbers. The probability of a value for X is a product of
the values for the potentials for the assignment. An MRF
induces an undirected graph, where the nodes are random
variables and there is an arc between every pair of nodes that

appear together in a potential. For positive MRFs (i.e., no ze-
ros in the potentials), the graph induces a dependency rela-
tion such that a variable is independent of its non-neighbors
given its neighbors.

For positive MRFs, there is an equivalent log-linear rep-
resentation, which involves defining a set of features for the
potentials; a feature is a real-valued function of the state
of a set of variables. Given a value x∈Dom(X) and fea-
tures f j, the probability distribution represented by a log-
linear MRF is given by P(X =x) = 1

Z exp
(

∑ j w j · f j(x)
)
,

where j ranges over the set of features, and w j = logφ j(x{ j})
(here, x{ j} is the projection of x onto the domain of the j-th
feature). Term Z is a normalization constant to ensure that
∑x P(X =x) = 1. Thus, Z= ∑x∈Dom(X) exp

(
∑ j w j · f j(x)

)
.

Probabilistic inference in MRFs is intractable (Roth
1996). For sparse graphs, exact inference (Koller and Fried-
man 2009; Darwiche 2009) can be carried out in time expo-
nential in treewidth, using methods such as variable elimi-
nation or clique trees. Approximate inference mechanisms,
such as Markov Chain Monte Carlo, have also been devel-
oped and successfully applied in practice.

Weighted Preference Statements

Let U be the universe of elements, with |U | = n—these
are the things being compared. Given a,b ∈ U , an atomic
preference statement is of the form a � b and denotes that
element a is preferred to element b. Even though the for-
malism of (Lukasiewicz, Martinez, and Simari 2014) al-
lows more general statements (i.e., conjunctions, disjunc-
tions, and negations), the algorithms in this paper deal with
the case in which all statements are atomic; therefore, we
often refer to atomic preference statements simply as prefer-
ence statements.

Possible worlds are defined in terms of permutations (lin-
ear orderings) of the elements of U ; worlds are thus injec-
tive (1 to 1) functions from [1..|U |] to U . There are a total
of n! possible worlds, and we denote the set of all worlds
with Ω. A world ω is said to satisfy a statement a � b, de-
noted w |= a � b, iff a appears before b in the permutation.

A weighted (preference) formula is a pair 〈 f ,w〉 where
f is a preference statement over elements of U , and w is
a non-negative real number; w is said to be the weight of
formula f . We sometimes write 〈 f ,w〉 as f : w, and call a
set of weighted preference formulas a model. The following
example presents a model that we will use later in the paper.
Example 2. Consider the following model:

f1 = a � b : w1, f2 = b � c : w2, f3 = c � d : w3,
f4 = c � e : w4, f5 = e � d : w5.

We use abstract names for convenience, but clearly these for-
mulas can represent the kind of preferences in Example 1. �

Semantics. In the following, we assume that there is an
arbitrary (but fixed) order over the elements in U , denoted
by the symbol “<”. The probabilistic semantics of a model
M is given by the Markov random field that is defined as
follows (Lukasiewicz, Martinez, and Simari 2014):
(1) for each a,b ∈U with a < b, there exists a (binary) node
(a,b); the node’s value is 1, if a� b is true, and 0, otherwise;
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(2) one feature is defined for each statement in M, with
value 1 iff the corresponding statement is true (and 0, oth-
erwise); the weight of this feature is the weight associated
with the statement in M; and

(3) zero weight features defined according to the following
templates. For each X ,Y,Z ∈ U such that X < Y < Z:

¬(((X ,Y ) = 1)∧ ((Y,Z) = 1)⇒ (X ,Z) = 1
)
;

¬(((X ,Y ) = 1)∧ ((X ,Z) = 0)⇒ (Y,Z) = 0
)
;

¬(((X ,Z) = 0)∧ ((Y,Z) = 1)⇒ (X ,Y ) = 0
)
;

¬(((X ,Y ) = 0)∧ ((Y,Z) = 0)⇒ (X ,Z) = 0
)
.

Recall that MRFs do not contain logical variables—these
features are described in this schematic way to show how
they are built. These features impose a probability of zero on
assignments of values to random variables that cause transi-
tivity to be violated.

The MRF thus contains
(|U |

2

)
nodes, and an edge between

nodes iff the preference atoms associated with such nodes
appear together in a feature. Condition 3 establishes a 1-to-1
mapping between linear orderings and value assignments to
random variables in the MRF with non-zero probability.

Example 3. Consider the following simple model:

M = {〈a � b,wb〉 ,〈b � c,wc〉 ,〈c � d,wd〉}.
So, we have U ={a,b,c,d}, and suppose the arbitrary or-
dering of the elements is a < b < c < d. The model has 4
elements and thus 4! = 24 worlds (linear extensions); the
underlying MRF—which provides the probabilistic seman-
tics for the model—is shown in Figure 1. This (conventional)
MRF contains

(4
2

)
= 6 Boolean variables (one for each or-

dered pair of elements X ,Y in U such that X < Y ).
The following table illustrates (part of) the mapping be-

tween the values of the variables in the underlying MRF and
the worlds for M; out of the 2(

4
2) = 64 possible assignments

of truth values to Boolean variables, only 4!= 24 correspond
to linear extensions (the rest of them violate the transitivity
constraints).

(a,b) (a,c) (a,d) (b,c) (b,d) (c,d) World
1 1 1 1 1 1 〈a,b,c,d〉
1 1 1 1 1 0 〈a,b,d,c〉
1 1 1 1 0 1 —
1 1 1 1 0 0 〈a,d,b,c〉
1 1 1 0 1 1 〈a,c,b,d〉
1 1 1 0 1 0 —
1 1 1 0 0 1 〈a,c,d,b〉
1 1 1 0 0 0 〈a,d,c,b〉
1 1 0 1 1 1 —
1 1 0 1 1 0 —

(54 more lines...)

�

The weight of a world is the product of the weights of
the formulas that are satisfied by the world. The partition
function for model M is:

Z(M) = ∑
ω∈Ω

∏
〈 f ,w〉∈M,ω|= f

w.

������

������

������

������

������ ������

Figure 1: Underlying MRF for the model in Example 3.

The probability of a formula given the model is proportional
to the sum of the weights of the worlds that satisfy the for-
mula. The probability of any formula α (formed by combi-
nations of atomic statements with ∧, ∨, and ¬) is given by:

PM(α) =
1

Z(M) ∑
ω|=α

∏
〈 f ,w〉∈M,ω|= f

w.

The conditional probability of α given another (evidence)
formula e is defined as usual:

PM(α | e) = PM(α ∧ e)/PM(e).

Note that since weights are multiplied, a weight of 1 is
equivalent to not having the formula at all. When M can be
understood from the context, it is omitted from the subscript.

As a quick illustration, consider the model from Exam-
ple 3 and suppose we want to compute P(a � c). To com-
pute Z, we could sum 24 terms (one per world), where each
term is a product of 3 factors (one per statement), which can
be either 1, if the statement is not satisfied by the world, or
the weight corresponding to the statement, if it is. For in-
stance, world w = 〈b,a,c,d〉 gives rise to term 1 ·wc ·wd ,
since w �|= a � b (b appears after a in w), w |= b � c, (since
b appears before c), and w |= c � d (c precedes d). The
numerator can then be computed in the same way, except
that we only have terms corresponding to worlds in which
a appears before c. Conditional probabilities are completely
analogous to their traditional counterpart; e.g., if we have
evidence “c � d”, we are only interested in the universe of
worlds in which this is true, and we compute the query’s
probability relative to that universe. Note that these compu-
tations correspond to naı̈vely following the semantics, and
that the algorithms that we develop are much more efficient.
Proposition 4. If α is a conjunction of preference state-
ments (a1 � b1)∧·· ·∧ (ak � bk), then:

PM(α) =
Z(M∪{〈b1 � a1 : 0〉 , . . . ,〈bk � ak : 0〉})

Z(M)
.

Proof. Direct consequence of the definitions of Z(M) and
PM(α); the statements added to the model with weight zero
cause the weights of worlds that do not satisfy α to be mul-
tiplied by zero, so the non-zero terms remaining in the sum-
mation are precisely those in the numerator of PM(α). �
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Thus, to compute arbitrary conditional probabilities of
conjunctions, we only need to compute partition functions.
As (conditional) probabilities of arbitrary propositions can
be computed from conjunctions, for the rest of the paper, we
only concentrate on computing the partition function.

It is also possible to work in the log-domain, as in log-
linear models, where the weights are arbitrary real numbers
that are added. The probability of a world would then be
proportional to the exponent of the sum of the weights. This
characterization is less general, as it does not allow for zero
probabilities (unless it allows for weights of −∞). It is easy
to translate the results in this paper into the log-domain.

Conditional (Non-)Independence. Consider again the
setup in Example 3 and Figure 1; note that the links between
variables in the underlying MRF are dense; in particular, due
to the effect of the features enforcing transitivity (Condi-
tion 3 in the construction), in every connected component,
every element in M is connected to every other variable in
the underlying MRF. This can be easily seen in Figure 1,
where element a in M appears in (a,b) in the MRF, which is
linked directly with (a,c) and (a,d) (among others, but these
suffice to cover the remaining elements in M); if M had more
elements, say e and f , then (a,b) would be directly linked to
(a,e) and (a, f ) as well.

As a consequence, even in simple “chain-like” models of
the form {〈x1 � x2,w2〉 ,〈x2 � x3,w3〉 , . . . ,〈xn−1 � xn,wn〉},
if e is any set of observations regarding the truth of any
subset of weighted formulas xi−1 � xi (for 3 ≤ i ≤ n−1),
including the empty set, then P(x1 � x2 | e,xn−1 � xn) �=
P(x1 � x2 | e,xn−1 ≺ xn). This inequality holds almost every-
where; although there are assignments to make this numeri-
cally equal, it is very sensitive to slight variations in weights.

In conventional models of weighted formulas, a stan-
dard way to compute probabilities is to exploit the struc-
ture by using non-serial dynamic programming (Bertelè
and Brioschi 1972), variable elimination (Zhang and Poole
1994; Dechter 1996), message passing in clique trees (Lau-
ritzen and Spiegelhalter 1988), or search-based methods like
recursive conditioning (Darwiche 2001), which are linear in
the number of variables for a bounded treewidth, and are ex-
ponential in the treewidth. These methods have been used
for database joins, constraint satisfaction problems, proba-
bilistic inference, and optimization. They rely on a notion
of independence: some variable V only depends on a few
other variables (its neighbors), and the rest of the variables
are independent of V given its neighbors—variable V can
thus be eliminated and its influence passed to its neighbors.
Given the complexity caused by the transitivity constraints
and the very little independence structure (as can be seen
in Figure 1), these methods are not directly applicable for
weighted orderings.

We could try to apply the same variable elimination strat-
egy described above for our model, essentially “eliminating”
xn (in the classical variable elimination sense) by creating a
weight w′

n−1, so that replacing wn with 1 (effectively remov-
ing the constraint), replacing wn−1 with w′

n−1, and leaving
the rest constant so that P(xn−1 � xn−2) is not affected. The
main problem with this approach is that, unfortunately, w′

n−1

depends on all of the weights, including w1, in a complex
manner. Since the techniques that we developed are simi-
lar in spirit to traditional variable elimination, we refer to
them also as variable elimination algorithms; intuitively, we
can picture a graph in which each node is an element, and
each edge corresponds to an atomic weighted preference
statement—eliminating an element in U is thus analogous
to eliminating a random variable in a conventional MRF.

An Algorithm for Chain Models

We begin with the special case of models that we call chains;
these models are simply sets of statements of the form:{〈x1 � x2,w2〉 ,〈x2 � x3,w3〉 , . . . ,

〈xi−1 � xi,wi〉 , . . . ,〈xn−1 � xn,wn〉
}

;

the model in Example 3 is a chain with four elements. We
assume there is a single chain, though multiple chains are
easily handled since disconnected components are mutually
independent and can be computed separately and combined
as in any independence model.

The reason why traditional methods are not directly ap-
plicable is also the insight needed to devise an efficient
algorithm. Weight wn affects P(x1 � x2 | e) (for some evi-
dence e), because it affects the position of xn−1 in the order,
which in turn affects the position of xn−2 in the order, and so
on, eventually affecting the position of x1. Observing, say,
xn−2 � xn−1 does not stop the position of xn−1 affecting the
position of xn−2. However, if we knew the position of x2 in
the ordering of x2, . . . ,xn, all subsequent elements are irrele-
vant when computing P(x1 � x2 | e).

So, if we knew the position of xn−1 in the ordering of
x1 . . .xn−1 we could determine the effect of eliminating xn.
If we knew the position of xn−2 in the ordering of x1 . . .xn−2,
we could determine the effect of eliminating wn−1,wn, etc.

Counting Tables. In order to support the efficient compu-
tation of the effect of variable elimination steps, we define
the concept of counting table that, for chains, is simply an
array r[ ] of real values initially of size n with all cells set
to value 1 . Elements are eliminated from last to first in the
chain, and thus each elimination step involves a single state-
ment (xn−1 � xn first, then xn−2 � xn−1, and so on) and re-
duces the size of the counting table by one. The new values
are computed based on the old ones; essentially, we must
consider the effect of inserting the element being eliminated
in all possible remaining positions, and in each case con-
sider the satisfaction of the statement involved—if it is satis-
fied, the new value must be multiplied by the corresponding
weight (if not, we use the old value, which is equivalent to
multiplying by 1). Intuitively, a counting table is a dynamic
programming structure that contains the partial information
necessary to compute the next step.

To better illustrate the process of building the table, let’s
go into more detail, considering first the initial step and
then the operation in general. We begin by eliminating xn—
consider the case where xn−1 is in position i, for 1 ≤ i ≤
n−1, in the ordering of x1 . . .xn−1; this means there are i−1
elements before xn−1 (not including xn−1). The key intuition
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here is that the effect of wn depends on how many elements
are before xn−1, not which elements are before xn−1 in the
ordering. We can compute the effect of 〈xn−1 � xn,wn〉 for
position i analytically. There are i positions where xn could
be placed before xn−1 and n− i positions where xn could be
placed after xn−1; thus, the effect of this tuple is i+(n− i)wn.
We compute this value for each i, and store it in the counting
table r[1 : n−1].

For the recursive step, suppose we have already removed
elements xn,xn−1, . . . ,xk+1, with k ≤ n− 1, and we want to
remove element xk; we have a counting table r[1 : k] with val-
ues for the remaining elements for each position that xk can
take in orderings containing those elements (that is, elements
xk . . .x1). The meaning of the values in r are as follows: if xk
is in position i, r[i] is the (partial) sum of the weights of the
orderings that have xk in position i. We want to remove xk
and produce a counting table r′ for xk−1. Suppose xk−1 is in
position i (out of the elements xk−1, . . . ,x1), the value r′[i] is
computed as follows: consider each position where xk can fit
into the ordering. If it goes to position j, and j ≤ i, the value
is 1×r[ j], and if j > i then the value is wk ×r[ j]. Thus, sum-
ming over all the possible positions gives:

r′[i] =
k

∑
j=1

r[ j]×
{

1 if j ≤ i
wk if j > i . (1)

We compute this for every i where 1≤ i< k. The array r′ be-
comes the new counting table r for the next iteration (where
we will delete xk−1), and so on and so forth.

Once x2 has been eliminated, r contains a single value—
Z(M)—the value of the partition function for model M. Fig-
ure 2 contains the pseudocode for this algorithm.

Algorithm ComputeZ-Chain can be used to answer
queries as long as the resulting models are chains; this means
the observations and queries must be adjacent, or M consists
of two disjoint chains, and the query is about an inequality
between the end of one chain and the start of the other.

Proposition 5. Given a chain model of size n, Algo-
rithm ComputeZ-Chain runs in time O(n3).

Proof. The nested for loops in lines 2, 4, and 6 are each
executed O(n) times, while the rest of the instructions are
O(1). The total running time is therefore O(n3). �

Thus, Propositions 4 and 5 together tell us that queries
over chains can be answered in time O(n3), as long as the
model is a chain after adding the query and observations.

Example 6. Consider the following chain model:

f1 = a � b : w1, f2 = b � c : w2, f3 = c � d : w3,
f4 = d � e : w4, f5 = e � f : w5.

Elements are eliminated in the order: [ f ,e,d,c,b,a]; the
first iteration creates array r with values r[1 : 6] that are all
equal to 1 and represent all possible places where element f
can be placed in a permutation of size 6.

When eliminating element f , formula f5 is affected, so
we compute a new array r′[1 : 5] corresponding to the cases
where element e is in the first position, the second, and so
on in a permutation of size 5. Thus, r′[1] corresponds to

Algorithm ComputeZ-Chain(M)
Input: Weighted preference model M over n elements.
Output: The value of the partition function for M.

1. Initialize array r[1 : n] to 1n;
2. for i:= n downto 2 do
3. let fi = (xi−1 � xi,wi) be the current formula;
4. for j:= 1 to i−1 do
5. Initialize array r′[1 : i−1] to 0i−1;
6. for k:= 1 to i do
7. if k > j then set r′[ j]+= wi ∗ r[ j];
8. else set r′[ j]+= 1∗ r[ j];
9. r:= r′;

10. return r[1].

Figure 2: Computing the partition function of a chain model.

a permutation of e and all other remaining elements; how-
ever, since we only care about the position of f with respect
to e, the rest of the elements remain unknown, and we denote
them with the symbol “−”. Therefore, r′[1] corresponds to
[e−−−−], r′[2] to [−e−−−], and so on. We now must
consider all the ways in which f could be inserted in each
permutation; for [e−−−−], we have 6 possibilities:

[ f e−−−−], [e f −−−−], [e− f −−−],
[e−− f −−], [e−−− f−], [e−−−− f ].

Each such partial permutation yields a term that is either 1
or w5, depending on whether or not it satisfies f5, times the
value stored for the current position of element f . For in-
stance, we have r′[1] = r[1]∗1+ r[2]∗w5 + r[3]∗w5 + r[4]∗
w5 + r[5]∗w5 + r[6]∗w5 = 1+5∗w5.

Array r′ replaces array r; after computing this array, we
remove formula f5 from consideration and continue with the
elimination of element e. This elimination affects formula
f4, so we therefore compute a new array r′[1 : 4] correspond-
ing to the cases where element d is in the first position, the
second, and so on in a permutation of size 4. This process
continues until we have eliminated all elements, in which
case we have an array with a single cell containing the value
of the partition function Z.

Consider the query Q : P(c � d); to compute this value,
we add the weighted preference statement 〈d � c,0〉. Now,
when the process concludes, the single-cell array contains
the value Z′ such that P(c � d) = Z′/Z. �

Arbitrary Atomic Weighted Formulas

Suppose we have an arbitrary model on atomic weighted for-
mulas, and we want to compute the partition function in or-
der to compute some (conditional) probability of interest.
First, we select a total ordering of the elements. The effi-
ciency, but not the correctness, will depend on this order.

Define a permutation generating tree on ordered elements
x1 . . .xn, recursively. For i from 1 to n, a tree of depth i is built
as follows: the root of the tree consists of the element x1, and
the leaves consist of all permutations of the elements x1 . . .xi.
To recursively extend the leaves by the next element, xi+1,
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Figure 3: Part of a permutation generating tree for the for-
mulas from Example 2. Elements are in order [a,d,c,b,e];
formulas are evaluated as soon as possible. Note that some
arcs have two weights (w1 and w2), because two formulas
(a � b and b � c) become true when b is added to the order.

there is a child for each of the positions where the element
could be inserted.

Arcs have weights induced by the weighted formulas.
Whenever a weighted formula can be evaluated by a per-
mutation, the weight is applied to the corresponding arc.
A weighted formula is only evaluated once in any path. Fig-
ure 3 shows part of a permutation generating tree with arc
weights corresponding to the weighted formulas in Exam-
ple 2 (the ordering was chosen arbitrarily).

We could compute the partition function by starting at the
leaves, summing over every branch, and multiplying by the
weights as encountered. This would be an O(n! ∗ n) opera-
tion, so it is not practical. It can be, however, if we detect
symmetries: cases where the operations would be identical
and so only need to be done once. In the previous section,
we outlined an algorithm that exploits the fact that it is only
the count of the ancestors that have particular properties, not
the identity of the elements that matters.

We will thus derive a variable elimination algorithm that
eliminates the elements in the order xn . . .x1, and records
as much information as necessary to compute the partition
function. Note that we use the reversed ordering of elements
than that assumed for the evaluation of the permutation-
generating tree. The proposed algorithm will mimic the al-
gorithm that evaluates a permutation-generating tree from
the leaves, but groups together all the subtrees with identi-
cal counts. Towards this end, we generalize the concept of
counting table presented in the previous section. Since, in
the general case, the removal of a single element can affect
more than one statement, the counting table must be more
complex. We first need to define the following concepts:

Define Pn
i to be n!/(n− i)!, which is n∗ (n−1)∗ . . .∗ (n−

i+1). This is the number of ways i items can be selected in
order from n items, which is like

(n
i

)
but where the order of

the i items counts. This is equal to
(n

i

)
i! ; note that Pn

i ≤ ni.

Partial permutations. Let X and Y be sets of elements
with Y ⊂ X ; we say that any partial injective function

Algorithm ComputeZ-Gen(M)
Input: Weighted preference model M over n elements.
Output: The value of the partition function for M.

1. Let x1, . . . ,xn be an arbitrary ordering of vars. in M;
2. Initialize array s[1 : n] to 1n; let Vn+1 = /0;
3. for k:= n downto 2 do
4. let Ak be the set of formulas that contain xk;
5. let Uk be the set of elements Ak (without xk);
6. M := M \Ak;
7. let Vk = {x j | x j ∈Uk}∪ (Vk+1 \{xk});
8. let ¶k be the set of partial perm. of Uk w.r.t. to Vk;
9. Initialize array s′[1 : |¶k|] to 1|¶k|;

10. for each pi ∈ ¶k do
11. for j := 1 to k do
12. for each ( f ,w f ) ∈ Ak do
13. if pi⊕(xk, j) |= f then set s′[i]+= w f ∗s[ei, j];
14. else set s′[i]+= 1∗ s[ei, j];
15. s:= s′;
16. return s[1].

Figure 4: Algorithm for arbitrary atomic formulas.

p : [1..m]→ Y , where m = |X |, is a partial permutation of
the elements in set X relative to Y . The concept of satisfac-
tion of a preference formula by a partial permutation is de-
fined as expected. The extension of a partial permutation p
by element x ∈ X \Y in position i, denoted p⊕ (x, i), creates
a new partial permutation p′ such that:

p′( j) =

{ p( j) if 1 ≤ j < i
x if j = i
p( j−1) if j > i .

The counting table is now a representation of a function
from partial permutations into reals. Algorithm ComputeZ-
Gen (Figure 4) shows how to construct counting table s′
based on counting table s that was built during the previous
iteration. The procedure starts by initializing a counting ta-
ble s for element xn; each item in the table corresponds to the
position of element xn relative to the other n− 1 elements,
that is, s[1] corresponds to a partial permutation of the form
[xn −− . . .−], where there are n−1 elements “−”, s[2] cor-
responds to [−xn − . . .−], and so on. We initialize each po-
sition with value 1. The sets of elements Vk accumulate the
elements that have already been used in counting tables in
previous iterations; clearly, Vn+1 must be initialized to /0.

As mentioned before, elements in M will be removed in
order xn, . . . ,x1; to remove element xk, the algorithm com-
putes the following sets: (i) Ak, the formulas in M that in-
volve xk, formally: Ak = {x j | x j � xk ∈ M or xk � x j ∈ M}
(note that these formulas are taken out of consideration for
later iterations), and (ii) Uk containing the elements that ap-
pear in Ak different from xk. Finally, the set Vk is composed
by the union of the elements in Uk and the elements that
have been seen so far (Vk+1), not including xk. In line 8,
we compute all partial permutations of elements in Uk rela-
tive to Vk; this means that we consider all possible positions
of elements in Uk, with respect to the rest of elements in
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Vk, but leaving them unnamed. For each partial permutation
pi ∈ ¶k (note that the size of ¶k is Pk−1

|Vk| ), the algorithm tries
every possible extension by element xk. For each of these,
the product of the weights of all formulas in Ak that satisfy
the extension is computed (if none are satisfied, this product
is 1), and multiplied by the value s[ei, j], which corresponds
to the entry in counting table s for the disposition of the ele-
ments given by pi ⊕ (xk, j). Finally, entry s′[i] is updated by
summing the terms obtained for each extension. The follow-
ing example illustrates this process in detail.
Example 7. Consider the model from Example 2 with the
order [a,d,c,b,e]; the elements are thus eliminated in order
[e,b,c,d,a]. The algorithm proceeds as follows:
Eliminate element e: Counting table s is initialized with ev-
ery partial permutation of {e} relative to {e,b,c,d,a}, with
value 1; that is, s[1] = 1 corresponds to [e −−−−], . . . ,
s[5] = 1 corresponds to [−−−−e]. The set A5 contains for-
mulas f4 and f5; thus, as s only contains element e, we have
that V5 = {c,d}. We then build the set of partial permuta-
tions ¶5 (of size Pk−1

|Vk| = P4
2 = 12):

s′[1] cd −− w5 +w4 ∗w5 +3∗w4
s′[2] c−d− w5 +2∗w4 ∗w5 +2∗w4
s′[3] c−−d w5 +3∗w4 ∗w5 +w4
s′[4] −c d− 2∗w5 +w4 ∗w5 +2∗w4
s′[5] −c−d 2∗w5 +2∗w4 ∗w5 +w4
s′[6] −− cd 3∗w5 +w4 ∗w5 +w4
s′[7] dc−− w5 +w4 +3
s′[8] d − c− w5 +2∗w4 +2
s′[9] d −−c w5 +3∗w4 +1
s′[10] −d c− 2∗w5 +2∗w4 +1
s′[11] −d − c 2∗w5 +w4 +2
s′[12] −−dc 3∗w5 +w4 +1

The third column above is obtained by assigning to each per-
mutation in ¶5 the corresponding value using the equations
in lines 13 and 14. For example, the number associated with
[c d −−] (s′[1]), is computed by evaluating the following
extensions of [c d −−] by e:

[e c d−−], [c e d−−], [c d e−−], [c d−e−], [c d−−e] .

For each one, we add w5, w4, w5 ∗w4, or 1, depending on
whether the permutation satisfies f5 but not f4, f4 but not
f5, both f4 and f5, or neither formula, respectively. We get
s′[1] = w5 ∗s[1]+w4w5 ∗s[2]+w4 ∗(s[3]+s[4]+s[5]), since
[ecd−−] satisfies f5 only, [ced−−] both, and the other three
satisfy only f4. Note, here, the s[ei, j] terms are always 1.
Eliminate element b: we have two formulas that contain el-
ement b, namely f1 and f2. The set of elements affected by
deleting b is {a,c}. We need to build the following set of
partial permutations (of size P3

2 = 6): [ac−], [a− c], [−ac],
[ca−], [c− a], [−ca]. The weights for the partial permuta-
tions are obtained as follows. To compute the value corre-
sponding to partial permutation [ac−], we consider the ex-
tended permutations by b:

[b a c −], [a b c −], [a c b −], [a c − b].

In this case, the term associated with extended permutation
[bac−] not only depends on whether it satisfies formulas

f1 and f2 (i.e, the relationship among the positions of b, c,
and a), but it also depends on the satisfaction of the formu-
las that we already processed (i.e., the position of the rest
of the elements); this is provided by table s. We have that
[bac−] corresponds to permutation [−− cd] from the previ-
ous iteration; note that element d can only occupy the last
position. Therefore, for partial permutation [bac−], we add
the term w2 ∗ s([−− cd]) = w2 ∗ (3∗w5 +w4w5 +w4) (fac-
tor w2 is due to the fact that it satisfies only formula f2),
for [abc−] the term w1w2 ∗ s([−− cd]), for [acb−] the term
w1 ∗ s([−c−d]), and finally, the term w1 ∗ s([−cd−]) corre-
sponding to [ac−b]. We then have: s′([ac−]) =

w2 ∗ s([−− cd])+w1w2 ∗ s([−− cd])+
w1 ∗ s([−c−d])+w1 ∗ s([−cd−]) =

w2 ∗ (3w5 +w4w5 +w4)+w1 ∗w2 ∗ (3w5 +w4w5 +w4)+
w1 ∗ (2w5 +2w4w5 +w4)+w1 ∗ (3w5 +w4w5 +w4).

The values for the rest of the permutations are computed
similarly, and s is replaced by s′.
Eliminate element c: this is the last step, as there is only
one formula left ( f3), and it contains element c. The only
element affected by eliminating c at this point is d. Thus, we
have only two partial permutations to consider: [d −], [− d].

Now, s′([d−]) = w3 ∗ s([c−a])+ s([−ca])+ s([−ac]) and
s′([−d]) = w3 ∗ s([ca−])+w3 ∗ s([ac−])+ s([a− c]).
The value s([d−])+ s([−d]) then yields Z. �

The complexity of this algorithm can be described in
terms of the structure and the elimination order chosen.
Given a model and an element ordering x1, . . . ,xn, define the
linear cut size for element xk, denoted sk, as the number of
elements x j, with j < k, that are connected to an xl where
k ≤ l; that is,

sk =
∣∣{x j | j < k and ∃l such that k ≤ l and

x j � xl or xl � x j appear in M}∣∣.
These x j are the elements that make up the counting table
when xk is eliminated. We then define the linear cut size
(denoted c) of a model and ordering as the maximum, over
positions k in the ordering, of sk.
Proposition 8. The complexity of Algorithm ComputeZ-
Gen is O(m∗n2 ∗nc), where m is the number of statements,
n is the number of elements, and c is the linear cut size.
Proof. The for loop in line 3 is executed n−1 times; within
that loop, line 4 requires O(m) time.

Now, suppose that an arbitrary element xk (with 2≤ k ≤ n)
is being eliminated. The number of times the loop in line 10
is repeated (and the cost of the initialization in line 9) de-
pends on the number of partial permutations in ¶k, which is
Pk−1
|Vk| , where Vk contains all elements x j (with j < k) that are

connected to an xl where k ≤ l. That is, |Vk| is sk, which is
the cut size for xk. Therefore, |¶k|=Pk−1

|Vk| =Pk−1
sk

≤ (k−1)sk .
This is the size of the counting table that is built for ele-
ment xk. Clearly, since k ≤ n, and c is by definition the max-
imum of all sk’s, then nc is an upper bound for the size of the
largest counting table that has to be built.

For each partial permutation in ¶k, k positions must be
tested in order to compute its corresponding value—the for
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loop in line 11 is executed O(n) times, and thus the loop in
line 10 requires O(n∗nc) time in total. Note that the instruc-
tion inside for loop in line 12 are executed m times in total,
and thus the cost of this loop is absorbed by the O(m) term.
Putting it all together, we get a total of O(m∗n2 ∗nc). �

Proposition 8 tells us that our algorithm is fixed-parameter
tractable—if we can bound c, the asymptotic cost behaves
similar to the chain case (for chains, we have m = n−1).

A Heuristic Elimination Order. As we mentioned before,
the total order selected among the elements is not important
from the point of view of the correctness of our algorithm,
but it nevertheless has a great impact on the efficiency of
the process (cf. the experimental results). The critical part
in the algorithm is the construction of the counting table; as
described above, for a model with n elements and assum-
ing we are eliminating element xk (thus, k− 1 remain), the
size of this counting table is Pk−1

|Vk| . Clearly, a careless choice
in the elimination order could have a great impact on the
size of the tables that need to be built. A simple heuristic to
try and minimize this effect is to select at each step the ele-
ment that is involved in the least possible number of formu-
las (among the remaining ones). Essentially, this generalizes
the approach for chains; though, in general, the structure is
more complex, it looks for a piece of the model that is as
close as possible to a chain, so the algorithm needs to con-
sider the relative positions of as few elements as possible.

Example 9. Return to the same setup as in Example 2, but
suppose that we now apply the heuristic to choose in which
order the elements are eliminated; in this case, we construct
quite different data structures. At the beginning, we have the
following counts of how many formulas each element ap-
pears in: #a = 1,#b = 2,#c = 3,#d = 2,#e = 2.

The heuristic thus chooses to eliminate a first; then, we
only have to consider every position that element b can have
in a permutation of size 4, of which there are 4. Further, as in
all cases of elements with a count of 1, we can simply store
the count when b is in each position as we do for chains. We
then eliminate element b and, continuing, we can see that we
never need to build a table larger than P3

2 = 6.
In Example 7, we started with element e; if we had started

with c, the table would have been of size P4
3 = 24. �

Experimental Evaluation

We developed a prototype implementation of the weighted
orderings framework and associated algorithms consisting
of about 3,200 lines of Java code. We now report on the re-
sults of a series of experiments designed to test how well our
variable elimination algorithms scale. All experiments were
performed on a computer running the Windows 7 SP1 64-
bit Professional Edition OS with a dual-core Intel Core i5-
4210M processor at 2.6/3.2 GHz and 16GB of physical
RAM (SODIMM DDR3 at 1,600MHz); 12GB of RAM were
made available to the Java virtual machine’s heap, and the
system load was minimized in order to guarantee that the
entire heap fit in physical memory—therefore, no swapping
to disk was necessary. Multiple runs were performed in each
case to minimize experimental error.
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Figure 5: Running time evaluation of the chain algorithm.

The Chain Case. The first experiment focuses on the case
in which the input model is a chain, as described by Al-
gorithm 2. For these runs, all queries were randomly gen-
erated and of size 2 (i.e., two atomic conjuncts), and the
numbers reported are averages over 10 runs. Figure 5 shows
how the variable elimination algorithm for chains scales to
models with 2,500 elements in under a minute; the theo-
retical polynomial running time is clearly reflected in the
shape of the curve. This is much better than the algorithm
of (Lukasiewicz, Martinez, and Simari 2014), which is ex-
ponential in the number of preference statements.
The General Case. These runs were performed over inputs
with 20 elements and queries of size 1. Figure 6 shows four
plots, varying the number of statements and measuring run-
ning time and maximum counting table size. For the non-
heuristic case, we performed up to 10 runs for models of 1-
25 statements (in steps of 1); for the heuristic, the same was
done for models of up to 50 statements (in steps of 5 from 25
to 50). These results illustrate the huge impact of the heuris-
tic, allowing to double the size of the model and still answer
queries much faster than the non-heuristic algorithm.

The great variability in these plots is due to the fact that
our algorithm’s cost is given by the maximum size of the lin-
ear cuts encountered; thus, different models of the same size
can vary greatly in the complexity of their structure (com-
pare a chain with a clique). Nevertheless, the number of runs
performed allows to establish a trend as the size of the mod-
els grows. Another interesting observation is that this vari-
ability is reduced in the heuristic version—this is because
the algorithm chooses the easiest cases first, and thus costly
cases become rarer than in the non-heuristic runs.

Related Work

As was mentioned in the introduction, this work contin-
ues our initial proposal in (Lukasiewicz, Martinez, and
Simari 2014), where both exact and approximate algorithms
were introduced for general (that is, not necessarily atomic)
weighted preference statements. The algorithms in that pa-
per are based on leveraging (exact and approximate) algo-
rithms that count linear extensions of linear orders; in order
for this to be possible, the resulting algorithms partition the
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Figure 6: Results for randomly generated atomic models; all Y-axes are on a logarithmic scale. Left: results for the non-heuristic
algorithm; Right: results for the heuristic version. Note that the X-axes for the heuristic go up to 50, while the ones for the non-
heuristic only reach 25. Top: maximum sizes that the counting tables reached; Bottom: running times.

universe of possible worlds into equivalence classes, which
is where the exponential term in the number of statements
arises. Those algorithms are thus inherently different from
the ones explored here, since they are geared towards mod-
els with bounded number of general statements (that can
still have large numbers of elements, if the statements are
complex). Thus, as stated before, those algorithms have no
chance of scaling well when there are many statements in
the models, like the ones in our experimental evaluation.

One of the first modern works to propose a model of prob-
abilistic distributions of linear orderings is quite early and
comes from the statistics literature (Mallows 1957); it as-
sumes that there is a “true” ranking, and the rest of the or-
derings have a probability that is proportional to their dis-
tance to this ranking. Interestingly, in the 18th century Con-
dorcet studied—from the perspective of social choice—the
related problem of finding a ranking that is most likely to be
correct (again, relative to a reference ranking); essentially,
he showed that this is the ranking that minimizes the num-
ber of disagreements with the true ranking (de Condorcet
1785). Another well-known model was proposed some years
later in (Plackett 1975) and is now commonly known as the
Plackett-Luce model. Though it is more general than the
Mallows model, this formalism is based on weighting in-
dividual elements, and thus cannot represent the more gen-
eral weighted statements (expressing relations between ele-
ments) used here. These works are thus geared towards ob-

taining statistical tools (not focused on computational ef-
ficiency) to perform estimations based on noisy models,
rather than the more general and tractable inference tools
that we pursue here. They have been applied in recent works
in machine learning to build simpler models in which ties
are permitted (i.e., rankings are not total) (Lu and Boutilier
2011), or in non-parametric versions where sampling can be
done more efficiently, but inference procedures are not ex-
plored (Lebanon and Mao 2008). Other attempts to represent
distributions over linear orderings in a compact fashion such
as (Huang, Guestrin, and Guibas 2009) also fail in providing
tractable exact inference.

The recent work of (Choi, Van den Broeck, and Darwiche
2015) is quite close in spirit to our approach; they leverage
recent developments of tools for learning structured prob-
ability spaces (Kisa et al. 2014) towards obtaining a more
general framework for learning probabilistic preferences.
Their model allows complex queries and tractable learning;
however, even though the authors experimentally show that
partial rankings (with ties) can be handled efficiently, they
also show that their approach does not scale well with total
rankings of the kind adopted in this paper.

Summary and Outlook

In this work, we have developed exact algorithms for prob-
abilistic query answering over weighted orderings; though
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our ideas are inspired in well-known variable elimination
approaches, adapting these techniques to these models re-
quired developing completely novel algorithms. The first al-
gorithm presented is designed for chain models, while the
second—a generalization of the first—works for any set of
atomic preference statements in which the query and evi-
dence are conjunctions of atomic preference formulas. The
former is guaranteed a cubic running time, while the latter
is polynomial with a degree depending on the maximum cut
size of the model and chosen variable elimination order; the
algorithm is thus tractable, if the cut size can be bounded.

Finally, we presented empirical results showing that the
algorithms scale to reasonably-sized models; our results also
show that further optimizations would go a long way in af-
fording practical query answering over larger inputs. In par-
ticular, finding a way to reduce the size of the counting ta-
bles would greatly help—we are currently investigating if
the combinatorial term can be reduced by identifying cases
in which counting table entries do not need to be combined
and can thus be computed separately more efficiently.
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Bertelè, U., and Brioschi, F. 1972. Nonserial dynamic pro-
gramming, volume 91 of Mathematics in Science and Engi-
neering. Academic Press.
Bozga, M., and Maler, O. 1999. On the representation of
probabilities over structured domains. In Proc. of CAV, 261–
273.
Choi, A.; Van den Broeck, G.; and Darwiche, A. 2015.
Tractable learning for structured probability spaces: A case
study in learning preference distributions. In Proc. of IJCAI,
2861–2868.
Chomicki, J. 2003. Preference formulas in relational
queries. ACM Trans. Database Syst. 28(4):427–466.
Darwiche, A. 2001. Recursive conditioning. Artif. Intell.
126(12):5–41.
Darwiche, A. 2009. Modeling and Reasoning with Bayesian
Networks. Cambridge University Press.
de Condorcet, N. 1785. Essai sur l’application de l’analyse
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