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Abstract

Probabilistic logic programs without negation can have cy-
cles (with a preference for false), but cannot represent all
conditional distributions. Probabilistic logic programs with
negation can represent arbitrary conditional probabilities, but
with cycles they create logical inconsistencies. We show how
allowing negative noise probabilities allows us to represent
arbitrary conditional probabilities without negations. Noise
probabilities for non-exclusive rules are difficult to inter-
pret and unintuitive to manipulate; to alleviate this we define
“probability-strengths” which provide an intuitive additive al-
gebra for combining rules. For acyclic programs we prove
what constraints on the strengths allow for proper distribu-
tions on the non-noise variables and allow for all non-extreme
distributions to be represented. We show how arbitrary CPDs
can be converted into this form in a canonical way. Further-
more, if a joint distribution can be compactly represented by
a cyclic program with negations, we show how it can also
be compactly represented with negative noise probabilities
and no negations. This allows algorithms for exact inference
that do not support negations to be applicable to probabilistic
logic programs with negations.

Introduction

In recent years, there is rising interest in combining prob-
abilistic reasoning and logic formalisms. Logic programs
have the advantage of an intuitive declarative and procedu-
ral interpretation (Kowalski 2014). Probabilistic modeling,
on the other hand, is a well-understood formalism for rep-
resenting quantified uncertainty. Such combined formalisms
include ICL (Poole 1997; 2000), which confines random-
ness to independent probabilistic “noise variables”, Prism
(Sato and Kameya 1997), ProbLog (De Raedt, Kimmig, and
Toivonen 2007), and CP-logic (Vennekens, Denecker, and
Bruynooghe 2009).

In this paper, we introduce negative noise probabilities as
an alternative to negations, to avoid logical inconsistencies,
and we show that program expressiveness is not reduced.
Introducing “negative probabilities” means that probabili-
ties are allowed to be negative as if that was meaningful,
as long as the marginal distribution over the variables of in-
terest (i.e., the non-noise variables) is nonnegative.
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Dıez and Galán (2003) used negative probabilities to op-
timize computation for the noisy-or in probabilistic graph-
ical models. Kisynski and Poole (2009) examined extend-
ing this approach to noisy-or to first order logic. Jha and
Suciu (2012) examined using negative probabilities for an-
swering queries in probabilistic databases. Van den Broeck,
Meert, and Darwiche (2013) use negative probabilities to al-
low for skolemization in the presence of existential quanti-
fiers, thus allowing efficient model counting.

The full version of this paper, available from the authors’
web sites, contains proofs, further examples and insights.

Programs

We use capital letters for random variables, and lower-case
letters for them being true, e.g., b means B = true. A
(probabilistic) rule has the form p : head← body, where
p is a probability, head is a positive literal, and body is a con-
junction of other, positive or negative, literals. When p = 1,
it can be omitted, and the rule is called a deterministic rule.
The probabilistic aspect is captured using a set of special
“noise” variables N1, N2, . . . , NN . Each noise variable ap-
pears exactly once as a rule head, in special probabilistic
rules called probabilistic facts with the form pi : ni.
Other probabilistic rules are actually only syntactic sugar:
p : head← body is short for p : ni and head← ni ∧ body,
where Ni is a new noise variable not used by any other rule.

A program is a multiset of rules. For convenience, we
sometimes treat programs as sets; however, unions may pro-
duce programs with recurring rules. A program with no
noise variables is a deterministic program. Programs can
be either cyclic or acyclic.

A model is an assignment to all the variables, represented
as a set of positive literals. We use the stable-model seman-
tics (Gelfond and Lifschitz 1988). We take the semantics
of a deterministic program to be its unique stable model.
If it does not have a unique stable model, we call the pro-
gram “(logically) inconsistent”. Inconsistency only arises
in cyclic programs, when a cycle of rules contains a nega-
tion (Apt and Bezem 1991).

A deterministic program realization (DPR) for a pro-
gram R is a deterministic program derived from R by hav-
ing every probabilistic fact pi : ni either omitted or con-
verted to the deterministic ni. The semantics of a probabilis-
tic program is a distribution over its 2N DPRs, where, inde-
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pendently, each pi : ni is converted to ni with probability
pi and omitted with probability 1 − pi. The unique stable-
model semantics provides a semantics of a unique model for
each DPR. This provides R with a semantics of a distribu-
tion over models, which represents a joint distribution of the
variables. However, using negations, a cyclic program may
have a positive probability of (logical) inconsistency.

Probabilistic Rule Strengths
When all rules with a common head have disjoint bodies, the
noise probabilities can be interpreted as conditional proba-
bilities. When the bodies are not disjoint, their probabilistic
influences must be combined.
Example 1. Let R = { p1 : a, p2 : h, p3 : h← a }. Then
P(h | a) = 1− (1− p2)(1− p3).

Multiple occurrences of the same rule, p1 : r, p2 : r, . . .,
can be replaced with the single

(
1−∏

i(1− pi)
)
: r.

In both cases, combining the influences of different rules
and summing up occurrences of the same rule, the math is
similar, but the behavior of the noise probabilities is not very
intuitive. We suggest a different representation for proba-
bilistic values that makes the math in both cases additive:
Definition 1. The strength of a probability −∞ < p ≤ 1 is

σ
def
= − ln(1− p), −∞ < σ ≤ ∞.

Therefore, a strength σ represents the probability:
p = 1− e−σ

Example 2. R from Example 1 can be represented as R =
{ σ1 : a, σ2 : h, σ3 : h← a }. Writing σ(h | a) =
− ln(1−P(h | a)), we get σ(h | a) = − ln(1−p2)(1−p3) =
σ2 + σ3.

The influence of rules can thus be combined with simple
addition: Given that body1 and body2 are true, then σ1 :
h← body1 and σ2 : h← body2 are equivalent to σ1 + σ2 :
h. The same is true for multiple occurrences of the same
rule: σ1 : r, σ2 : r, . . . can be replaced with

(∑
i σi

)
: r.

Unlike noise probabilities, strengths are interpretable: the
strength of a rule represents the amount (or “weight”) of in-
formation it provides, which is to be added to the informa-
tion provided by other rules. Strengths make our main re-
sults, and especially their proofs (in the full paper), dramati-
cally simpler, and also make negative probabilities intuitive.
σ(p) is monotonically increasing with p: σ < 0 corresponds
to p < 0 (more on that later), σ = 0 corresponds to p = 0,
0 < σ < ∞ corresponds to 0 < p < 1, and σ = ∞ corre-
sponds to p = 1 (deterministic rules.) The latter is intuitive,
as a deterministic rule is equivalent to an infinite number of
occurrences of a probabilistic rule. p > 1 cannot be repre-
sented using a strength σ.

Acyclic Probabilistic Logic Programs
The set of all rules with a variable H as their head, can be
seen as a specification of the conditional probability distri-
bution (CPD) of H given (a subset of) the variables that pre-
cede it in the ordering (its “parents.”)

We represent a joint assignment to (A1, . . . , An) using the
set s def

= {ai : Ai = true}. Given a set of positive literals L,
we use

∧
L for

∧
l∈L l, and

∧¬L for
∧

l∈L ¬l.

Negations Needed for Expressiveness

A CPD P(h | A1, . . . , An) is monotonic if changing some
Ai from false to true can only increase P(h). Using nega-
tion, it is easy to represent any CPD, e.g., by creating a
rule for every possible assignment s. Consider a positive-
probability rule without negations b← a ∧ . . .. The rule in-
creases P(b | a) without changing P(b | ¬a). A simi-
lar rule in which a does not appear would increase both
P(b | a) and P(b | ¬a). Negation is therefore needed for
representing some CPDs, e.g., non-monotonic CPDs, where
P(b | a) < P(b | ¬a).
Negative Noise Probabilities

Distributions are non-negative functions that sum to 1. The
semantics of a probabilistic program R was defined as a dis-
tribution over its 2N DPRs, leading to a joint distribution
P(V) over the variables. When some noise probability is
negative, P(V) still sums to 1, but is not necessarily non-
negative. However, the noise variables may be treated as
auxiliary variables and be marginalized out to give the joint
distribution of interest, P(V\N), and the marginalization
may make P(V\N) nonnegative. When this happens, we
can ignore the meaninglessness of the intermediate negative
probabilistic values, since R has a proper joint distribution
semantics P(V\N). If this does not happen, we say the dis-
tribution and R are improper.
Example 3. The following acyclic program defines an im-
proper P(N1, N2, N3, A,B), but a proper P(A,B):

R = { p1 : n1, a← n1, p1 = 0.5
p2 : n2, b← n2, p2 = 0.7
p3 : n3, b← n3 ∧ a } p3 = − 4

3

Negative Strengths A probability p < 0 corresponds to
a strength σ < 0. Using σ-notation, negative probabilities
become intuitive: They allow to subtract the weights of evi-
dence, or to subtract rule weights.
Example 4. Let R contain a rule σ : r. Adding the new rule
−σ : r to R is equivalent to removing σ : r from R.

σ = −∞, which corresponds to P = −∞, is not allowed,
because it makes the semantics ill defined. Therefore, adding
a new rule cannot cancel out a deterministic rule.

Representing CPDs Without Negations

Negative noise probabilities in acyclic programs allow us to
express CPDs that cannot otherwise be expressed without
negations. For example, the last two lines in Example 3 rep-
resent a non-monotonic CPD P(B | A).
Theorem 1. Consider a set R of negation-free probabilis-
tic rules (possibly with negative probabilities), in which
the head is h and the bodies are conjunctions of subsets
s ⊆ {a1, . . . , an}. Let σs be the probabilistic strength of
the rule h← ∧

s. Then R represents a “proper” CPD (i.e.,
∀s,P(h | s) ∈ [0, 1]) if and only if:

∀s ⊆ {a1, . . . , an},
∑

s′⊆s σs′ ≥ 0.

Theorem 2. Using negative noise probabilities, any CPD
P(h | A1, . . . , An) < 1 can be expressed without negations.

The theorem follows from the correctness of Algorithm 1.
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Algorithm 1.
Input: CPD P(h | A1, . . . , An) < 1,

represented as σ(h | s) <∞
Output: set of rules R representing the CPD
S ← set of all subsets of {a1, . . . , an}
R← ∅
while S �= ∅ do

s← some minimal subset in S
σs ← σ(h | s)−∑

s′⊂s σs′

rules ← (σs : h← ∧
s)

R← R ∪ {rules}
S ← S \ s

return R

Sparsity Rules with σs = 0 have no effect and can be
pruned; e.g., for noisy-or, only n 2n rules remain.

Canonical Form

Corollary 1. Algorithm 1 provides a canonical form for rep-
resenting CPDs without negations. When identical rules are
summed up, this representation is unique.

Note the clear mathematical similarity of this canoni-
cal form to the “canonical parametrization” for undirected
probabilistic graphical models (Koller and Friedman 2009;
Lauritzen 1996; Buchman et al. 2012).

Using negations, however, representation is not unique.

Cyclic Probabilistic Logic Programs

Motivating Negations in Cyclic Programs

Consider the following first-order probabilistic cyclic
logic program, loosely based on Richardson and Domin-
gos (2006), and also based on the ProbLog tutorial1:
(1) 0.3 : smokes(X)
(2) 0.1 : friends(X,Y )
(3) 0.9 : friends(X,Y )← friends(Y,X)
(4) 0.6 : susceptible(X)
(5) 0.2 : smokes(X)← susceptible(X)

∧ friends(X,Y ) ∧ smokes(Y )
(6) friends(chris, sam)

There is a 30% smoking baseline, and, if X is susceptible,
then every smoking friend has a 20% chance of also causing
X to smoke. Consider now modeling nonconformity instead
of susceptibility. The probability a “nonconformist” person
smokes increases with every non-smoking friend they have.
The straight-forward approach is to make the changes be-
low. Unfortunately, the negation added appears inside a cy-
cle, thus the program is not logically consistent.
(4) 0.6 : nonconformist(X)
(5) 0.2 : smokes(X)← nonconformist(X)

∧ friends(X,Y ) ∧ ¬ smokes(Y )
The rest of the paper does not deal with first-order programs.

Negations Needed for Expressiveness

Negations are best avoided, because they may create logi-
cal inconsistencies with cyclic rules. However, not all joint

1https://dtai.cs.kuleuven.be/problog/tutorial.html#
tut part1 smokers

distributions can be expressed in cyclic programs without
negation (and without negative probabilities). Characteriz-
ing what can be represented is complex.
Proposition 1. Not all distributions can be represented
using two-variable cyclic probabilistic negation-free pro-
grams, if noise probabilities are limited to [0, 1].

The proof shows the distribution a general-form program
represents must satisfy: P(a ∧ b) ≥ P(a | ¬b) P(b | ¬a).
Unintuitive Properties of Cyclic Programs

Given a program R, we use Rh for the set of all rules
whose head is h. Rh can be seen as defining a CPD
PRh

(h | neighbors). For an acyclic R, its joint distribu-
tion PR(·) reflects this CPD, i.e., PR(h | neighbors) =
PRh

(h | neighbors). For cyclic programs, however, this is
not the case. Furthermore, with negative noise probabili-
ties, PR(V) may even be improper, even when all CPDs
PRh

(h | neighbors) are proper and mutually-consistent.

Compact Expressiveness with Negative Noise

With negations, cyclic programs may become logically in-
consistent, when there is a negation in a rule cycle. However,
this still leaves a wide array of possible logically consistent
programs that, are expressive enough to be useful. An inter-
esting example are acyclic structures containing negations
that connect negation-free cyclic components.
Proposition 2. Using negative noise probabilities, any pos-
itive non-relational joint distribution can be represented
without negations.

The representation guaranteed by Proposition 2 might be
exponential in size. To better motivate using negative proba-
bilities instead of negations, we show that joint distributions
that can be compactly represented by cyclic programs with
negations can also be compactly represented using negative
probabilities and no negations (Theorem 6, Corollary 2.)
Definition 2. A program R is strongly consistent if any log-
ically inconsistent DPR of R has probability 0.

We use sum(R) for the program R after identical rules
are summed up. We mark R1 ≡ R2 if programs R1 and R2

are both strongly consistent and represent the same (proper
or improper) distribution over models.
Definition 3. A consistency-maintaining ordering (CMO)
for a program R is an ordering (r1, r2, . . .) of R’s rules,
such that for all i, {r1, r2, . . . , ri} is strongly consistent.
Theorem 3. Every logically consistent deterministic pro-
gram has a CMO.
Theorem 4. Every strongly consistent program has a CMO.
Definition 4. An arbitrary rule r = σ : h← ∧

r+ ∧∧¬r−
is called translatable if σ < ∞ or r− = ∅, in which case
the translated rule rT is a set of 2|r

−| negation-free rules:
rT

def
= { (−1)|L|σ : h←

∧
r+ ∧

∧
L : L ⊆ r− }

Definition 5. If all rules in a program R are translatable,
then R is translatable, and the translated program RT is:

RT def
= sum

(⋃
r∈R rT

)
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R is translatable, if deterministic rules have no negations.

Theorem 5. Let R be a set of negation-free rules, and r be
a translatable rule σ : h← ∧

r+ ∧∧¬r−. If R ∪ {r} is
strongly consistent, then R ∪ {r} ≡ R ∪ rT .

The proof is complex, because R is cyclic, so adding rules
to R may create complex “interactions” with rules in R.

Theorem 6. If R is a strongly consistent translatable pro-
gram, then RT is a strongly consistent negation-free pro-
gram and RT ≡ R.

Furthermore, |RT | ≤ ∑
i 2

ki ≤ 2k|R|, where ki is the
number of negations in rule ri, and k = maxi ki.

Proof. R is strongly consistent, so by Theorem 4 it has a
CMO. R can be thus formed by iteratively adding rules,
while maintaining strong consistency throughout. For ev-
ery rule ri being added, since ri is translatable, Theorem 5
gives a set of 2ki negation-free rules, such that adding them
instead of ri gives a strongly consistent program with the
same semantics. Repeating this replacement for all rules, we
get a negation-free program with the same semantics, with
|sum(

⋃
r∈R rT )| ≤∑

i 2
ki ≤ 2k|R| rules.

Corollary 2. A given nonnegative-noise-probabilities pro-
gram R that is consistent with probability 1 and only has
negations in non-deterministic rules, can be converted to an
equivalent negation-free program (with negative probabili-
ties) RT with size |RT | ≤ 2k|R|.

Conclusions

We began by suggesting “probabilistic strengths”, a new rep-
resentation for probabilities in logic programs which is par-
allel to using log probabilities in graphical models. Strengths
make rule algebra additive, and provide deeper insights into
probabilistic programs. Strengths also make the concept of
negative probabilities simpler and more intuitive.

We showed that without negative probabilities, negations
are needed both in acyclic and cyclic programs, to increase
expressiveness. Negations may, however, cause difficult-to-
avoid logical inconsistencies in cyclic programs.

We suggest using negative noise probabilities in lieu of
negations. For acyclic programs, we completely character-
ized the conditions for avoiding probabilistic improperness,
and showed how any positive CPD can be expressed.

For cyclic programs, we first showed the need for nega-
tions arises very naturally in real-world applications. We
then defined and proved the existence of consistency-
maintaining orderings. We then showed how, when a dis-
tribution can be compactly expressed using a program with
negations, the program can easily be “translated” to an
equivalent negation-free program with negative probabilities
that is at most 2k times larger, where k is frequently small.

This translation allows exact inference algorithms that do
not support negations to be applicable to probabilistic cyclic
programs with negations.

A main open problem is how approximate inference can
be efficiently carried out in cyclic probabilistic programs
with negative probabilities. There is no guarantee that an

approximate computation will remain a good approximation
when some probabilities are negative.

Extensions to first-order logic are left for future work.
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