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Abstract

This paper tackles the problem of evaluating the degree of
inconsistency in spatial and temporal qualitative reasoning.
We first introduce postulates to propose a formal framework
for measuring inconsistency in this context. Then, we pro-
vide two inconsistency measures that can be useful in vari-
ous AI applications. The first one is based on the number of
constraints that we need to relax to get a consistent qualita-
tive constraint network. The second inconsistency measure is
based on variable restrictions to restore consistency. It is de-
fined from the minimum number of variables that we need
to ignore to recover consistency. We show that our proposed
measures satisfy required postulates and other appropriate
properties. Finally, we discuss the impact of our inconsis-
tency measures on belief merging in qualitative reasoning.

1 Introduction

Spatial and temporal reasoning is a central and well-studied
topic in Artificial Intelligence, particularly in Knowledge
Representation and Reasoning. This field (Renz and Nebel
2007; Hazarika 2012) has gained a lot of attention during the
last few years as it extends to a plethora of domains, includ-
ing natural language processing (Song and Cohen 1988),
planning (Feiner et al. 1991), geographic information sys-
tems, computer vision, robot navigation, database theory,
archaeology and genetics, and other autonomous systems
that act in the real-world and need to reason about time and
space. In this context, various qualitative approaches have
been proposed to represent the spatial and temporal entities
and their relations.

Qualitative formalisms have different advantages com-
pared to quantitative spatial and temporal representations
such as coordinate systems. They are closer to everyday hu-
man cognition, deal well with incomplete knowledge, and
can be computationally more efficient than, say, the full ma-
chinery of metric spaces. In the context of these formalisms,
Qualitative Constraints Networks (QCNs) can be used to
represent spatial/temporal information about a system. In a
QCN, a constraint represents a set of acceptable qualitative
configurations between temporal/spatial entities and is de-
fined by a set of base relations of the considered formalism.
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Conflicts in QCNs may be present for several reasons. For
instance, when a QCN is used to represent beliefs of sev-
eral agents about spatial and/or temporal entities (Condotta
et al. 2010). Indeed, some agents in this context may have
divergent and conflictual beliefs. Using standard reasoning,
inconsistent QCNs are not informative. To deal with QCN
inconsistency as an informative concept, we need to handle
it with approaches similar to those used in the case of clas-
sical theories, such as argumentation theory, paraconsistent
logics, belief revision and measuring inconsistency. In this
paper, we focus in studying the latter approach.

Inconsistency measuring is a promising approach for
handling inconsistent knowledge bases. In a sense, this
approach is based on the identification of syntactic and/or
semantic internal sub-parts of that base involved in the
conflicts. In the literature, an inconsistency measure is
defined as a function that associates a non negative value
to each knowledge base (Hunter and Konieczny 2010). In
the same way as the notion of utility function, it provides in
particular a rank ordering of inconsistent knowledge bases.
Several inconsistency measures have been proposed and
studied in the literature (e.g. (Grant 1978; Knight 2002;
Qi, Liu, and Bell 2005; Hunter and Konieczny 2010;
Mu, Liu, and Jin 2011; Jabbour and Raddaoui 2013; Grant
and Hunter 2013; Hunter, Parsons, and Wooldridge 2014;
Jabbour, Ma, and Raddaoui 2014; Jabbour et al. 2014;
Ammoura et al. 2015; Jabbour et al. 2015;
Thimm 2016)). It has been shown that inconsistency
measures are useful and attractive in diverse scenarios,
including software specifications (Martinez, Arias, and
Vilas 2004), e-commerce protocols (Chen, Zhang, and
Zhang 2004), belief merging (Qi, Liu, and Bell 2005),
news reports (Hunter 2006), integrity constraints (Grant and
Hunter 2006), requirements engineering (Martinez, Arias,
and Vilas 2004), databases (Martinez et al. 2007), semantic
web (Zhou et al. 2009), and network intrusion detection
(McAreavey et al. 2011). In this work, we aim at extending
the approach of measuring inconsistency to qualitative
reasoning. To the best of our knowledge, this paper is
the first work on measuring inconsistency in qualitative
reasoning.

We first propose postulates for measuring QCN inconsis-
tency that allow us to formalize the intuition behind our in-
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consistency measures. Our two first postulates are require-
ments for every QCN inconsistency measure. They are sim-
ilar to the postulates of Consistency and Monotonicity intro-
duced in (Hunter and Konieczny 2010). It is worth noting
that Hunter and Konieczny have proposed in their basic sys-
tem two additional postulates that every inconsistency mea-
sure should satisfy, namely Free Formula Independence and
Dominance. We here introduce a postulate similar to Domi-
nance and three variants of Free Formula independence. We
do not require these postulates for any QCN inconsistency
measure because we have objections against them similar
to Besnard’s objections against Free Formula Independence
and Dominance (Besnard 2014). However, by our objec-
tions, we are not arguing that our postulates related to Dom-
inance and Free Formula independence are not needed for
any QCN inconsistency measure. Indeed, we think that they
are suitable in various cases where we need to reason with
QCN inconsistency. We also propose other additional prop-
erties coming from qualitative reasoning.

In addition, we introduce two QCN inconsistency mea-
sures. The first measure is defined from relaxing constraints
to get consistency. Indeed, it is based on the minimum num-
ber of constraints that we have to relax in order to obtain a
consistent QCN. The second QCN inconsistency measure is
defined from variable restrictions that allow to restore con-
sistency. It is based on the minimum number of variables
that we need to ignore to get a consistent QCN. We show
that our two QCN inconsistency measures satisfy required
postulates and other interesting properties.

It is important to note that QCN inconsistency measures
can be a useful contribution in applications for which infor-
mation is represented by temporal or spatial qualitative con-
straints. For instance, in the context of an intelligent system
for human temporal annotations of texts using the standard
TimeML relations (Pustejovsky et al. 2003), inconsistency
measures for QCNs of the Interval Algebra can be used to
control the addition of a new piece of information. In the
same vein, QCN inconsistency measures can provide a guide
to repair inconsistent corpus. Moreover, one of the motiva-
tions for introducing and studying inconsistency measures
for qualitative formalisms is their application to information
merging (see Section 7). Indeed, the inconsistency measures
can be used in defining various operators for belief revision.
For instance, we can decide that an agent accepts a new piece
of information (that expresses his preference/belief on rela-
tive positions of spatial and/or temporal entities) only if it
brings few contradictions.

2 Temporal and Spatial Qualitative Calculi

This section reviews basic notions in qualitative reasoning.

Relations A (binary) temporal or spatial qualitative calcu-
lus uses a domain D to represent temporal or spatial entities
and a finite set B of binary relations defined on this domain
D. The elements of B are referred to as base relations and
represent the set of possible configurations over two tem-
poral or spatial entities. The base relations of B are jointly
exhaustive and pairwise disjoint and closed for the inverse.
Moreover, the identity relation on D, denoted by Id, belongs

to B. Given two elements x and y of D and a base relation
b ∈ B, x b y denotes that x and y satisfies b, i.e. (x, y) ∈ b.
For a given qualitative calculus, each (complex) relation is
the union of base relations. A relation is represented as the
set of base relations included in the corresponding union.
Hence, we have 2|B| possible relations represented by the
set 2B. Given x, y ∈ D and r ∈ 2B, x r y will denote that x
and y satisfies a base relation b ∈ r. The set 2B is equipped
with the usual set-theoretic operations: union (∪), intersec-
tion (∩) and, converse (−1). Notice that the converse of a
relation is the union of the converses of its base relations.

To illustrate these concepts, let us consider the well-
known Allen’s temporal calculus, called the Interval Alge-
bra (IA) (Allen 1981). The set DIA representing the tem-
poral entities is the set of the intervals on the line. More-
over, IA uses thirteen base relations denoted as BIA =
{eq, p, pi,m,mi, o, oi, s, si, d, di, f, fi}. Each base relation
of BIA represents a particular ordering of the four end-
points of two intervals on the rational line (see Figure 1).
In the past, numerous qualitative calculus have been pro-
posed and studied; see e.g. (Randell, Cohn, and Cui 1992;
Vilain, Kautz, and Beek 1990; Pujari, Kumari, and Sat-
tar 1999; Balbiani, Condotta, and Fariñas del Cerro 1998;
Balbiani and Osmani 2000).
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Figure 1: The base relations of IA

In what follows, we shall assume a temporal or spatial
qualitative calculus based on a finite set B of base relations
on a domain D.

Qualitative Constraint Networks Temporal or spatial in-
formation about the relative positions of a set of entities can
be represented by a Qualitative Constraint Network. A QCN
is a pair composed of a set of variables and a set of con-
straints. Intuitively, the variables represent the set of tempo-
ral/spatial entities of the system, and each constraint consists
of a set of acceptable qualitative configurations between two
entities. More formally, a QCN is defined as follows:
Definition 1 A QCN is a pair N = (V,C) where V is a
non-empty finite set of variables, and C is a mapping that
associates a relation C(v, v′) ∈ 2B with each pair (v, v′)
of V × V . C is such that C(v, v) = {Id} and C(v, v′) =
(C(v′, v))−1.

Let N = (V,C) be a QCN. For all v, v′ ∈ V , the re-
lation C(v, v′) will be also denoted by N [v, v′]. N[v,v′]/r
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Figure 2: (a) A QCN N0 of IA, (b) a consistent scenario S0

of N0 and (c) a solution σ of N0 for which the corresponding
scenario is S0.

with v, v′ ∈ V and r ∈ 2B, is the QCN (V,C ′) defined
by C ′(v, v′) = r, C ′(v′, v) = r−1, and C ′(v′′, v3) =
C(v′′, v3) for all (v′′, v3) ∈ V × V \ {(v, v′), (v′, v)}.
An instantiation of V is a mapping σ defined from V to
D. A solution σ of N is an instantiation of V such that
for every pair (v, v′) of variables in V , (σ(v), σ(v′)) sat-
isfies C(v, v′), i.e., there exists a base relation b ∈ C(v, v′)
such that (σ(v), σ(v′)) ∈ b. N is consistent iff it admits
a solution. Let N = (V,C) and N ′ = (V ′, C ′) be two
QCNs. Then, N ′ is a subQCN of N iff V ′ ⊆ V and for
all v, v′ ∈ V ′, C ′(v, v′) ⊆ C(v, v′). We write N ′ ⊆ N
in such cases. In particular cases where N ′ �= N , we use
the notation N ′ ⊂ N . A scenario S is a QCN whose con-
straints are defined by one, and exactly one, base relation for
all pairs of variables of the QCN. A scenario S = (V ′, C ′)
of N = (V,C) is a scenario which is a sub-QCN of N and
such that V ′ = V .

For illustration, consider the two QCNs N0 and S0 de-
picted in Figure 2. On each of these QCNs, a variable is
represented by a node, and a constraint by an edge labeled
with the associated relation. For the sake of simplicity, an
edge labeled by the universal relation (B), or linking a same
node or two nodes for which there is already another edge, is
omitted. The QCN N0 is a consistent QCN of IA. The QCN
S0 is a consistent scenario of N . Figure 2c describes a so-
lution of N0. The corresponding consistent scenario of σ is
S0.

3 Operations on QCNs

In this section, we introduce some basic operations on QCNs
that are useful in the sequel for defining our framework for
measuring QCN inconsistency.

Amalgamation of QCNs Let us begin by introducing the
intersection, optimistic union and pessimistic union opera-
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Figure 3: Four QCNs N1, N2, N3 and N4 of IA such that
N3 = N1�N2 and N4 = N1∪N2.

tions.

Definition 2 Let N = (V,C) and N ′ = (V ′, C ′) be two
QCNs. The intersection of N and N ′, denoted by N ∩ N ′,
is the QCN N ′′ = (V ∩ V ′, C ′′) s.t. for all v, v′ ∈ V ∩ V ′,
C ′′(v, v′) = C(v, v′) ∩ C ′(v, v′).

That is, given two QCNs N and N ′, it is clear that N ∩
N ′ ⊆ N and N ∩ N ′ ⊆ N ′. We now define operations for
combining two QCNs to obtain a QCN in which the set of
variables corresponds to the union of the variables of these
two QCNs. Notice that the two operations that we define
differ in the way to handle the common constraints.

Definition 3 Let N = (V,C) and N ′ = (V ′, C ′) be two
QCNs. The optimistic union and the pessimistic union of N
and N ′, denoted respectively by N�N ′ and N∪N ′, are
respectively the QCNs N 1 = (V 1, C1) and N 2 = (V 2, C2)
defined as follows:

• V 1 = V 2 = V ∪ V ′,
• ∀ v, v′ ∈ V \ V ′, C1(v, v′) = C2(v, v′) = C(v, v′),
• ∀ v, v′ ∈ V ′ \ V , C1(v, v′) = C2(v, v′) = C ′(v, v′),
• ∀ v, v′ ∈ V s.t. v ∈ V \V ′ and v′ ∈ V ′\V , or v′ ∈ V \V ′

and v ∈ V ′ \ V , C1(v, v′) = C2(v, v′) = B,
• ∀v, v′ ∈ V ′ ∩ V , C1(v, v′) = C(v, v′) ∩ C ′(v, v′) and

C2(v, v′) = C(v, v′) ∪ C ′(v, v′).

In order to illustrate the above notions, let us consider the
QCNs of IAN1, N2, N3 and N4 described in Figure 3. Then,
we have N3 = N1�N2, and N4 = N1∪N2.

Clearly, for two QCNs N and N ′ we have N ∩ N ′ ⊆
N�N ′ ⊆ N∪N ′. Moreover, N ⊆ N∪N ′ and N ′ ⊆
N∪N ′.

The next definition describes a property that concerns par-
ticular amalgamations of QCNs:
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Definition 4 Given a set of relations R ⊆ 2B, three QCNs
N = (V,C), N ′ = (V ′, C ′) and N ′′ = (V ′′, C ′′). N ′′
is said to be an amalgamation of N and N ′ through R, de-
noted by N ′′ = N
RN ′, iff V ∩V ′ = ∅, V ′′ = V ∪V ′, and
for all v, v′ ∈ V , C ′′(v, v′) = C(v, v′), for all v, v′ ∈ V ′,
C ′′(v, v′) = C ′(v, v′) and for all v ∈ V , v′ ∈ V ′,
C ′′(v, v′) ∈ R.

In other words, N ′′ = N
RN ′ means that N ′′ is com-
posed of two disjoint QCNs N and N ′ related by relations
belonging to R. Intuitively, 
 can be seen as a variant of the
standard disjoint union.

Relaxations and Restrictions of QCNs We now turn to
the notion of constraint relaxations in QCN which is a trans-
formation paradigm to recover consistency for inconsistent
QCN. As in the context of general CSPs (Constraint Sat-
isfaction Problems), we can regard a constraint relaxation
(C-relaxation, for short) of QCN as a QCN obtained by re-
placing some constraints with weaker ones. Several different
relaxations have been proposed in the literature. For exam-
ple, we can relax a disjunctive constraint to its conceptual
neighbourhood as suggested in (Li and Li 2013). Now, we
proceed by describing three forms of C-relaxations: a con-
straint can be enlarged by adding at most one relation on its
relation, a constraint can be enlarged by adding an arbitrary
number of relations on its relation, or, a constraint can be
enlarged by adding all the missing base relations of B.

More formally, these different ways of relaxing QCN are
defined in the following manner:

Definition 5 (C-Relaxations) Let N = (V,C) be a QCN.
Then:

• a C-relaxation of N is a QCNN ′ = (V ′, C ′) s.t. V = V ′
and N ⊆ N ′.

• a unit C-relaxation of N is a C-relaxation of N s.t. for all
v, v′ ∈ V , |C ′(v, v′) \ C(v, v′)| � 1.

• a trivial C-relaxation of N is a QCNN ′ = (V,C ′) s.t. N ′
is C-relaxation of N and for all v, v′ ∈ V , if C ′(v, v′) �=
C(v, v′) then C ′(v, v′) = B.

We use CCR(N ), CCRU(N ) and CCR∗(N ) to denote the
set of consistent C-relaxations, the set of unit consistent C-
relaxations, and the set of trivial consistent C-relaxations
of N , respectively. In addition, N ′ is said to be a minimal
consistent C-relaxation (resp. minimal consistent trivial C-
relaxation ) of N if N ′ is a consistent C-relaxation (resp.
trivial C-relaxation) of N and there exists no N ′′ such that
N ′′ ⊂ N and N ′′ ∈ CCR(N ) (resp. N ′′ ∈ CCR∗(N )). N ′
is said to be a maximal inconsistent trivial C-relaxation of
N if it is an inconsistent trivial C-relaxation of N and, for all
trivial C-relaxation N ′′ of N with N ′ ⊂ N ′′, N ′′ is a con-
sistent QCN. Intuitively, the notion of maximal inconsistent
trivial C-relaxation is similar to that of minimal inconsistent
subset in the case of propositional setting.

Given a QCNN = (V,C) and a subset of variables V ′ ⊆
V , the projection of N on V ′, called also variable restriction
(V-restriction in short), is defined as a QCN on V ′ having
the same constraints that N has on the variables in V ′.
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Figure 4: Three QCNs N5, N6, N7 with N5 a consistent
unit C-relaxation of N3, N6 a consistent trivial C-relaxation
of N3 and N7 a consistent V-restriction of N3.

Definition 6 (V-Restrictions) Let N = (V,C) and N ′ =
(V ′, C ′) be two QCNs. We say that N ′ is a V-restriction of
N if V ′ ⊆ V , and C(v, v′) = C ′(v, v′) for every v, v′ ∈ V ′.
We use N↓V ′ to denote the V-restriction of N on V ′ ⊆ V .

The set of consistent V-restrictions of N is denoted by
CVR(N ). Moreover, N ′ is said to be a minimal inconsistent
V-restriction of N if N ′ is a V-restriction of N and, for all
V-restriction N ′′ of N with N ′′ ⊂ N ′, N ′′ is a consistent
QCN.

For instance, we consider the three QCNs N5, N6 and
N7 described in Figure 4 and again the QCN N3 depicted
in Figure 3. As one can see, N5, N6 and N7 are consis-
tent, whereas N3 is inconsistent. Indeed, the sub-QCN of
N3 corresponding to the variables (v1, v2, v3) is inconsis-
tent. Moreover, it holds that N5, N6 and N7 are respectively
a unit C-relaxation, a trivial C-relaxation and a V-restriction
of N3.

4 Rational Postulates for Inconsistency

Measures

An inconsistency measure I is a function that maps a (possi-
bly inconsistent) QCN onto a non-negative real value, i.e., an
inconsistency measure I is a function I : QCN −→ [0,∞].

In order to formalize the intuition behind inconsistency
measures, we propose a list of postulates that should be satis-
fied by any reasonable/desired inconsistency measure. These
postulates are also useful for comparing inconsistency mea-
sures.

In the sequel, we make the following requirements for any
inconsistency measure.

Definition 7 (Basic Postulates) Let N = (V,C) be a
QCN.

P1. I(N ) = 0 iff N is a consistent QCN (Consistency Null -
CN);

P2. For all V ′ ⊆ V , I(N↓V ′) � I(N ) (Variables Monotonic-
ity - VM).

The postulates introduced in Definition 7 are related to
postulates in the basic system introduced in (Hunter and
Konieczny 2010). The postulate Consistency Null ensures
that all and only consistent QCNs get 0 as amount of in-
consistency. In the same way as Hunter and Konieczny’s
Consistency postulate in the basic system for measuring in-
consistency in propositional logic, this property expresses
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that every inconsistency measure should be able to discrim-
inate between consistency and inconsistency. Regarding the
postulate P2, it is similar to Hunter and Konieczny’s Mono-
tonicity postulate, since Variables Monotonicity expresses
the fact that adding constraints does not decrease the amount
of inconsistency.

We now introduce notions that are used in the definition
of additional postulates.
Definition 8 (Free Constraint) Let N = (V,C) be a QCN
and v, v′ ∈ V . The pair of variables {v, v′} is said to
be a free constraint in N if for all minimal consistent C-
relaxation N ′ = (V,C ′), C ′(v, v′) = C(v, v′) holds.
Definition 9 (T-Free Constraint) Let N = (V,C) be a
QCN and v, v′ ∈ V . The pair of variables {v, v′} is said to
be a T-free constraint in N if for all minimal consistent triv-
ial C-relaxation N ′ = (V,C ′), C ′(v, v′) = C(v, v′) holds.

We use FC(N ) (resp. FC∗(N )) to denote the set of free
constraints (resp. T-free constraints) of N .
Proposition 1 Given a QCN N , we have FC(N ) ⊆
FC∗(N ).
Proof: Let N = (V,C) be a QCN and {v, v′} ∈ FC(N ).
Assume that {v, v′} /∈ FC∗(N ). Then, there exists a mini-
mal consistent trivial C-relaxation N ′ = (V,C ′) of N s. t.
C ′(v, v′) �= C(v, v′). Clearly, there exists a minimal con-
sistent C-relaxation N ′′ = (V,C ′′) of N s.t. N ′′ ⊆ N ′.
Thus, we get C ′′(v, v′) = C(v, v′), since {v, v′} ∈ FC(N ).
Let N 3 = (V,C3) be a trivial C-relaxation of N de-
fined from N ′′ by: for all v1, v2 ∈ V , C3(v1, v2) = B
if C ′′(v1, v2) �= C(v1, v2); C3(v1, v2) = C(v1, v2) other-
wise. One can see that N 3 is consistent, since N ′′ is con-
sistent. Moreover, we get N 3 ⊂ N ′, since N ′′ ⊆ N ′ and
C3(v, v′) = C ′′(v, v′) = C(v, v′). Thus, we get a contra-
diction, since N ′ is a minimal consistent trivial C-relaxation.
�

Let us now show that FC(N ) is not always equal to
FC∗(N ). To this end, we provide an example in IA.
Example 1 Let N = ({v1, v2, v3}, C) be a QCN in IA
s.t. C(v1, v2) = ∅, C(v2, v3) = {pi} and C(v3, v1) =
{pi}. Clearly, the QCN N ′ = ({v1, v2, v3}, C ′), with
C ′(v1, v2) = {eq}, C ′(v2, v3) = {pi, eq} and C ′(v3, v1) =
{pi, eq}, is a minimal consistent C-relaxation of N . Thus,
we get FC(N ) = ∅, since all the constraints are relaxed.
However, there is a unique minimal consistent trivial C-
relaxation: N ′′ = ({v1, v2, v3}, C ′′) with C(v1, v2) = BIA,
C(v2, v3) = {pi} and C(v3, v1) = {pi}. It follows that
FC∗(N ) = {{v2, v3}, {v1, v3}}.

The notion of T-free constraint is similar to that of free
formula in the case of propositional logic (Hunter and
Konieczny 2010). Let us recall that a free formula in a
knowledge base is a formula that does not belong to any
minimal inconsistent subsets of this knowledge base. In the
case of QCNs, the notion of minimal inconsistent subset of
constraints can be associated to that of maximal inconsis-
tent trivial C-relaxation. Indeed, the constraints having re-
lations different from B by a maximal inconsistent trivial
C-relaxation corresponds to minimal inconsistent subset of
constraints.

Proposition 2 Let N = (V,C) be a QCN and {v, v′} ∈
FC∗(N ). Then, for all maximal inconsistent trivial C-
relaxation N ′ = (V,C ′) of N , C ′(v, v′) = B holds.

Proof: Assume that there exists a maximal inconsistent triv-
ial C-relaxation N ′ = (V,C ′) of N s.t. C ′(v, v′) �= B.
We thus know that C(v, v′) �= B. Moreover, we know that
the trivial C-relaxation N ′′ = (V,C ′′) of N is consistent,
where C ′′(v, v′) = B, and C ′′(v1, v2) = C ′(v1, v2) for ev-
ery {v1, v2} �= {v, v′}. Then, there exists a minimal consis-
tent trivial C-relaxation N 3 = (V,C3) of N s.t. N 3 ⊆ N ′′
and C3(v, v′) = B. Thus, we get a contradiction, since
{v, v′} ∈ FC∗(N ). �

After introducing the notions of free constraint, we now
define a similar notion for variables.

Definition 10 (Free Variable) Let N = (V,C) be a QCN
and v ∈ V . The variable v is said to be a free variable in N
if, for all minimal inconsistent V-restriction N ′ = (V ′, C ′),
v /∈ V ′ holds.

We use FV(N ) to denote the set of free variables of N .
In this work, we also consider the following postulates for

every two QCNs N = (V,C) and N ′ = (V ′, C ′):

P3. If V = V ′ and N ⊆ N ′ then I(N ) � I(N ′) (Relation
Monotonicity - CM).

P4. For all {v, v′} ∈ FC(N ), I(N ) = I(N[v,v′]/B) (Free
Constraint Independence - FCI).

P5. For all {v, v′} ∈ FC∗(N ), I(N ) = I(N[v,v′]/B) (T-Free
Constraint Independence - TFCI).

P6. For all v ∈ FV(N ), I(N ) = I(N↓(V \{v})) (Free Variable
Independence - FVI).

The postulate P3 can be seen as an adaptation of the postu-
late of Dominance in the case of propositional logic (Hunter
and Konieczny 2010). Indeed, we have C(v, v′) ⊆ C ′(v, v′)
for every two variables v and v′, and that means that the
truth of C(v, v′) implies the truth of C ′(v, v′). Thus, follow-
ing Dominance, replacing C(v, v′) with C ′(v, v′) does not
increase the amount of inconsistency, which means that the
amount of inconsistency in N is greater than or equal to that
in N ′. Moreover, the postulate P4 expresses that the amount
of inconsistency does not change by ignoring the constraints
that are not involved in any minimal consistent C-relaxation.
This postulate can be seen as a restriction of the postulate in
the basic system called Free Formula Independence. Indeed,
as we said before, the free constraints of a QCN are included
in the set of its T-free constraints (see Proposition 2), and
the notion of T-free constraint in QCNs corresponds to that
of free formula in the case of propositional logic (see Propo-
sition 2). Thus, the postulate P5 is similar to that of Free
Formula independence. Moreover, using Proposition 1, we
know that P5 is stronger than P4, i.e., TFCI implies FCI.
Regarding the postulate P6, it is an adaptation of Free For-
mula Independence postulate to the variables of QCNs.

We do not consider P3, P4, P5 and P6 as basic postu-
lates because we think that they can not be required for ev-
ery inconsistency measure for QCNs. In a sense, we follow
Besnard’s objections against Dominance and Free Formula
Independence in the case of propositional logic (Besnard
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2014). As an example, let us provide an objection against
Relation Monotonicity. To this end, we consider the natu-
ral inconsistency measure which is similar to that defined
as the number of minimal inconsistent subsets (Hunter and
Konieczny 2010). We expect that the equivalent inconsis-
tency measure for QCNs has to satisfy all the basic postu-
lates. In what follows, however, we will show that this mea-
sure does not satisfy Relation Monotonicity. As we said be-
fore, the notion of maximal inconsistent trivial C-relaxation
is the equivalent notion of minimal inconsistent subset in
QCNs. We use IMTR to denote the natural inconsistency
measure defined as the number of maximal inconsistent
trivial C-relaxations. Let N = ({v1, v2, v3, v4}, C) be a
QCN of IA such that C(v1, v2) = ∅, C(v2, v3) = {pi},
C(v3, v1) = {pi}, C(v2, v4) = {pi}, C(v4, v1) = {pi} and
C(v3, v4) = BIA. This QCN has a unique maximal incon-
sistent trivial C-relaxation, which is N0 = (V,C0) where
C0(v1, v2) = ∅ and C0(v, v

′) = BIA for all the other pairs
of variables. As a consequence, we get IMTR(N ) = 1. Let
us consider now the QCNN ′ = (V,C ′) where C ′(v1, v2) =
{pi}, C ′(v2, v3) = {pi}, C ′(v3, v1) = {pi}, C ′(v2, v4) =
{pi}, C ′(v4, v1) = {pi} and C ′(v3, v4) = BIA. Clearly, we
have N ⊂ N ′. Moreover, N ′ admits two maximal inconsis-
tent trivial C-relaxation:
• N1 = (V,C1) where C1(v1, v2) = {pi}, C1(v2, v3) =

{pi}, C1(v3, v1) = {pi}, C1(v2, v4) = BIA, C1(v4, v1) =
BIA and C1(v3, v4) = BIA,

• N2 = (V,C2) where C2(v1, v2) = {pi}, C1(v2, v3) =
BIA, C1(v3, v1) = BIA, C1(v2, v4) = {pi}, C1(v4, v1) =
{pi} and C1(v3, v4) = BIA.

Thus, we get IMTR(N ′) = 2 and, consequently, IMTR(N ) <
IMTR(N ′). Therefore, IMTR does not satisfy Relation Mono-
tonicity.

However, we are not arguing that P3, P4, P5 and P6 are
not needed for any inconsistency measure for QCNs. Indeed,
we think that they are suitable in several contexts, especially,
when the primitive conflicts are identified through consis-
tent C-relaxations. For instance, Relation Monotonicity ex-
presses the fact that the amount of inconsistency does not
increase when we replace some constraints with weaker con-
straints, and this makes sense in numerous cases.

Let two consistent QCNs N , N ′ and, a QCN N ′′ such
that N ′′ = N
RN ′ with R ⊆ 2B. For particular sets R
we can show that two consistent scenarios of N and N ′ can
be extended in order to obtain a consistent scenario of N ′′.
This property which concerns the set R is formally defined
in the following manner:
Definition 11 Let R ⊆ 2B be a subset of relations. R has
the consistent scenario separation property, in short the CSS
property, iff for all QCNs N , N ′, N ′′ with N ′′ = N
RN ′,
we have for all consistent scenarios S , S ′ of N and N ′ re-
spectively, (S�S ′)�N ′′ is consistent.

For instance, consider the set of relations of IARp defined
by Rp = {r ∈ 2BIA : p ∈ r}. We can easily show that this
set has the CSS property, since a consistent scenario can be
obtained by selecting p for each relation in Rp.

From this property, we define the following postulate con-
cerning a QCN inconsistency measure:

Definition 12

P7. Let a set of relations R ⊆ 2B having the CSS property
and QCNs N ,N ′,N ′′ such that N ′′ = N
RN ′. We say
that an inconsistency measure I satisfies the property of
CSS-additivity if we have I(N ′′) = I(N )+I(N ′) (CSS-
Additivity).

In a sense, the CSS-Additivity property can be seen as a
variant of Thimm’s postulate, called Super-Additivity, intro-
duced in (Thimm 2013).

5 A C-relaxation Based Inconsistency

Measure

We here introduce a first inconsistency measure defined
from the notion of trivial C-relaxation. More precisely, it is
defined as the number of constraints that we need to alter in
order to get a consistent qualitative constraint network.

Given two QCNs N = (V,C) and N ′ = (V,C ′), we use
#diffC(N ,N ′) to denote the number of constraints that dif-
fer between N and N ′, i.e., N ′ = (V,C ′) = 1

2 .|{(v, v′) ∈
V × V : C(v, v′) �= C ′(v, v′)}|.
Definition 13 (ICCR Inconsistency Measure) The incon-
sistency measure ICCR is defined by:

ICCR(N ) = min{#diffC(N ,N ′) : N ′ ∈ CCR(N )}
The inconsistency measure ICCR captures the minimum

effort needed in terms of constraint relaxation to recover
consistency.

Note that we can show that for a QCN N , the inconsis-
tency measure ICCR can be easily calculated from a solution
of the problem MAX-QCN on N which consists in finding
a consistent scenario on the variables of N that maximizes
the number of constraints in N (Condotta et al. 2015).

The previous definition considers the consistent C-
relaxations of the considered QCN, nevertheless, in an
equivalent manner one could use the more restrictive sets
corresponding to the consistent unit C-relaxations or the
consistent trivial C-relaxations. Indeed, we have the follow-
ing results:
Proposition 3 Let N = (V,C) be a QCN. Then, we have:

(a) ICCR(N ) = min{#diffC(N ,N ′) : N ′ ∈ CCRU(N )}.
(b) ICCR(N ) = min{#diffC(N ,N ′) : N ′ ∈ CCR∗(N )}.

Proof:(Sketch) Let N ′ = (V,C ′) be a consistent C-
relaxation of N such that #diffC(N ,N ′) = ICCR(N ). Let
S be a consistent scenario of N ′. We can show that for all
v, v′ ∈ V , S[v, v′] ⊆ N iff N ′[v, v′] = N [v, v′]. In the con-
trary case, it would exist a consistent C-relaxation of N ′′
such that #diffC(N ,N ′′) < ICCR(N ). From the consis-
tent scenario S we define the two QCNs N 1 = (V,C1) and
N 2 = (V,C2), by respectively :
• for all v, v′ ∈ V , N 1[v, v′] = N [v, v′] ∪ S[v, v′] ;
• for all v, v′ ∈ V , N 2[v, v′] = N [v, v′] if S[v, v′] ⊆
N [v, v′], N 2[v, v′] = B otherwise.

Note that N 1 is a consistent unit C-relaxation of N whereas
N 2 is a consistent trivial C-relaxation of N . We also have
#diffC(N ,N ′) = #diffC(N ,N 1) = #diffC(N ,N 2).
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Moreover, we can show that #diffC(N ,N 1) =

min{#diffC(N ,N ′′) : N ′′ ∈ CCRU(N )} and
#diffC(N ,N 2) = min{#diffC(N ,N ′′) : N ′′ ∈
CCRU(N )}. The non-satisfaction of one of these two
equalities would lead to a contradiction. More precisely,
they would lead to the existence of a consistent C-relaxation
of N ′′ such that #diffC(N ,N ′′) < ICCR(N ). From all this,
ICCR(N ) = min{#diffC(N ,N ′) : N ′ ∈ CCRU(N )} =
min{#diffC(N ,N ′) : N ′ ∈ CCR∗(N )} holds. �
Now, we study the inconsistency measure ICCR with respect
to the different postulates defined previously. First, we
establish a result that will be use in the sequel.

Proposition 4 Let N ,N ′,N ′′ be three QCNs defined on a
same set of variables V . If N ⊆ N ′ then #diffC(N ,N ′′) �
#diffC(N ′,N ′∪N ′′).

Proof: Suppose that N ⊆ N ′. Let v, v′ ∈ V .
As N ⊆ N ′ ⊆ N ′∪N ′′, we can assert that
N [v, v′] ⊆ N ′[v, v′] and N ′′[v, v′] ⊆ (N ′∪N ′′)[v, v′].
Now, suppose that N ′[v, v′] �= (N ′∪N ′′)[v, v′]. Then,
using N ′[v, v′] ⊆ (N ′∪N ′′)[v, v′], we have that
(N ′[v, v′] \ N ′′[v, v′]) �= ∅. Since N [v, v′] ⊆ N ′[v, v′], we
have (N [v, v′] \ N ′′[v, v′]) �= ∅. Consequently, N [v, v′] �=
N ′′[v, v′]. Thus, we can assert that, for all v, v′ ∈ V , if
N ′[v, v′] �= (N ′∪N ′′)[v, v′] then N [v, v′] �= N ′′[v, v′].
Therefore, #diffC(N ,N ′′) � #diffC(N ′,N ′ ∪N ′′) holds.
�

In the following proposition, we show that ICCR is a basic
inconsistency measure.

Proposition 5 ICCR satisfies the Consistency Null (P1) and
Variable Monotonicity (P2) postulates.

Proof:
- Consistency Null. Let N be a consistent QCN. Then we
have N ∈ CCR(N ) and #diffC(N ,N ) = 0. Since, for all
QCN M ∈ CCR(N ), we have #diffC(M,N ) � 0, we can
assert that, for all QCN M ∈ CCR(N ), #diffC(M,N ) �
#diffC(N ,N ) holds. We can conclude that ICCR(N ) = 0.
Now, assume that ICCR(N ) = 0. Then, there exists M ∈
CCR(N ) s.t. #diffC(M,N ) = 0. Since #diffC(M,N ) =
0 we have M = N . Hence, N ∈ CCR(N ) holds and, con-
sequently, N is consistent.
- Variable Monotonicity. Let N = (V,C) be
a QCN and V ′ ⊆ V . Let M ∈ CCR(N )
s.t. ICCR(N ) = #diffC(N ,M). One can see that
M↓V ′ is a consistent C-relaxation of N↓V ′ . Hence,
#diffC(N↓V ′ ,M↓V ′) � ICCR(N↓V ′) holds. Moreover, we
have that #diffC(N ,M) � #diffC(N↓V ′ ,M↓V ′). Con-
sequently, we have #diffC(N ,M) � ICCR(N↓V ′). Thus,
ICCR(N ) � ICCR(N↓V ′) holds. �
Proposition 6 ICCR satisfies the Relation Monotonicity (P3)
and T-Free Constraint Independence (P5) postulates.

Proof:
- Relation Monotonicity. Let N = (V,C) and N ′ =
(V,C ′) be two QCNs s.t. N ⊆ N ′. Let M ∈ CCR(N )
s.t. ICCR(N ) = #diffC(M,N ). Using Proposition 4, we
have #diffC(N ,M) � #diffC(N ′,N ′∪M). Since M

is a consistent QCN, N ′∪M is consistent. Moreover,
as N ′ ⊆ N ′∪M, N ′∪M is a consistent C-relaxation
of N ′. Hence, #diffC(N ′,N ′∪M) � ICCR(N ′) holds.
Consequently, we have ICCR(N ) = #diffC(N ,M) �
#diffC(N ′,N ′∪M) � ICCR(N ′). Thus, ICCR(N ) �
ICCR(N ′) holds.
- T-Free Constraint Independence. Let N = (V,C)
be a QCN and {v, v′} ∈ FC∗(N ). We use N ′ to denote
the QCN N[v,v′]/B. The case N = N ′ is trivial. We
assume in the sequel that N �= N ′. Using Proposition 6,
we know that ICCR(N ) � ICCR(N ′). Let us show that
ICCR(N ) � ICCR(N[v,v′]/B). Let M′ ∈ CCR∗(N ′) s.t.
ICCR∗(N ′) = #diffC(N ′,M′). Note that M′ is also a
trivial consistent C-relaxation of N . By hypothesis we have
N [v, v′] �= N ′[v, v′]. Consequently, N [v, v′] �= M′[v, v′].
It follows that M′ cannot be a minimal trivial consistent C-
relaxation of N since {v, v′} is a free-constraint of N . From
all this, we can assert that there exists a QCN M which is a
minimal trivial consistent C-relaxation of N s.t. M ⊂ M′.
We have #diffC(N ,M) < #diffC(N ,M′). Moreover,
we can see that #diffC(N ′,M′) = #diffC(N ,M′) − 1.
It follows that #diffC(N ,M) � #diffC(N ′,M′). Thus,
ICCR(N ) � ICCR(N[v,v′]/B) holds. �

Let us recall that T-Free Constraint Independence is
stronger than Free Constraint Independence (P4) (see Propo-
sition 1). As a consequence, we obtain that ICCR satisfies
also P4.

The following proposition is used to show that ICCR satis-
fies also CSS-Additivity (P7).

Proposition 7 Let a set of relations R ⊆ 2B having the
CSS property and QCNs N = (V,C), N ′ = (V ′, C ′), N ′′
such that N ′′ = N
RN ′. For all QCN M ∈ CCR(N ′′)
with I(N ′′) = #diffC(N ′′,M), we have:

(a) for all v ∈ V and v′ ∈ V ′, M[v, v′] = N ′′[v, v′];
(b) #diffC(N ′′,M) = #diffC(N ,M↓V ) +

#diffC(N ′,M↓V ′).

Proof: Let M ∈ CCR(N ′′) s.t. I(N ′′) = #diffC(N ′′,M).
Let M′ be the QCN on V ∪ V ′ defined by M′

↓V =

M↓V , M′
↓V ′ = M↓V ′ and for all (v, v′) ∈ V × V ′,

M′[v, v′] = N ′′][v, v′]. Note that M′ = M↓V 
RM↓V ′

and N ′′ ⊆ M′ ⊆ M. Since M is a consistent QCN,
M↓V and M↓V ′ are consistent. Then, using the fact
that R has the CSS property, we can assert that M is
consistent. Moreover, as N ′′ ⊆ M′ ⊆ M, we have
#diffC(N ′′,M′) � #diffC(N ′′,M). Consequently, by
definition of M, #diffC(N ′′,M′) = #diffC(N ′′,M)
holds. In other hand, we have #diffC(N ′′,M) =
#diffC(N ′′

↓V ,M↓V ) + #diffC(N ′′
↓V ′ ,M↓V ′)+ |{(v, v′) ∈

V × V ′ : N ′′[v, v′] �= M[v, v′]}| and #diffC(N ′′,M′) =
#diffC(N ′′

↓V ,M′
↓V ) + #diffC(N ′′

↓V ′ ,M′
↓V ′)+ |{(v, v′) ∈

V × V ′ : N ′′[v, v′] �= M′[v, v′]}|. We know that M′
↓V =

M↓V , M′
↓V ′ = M↓V ′ and {(v, v′) ∈ V ×V ′ : N ′′[v, v′] �=

M′[v, v′]} = ∅. Consequently, #diffC(N ′′,M′) =
#diffC(N ′′

↓V ,M↓V ) + #diffC(N ′′
↓V ′ ,M↓V ′). We also

know that #diffC(N ′′,M′) = #diffC(N ′′,M). Hence,
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we have #diffC(N ′′,M) = #diffC(N ′′
↓V ,M↓V ) +

#diffC(N ′′
↓V ′ ,M↓V ′)+ |{(v, v′) ∈ V × V ′ : N ′′[v, v′] �=

M[v, v′]}|= #diffC(N ′′
↓V ,M↓V )+#diffC(N ′′

↓V ′ ,M↓V ′).
From this, we can conclude, on the one hand, that {(v, v′) ∈
V × V ′ : N ′′[v, v′] �= M[v, v′]} = ∅ and, on the
other hand, that #diffC(N ′′,M) = #diffC(N ′′

↓V ,M↓V ) +
#diffC(N ′′

↓V ′ ,M↓V ′). �
Proposition 8 ICCR satisfies CSS-Additivity (P7).

Proof: Let a set of relations R ⊆ 2B having the CSS
property and QCNs N = (V,C), N ′ = (V ′, C ′), N ′′ s.t.
N ′′ = N
RN ′.
- Case of ICCR(N ′′) � ICCR(N ) + ICCR(N ′). Let M ∈
CCR(N ′′) s.t. I(N ′′) = #diffC(N ′′,M). Using Propo-
sition 7, we have #diffC(N ′′,M) = #diffC(N ,M↓V )
+#diffC(N ′,M↓V ′). We can see that M↓V and M↓V ′

are consistent QCNs, N ⊆ M↓V and N ′ ⊆ M↓V ′ .
Consequently, M↓V ∈ CCR(N ) and M↓V ′ ∈ CCR(N ′)
hold. Hence, we have #diffC(N ,M↓V ) � ICCR(N )
and #diffC(N ,M↓V ′) � ICCR(N ′). Therefore, we have
ICCR(N ′′) = #diffC(N ′′,M) � ICCR(N ) + ICCR(N ′).
- Case of ICCR(N ′′) � ICCR(N ) + ICCR(N ′). Let M ∈
CCR(N ) s.t. ICCR(N ) = #diffC(N ,M) and M′ ∈
CCR(N ′) s.t. I(N ′) = #diffC(N ′,M′). Consider the QCN
M′′ defined on V ∪ V ′ by M′′

↓V = M, M′′
↓V ′ = M′

and, for all (v, v′) ∈ V × V ′, M′′[v, v′] = N ′′[v, v′].
We can see that #diffC(N ′′,M′′) = #diffC(N ,M) +
#diffC(N ′,M′) = ICCR(N ) + ICCR(N ′). Moreover, we
have M′′ = M
RM′ and, M and M′ are consistent.
Thus, using the fact that R has the CSS property, we can as-
sert that M′′ is consistent. Consequently, from the fact that
N ′′ ⊆ M′′, M′′ ∈ CCR(N ′′) holds. Therefore, we have
ICCR(N ′′) � #diffC(N ′′,M′′) = ICCR(N )+ICCR(N ′). �

6 A V-restrictions Based Inconsistency

Measure

In this section, we introduce an inconsistency measure based
on the notion of V-restriction. More precisely, this measure
is defined as the minimum number of variables that we need
to ignore in order to obtain a consistent QCN.

Definition 14 (ICVR Inconsistency Measure) The incon-
sistency measure ICVR is defined by:

ICVR(N ) = min{|V \ V ′| : N ′ = (V ′, C ′) ∈ CVR(N )}
Let us first show that ICVR is a basic inconsistency mea-

sure.

Proposition 9 ICVR satisfies the Consistency Null (P1) and
Variable Monotonicity (P2) postulates.

Proof:
- Consistency Null. Let N = (V,C) be a QCN. Suppose
that N is consistent. We have N ∈ CVR(N ). Hence,
min{|V \ V ′| : N ′ = (V ′, C ′) ∈ CVR(N )} = 0
holds. Consequently, we obtain ICVR(N ) = 0.
Now, suppose that ICVR(N ) = 0. Then, there exists
N ′ = (V ′, C ′) ∈ CVR(N )} s.t. |V \ V ′| = 0. Hence,
V = V ′ and N ′ = N hold. Thus, we have N ∈ CVR(N ),

and, as a consequence, N is consistent.
- Variable Monotonicity. Let N = (V,C) be a QCN and
V ′ ⊆ V . Let M = (V ′′, C ′′) ∈ CVR(N ) s.t. ICVR(N ) =
|V \ V ′′|. Then, we have M↓(V ′∩V ′′) ∈ CVR(N↓V ′).
Hence, |V ′ \ (V ′ ∩ V ′′)| � ICVR(N↓V ′) holds. We have
V ′ \ (V ′ ∩ V ′′) = V ′ \ V ′′. Moreover, as V ′ ⊆ V ,
we can assert that V ′ \ V ′′ ⊆ V \ V ′′. Consequently,
|V ′ \ (V ′ ∩ V ′′)| = |V ′ \ V ′′| � |V \ V ′′|. Hence, we have
ICVR(N ) = |V \ V ′′| � |V ′ \ (V ′ ∩ V ′′)| � ICVR(N↓V ′).
Therefore, ICVR(N ) � ICVR(N↓V ′) holds. �

We now show that ICVR satisfies the additional postulates
P3, P4, P5 and P6. To this end, it suffices to show that ICVR
satisfies the postulates P3, P5 and P6, since P5 is stronger
than P4.

Proposition 10 ICVR satisfies the Relation Monotonicity
(P3), T-Free Formula Independence (P5) and Free Variable
Independence (P6) postulates.

Proof:
- Relation Monotonicity. Let N = (V,C) and
N ′ = (V,C ′) be two QCNs s.t. N ⊆ N ′. Let
M = (V ′, C ′′) ∈ CVR(N ) s.t. ICVR(N ) = |V \ V ′|.
Since M ⊆ N ′

↓V ′ and M is consistent, N ′
↓V ′ is con-

sistent. Hence, N ′
↓V ′ ∈ CVR(N ′) holds. Consequently,

we have ICVR(N ′) � |V \ V ′|. Therefore, we have
ICVR(N ′) � ICVR(N ).
- T-Free Formula Independence. Let N = (V,C)
be a QCN and {v, v′} ∈ FC∗(N ). We use N ′ to de-
note the QCN N[v,v′]/B. Using Relation Monotonicity,
ICVR(N ′) � ICVR(N ) holds, since N ⊆ N ′. We
now show that ICVR(N ′) � ICVR(N ). Let V ′ ⊆ V
and N ′

↓V ′ ∈ CVR(N ′) s.t. ICVR(N ′) = |V \ V ′|. If
{v, v′} ∩ V ′ = ∅, we get N ′

↓V ′ ∈ CVR(N ) and, as a con-
sequence, ICVR(N ′) � ICVR(N ) holds. Otherwise, we have
{v, v′} ⊆ V ′. Assume that N↓V ′ is an inconsistent QCN.
Then, N↓V ′ includes an inconsistent subset of constraints
that does not contain the constraint associated to {v, v′}
since {v, v′} ∈ FC∗(N ). Thus, N ′

↓V ′ is an inconsistent
QCN and we get a contradiction. Therefore, N↓V ′ is a con-
sistent QCN and, as a consequence, ICVR(N ′) � ICVR(N )
holds.
- Free Variable Independence. Let N = (V,C) be
a QCN and v ∈ FV(N ). It is worth noticing that
(i) ICVR(N↓V \{v}) � ICVR(N ), since N includes N↓V \{v}.
Let V ′ ⊂ V \ {v} s.t. N↓V \(V ′∪{v}) is consistent and
ICVR(N↓V \{v}) = |V ′|. Thus, we know that N↓V \V ′ is
consistent, since v is a free variable in N . As a consequence,
we get (ii) ICVR(N↓V \{v}) � ICVR(N ). Therefore, using
(i) and (ii), ICVR(N↓V \{v}) = ICVR(N ) holds. �

Proposition 11 ICVR satisfies CSS-Additivity (P7).

Proof: Let R ⊆ 2B s.t. R satisfies the CSS property and
N = (V,C), N ′ = (V ′, C ′), N ′′ = (V ′′, C ′′) three QCNs
s.t. N ′′ = N
RN ′.
- Case of ICVR(N ′′) � ICVR(N ) + ICVR(N ′). Let
N 0 = (V 0, C0) ∈ CVR(N ) s.t. ICVR(N ) = |V \ V 0| and
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Figure 5: Six QCNs N8, N9, N10, N11, N12, N13.

N 1 = (V 1, C1) ∈ CVR(N ′) s.t. ICVR(N ′) = |V ′ \ V 1|.
Let N 2 = (V 0 ∪ V 1, C2) a QCN defined by N 2

↓V 0 = N 0,
N 2
↓V 1 = N 1 and, for all v ∈ V 0 and v′ ∈ V 1,

C2(v, v′) = N ′′[v, v′]. Note that N 2 is a V-restriction
of N ′′. Moreover, we have N 2 = N 0
RN 1. As N 0

and N 1 are consistent, from the CSS property, N 2 is
consistent. Consequently, N 2 is a consistent V-restriction
of N ′′. It follows that ICVR(N ′′) � |V ′′ \ (V 0 ∪ V 1)|.
As |V ′′ \ (V 0 ∪ V 1)| = |V \ V 0| + |V ′ \ V 1|, we have
ICVR(N ′′) � |V \ V 0| + |V ′ \ V 1|. We can conclude that
ICVR(N ′′) � ICVR(N ) + ICVR(N ′).
- Case of ICVR(N ′′) � ICVR(N ) + ICVR(N ′). Let
N 2 = (V 2, C2) ∈ CVR(N ′′) s.t. ICVR(N ′′) = |V ′′ \ V 2|.
Let V 0 = V \ V 2 and V 1 = V ′ \ V 2. We have,
ICVR(N ′′) = |V ′′ \ V 2| = |V ′′ \ V 0| + |V ′′ \ V 1|. We
also have N 2

↓V0
∈ CVR(N ) and N 2

↓V1
∈ CVR(N ′). Conse-

quently, |V ′′ \ V 0| � ICVR(N ) and |V ′′ \ V 1| � ICVR(N ′)
hold. Thus, we obtain ICVR(N ′′) � ICVR(N )+ICVR(N ′). �

In summary, our V-restriction based inconsistency mea-
sure ICVR satisfies all the postulates described in Section 4.

Given an inconsistency measure I , let the binary order
relation �I on the set of QCNs defined by N �I N ′ iff
I(N ) � I(N ′) for every QCNs N and N ′. Consider the
order relations related to the two measures ICCR and ICVR
previously proposed. We can show that one of these rela-
tions does not include the other and vice versa. Indeed, con-
sider the QCNs N8 and N11 depicted in Figure 5. These two
QCNs are inconsistent. In order to obtain a consistent QCN
from N8, we must necessary modify at least four constraints
or remove at least one variable. Thus, we get ICCR(N8) = 4
and ICVR(N8) = 1. To obtain a consistent QCN from N11,
we should modify at least two constraints or remove at
least two variables. Consequently, we have ICCR(N11) = 2
and ICVR(N11) = 2. Therefore, we have N8 ��ICCR N11,
N8 �ICVR N11, N11 �ICCR N8, and N11 ��ICVR N8.

7 Discussion

Inconsistencies arise in many applications, e.g., when sev-
eral experts share their beliefs in order to solve a prob-
lem by building a joint knowledge base. Merging multiple
sources information has been widely studied in literature,
and is an important issue of many AI fields (see (Bloch
and Hunter 2001) for more details). In distributed knowl-
edge systems in qualitative reasoning, spatial or temporal
information about entities come from several sources, each
source providing a QCN defined on the same set of entities.
Due to the multiplicity of sources, we generally have to deal
with conflicting QCNs which makes their merging a non-
trivial issue. In this context, it is potentially useful to inves-
tigate how inconsistency measures can be used to judge the
closeness between conflicting sources of information. There
have been few papers discussing this issue in the context
of classical theories, among them (Qi, Liu, and Bell 2005;
Hunter and Konieczny 2010). In the QCN merging topic,
several families of merging operators have been pointed out
in (Condotta et al. 2009a; 2009b). In (Condotta et al. 2010),
the authors have proposed a family of syntactical merging
operators called Δ1, which can be used where the sources
are not consistent. Given a multiset of QCNs, possibly in-
consistent, representing explicit preferences or beliefs of
several agents about the relative positions of spatial or tem-
poral entities, the Δ1 operator aims at defining a non-empty
set of consistent scenarios which represent a global view of
the input QCNs. Notice that the operator Δ1 is a syntactical
operator, that is, it does not take the consistent scenarios of
the different sources into account but rather the constraints
defining them.

In this context, a QCN inconsistency measure can be
served for quantifying the different input QCNs. Intuitively,
each source can be labeled by a weight that can be given in
terms of the amount of conflicts brought by the information
in that source. By following this principle, a source with a
high inconsistency value is less reliable than the one with a
low value. Hence, we can define an ordering relation to com-
pare different QCNs based on their degree of conflict, which
will be also useful to refine the behaviour of Δ1 operator.
Lastly, it will be sensible to force the less reliable sources to
be less considered in the result of the merging operation.

8 Conclusion

The contribution of this paper is threefold: First, setting up
a list of postulates that allow us to characterize inconsis-
tency measures in QCNs, Second, defining two inconsis-
tency measures, and showing that they satisfy these postu-
lates, Third, sketching the possible application of our frame-
work of inconsistency measurement for belief merging in
qualitative reasoning.

As a future work, we plan to conduct a comparative em-
pirical evaluation of our inconsistency measures. We also
intend to deeply study the impact of the use of our incon-
sistency measures on the merging operators Δ1 introduced
in (Condotta et al. 2010).
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