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Abstract

Spatial information that grounds events geographically is of-
ten ambiguous, mainly because the same location name can
be used in different states, countries, or continents. Spatial
mentions, known as toponyms, must be disambiguated in or-
der to understand many spatial relations within a document.
Previous methods have utilized both “flat” and ontology-
based ranking techniques to identify the correct reference.
We argue that the use of location ontologies alone is not suf-
ficient. Since toponyms are used in documents that refer to
events grounded geographically, additional pragmatic knowl-
edge can thus be used. To be able to identify the correct ref-
erence we enhanced ontology-based methods previously re-
ported with techniques that consider the participants in events
including people, organizations, and locations. Disambiguat-
ing geographical names over an ontology is cast as a proba-
bilistic problem resolved by logistic regression. Our exper-
imental results on the SpatialML corpus (Mani et al. 2008)
indicate that event structures do indeed play an important role
in understanding toponyms.

1. Introduction

Toponym disambiguation is the task of grounding spatial
locations in text (toponyms) by normalizing them to some
structured representation (e.g., geo-coordinates, database
entry, or location within a geographic ontology). This task
proves to be quite difficult for some highly ambiguous loca-
tions. For example, there are over one thousand cities named
San Jose (as well as some states and counties). In a short
case study, while over 80% of location names are globally
unique, 83% of names actually used in text are ambiguous,
over 60% of which have more than 5 possible resolutions.
More details on this case study can be seen in Table 1.

Understanding the spatial aspects of events in documents
has always required the grounding of the spatial locations
within event structures. Yet, we believe that the reverse is
true as well: the event structure contributes to the under-
standing of the spatial grounding. Consider the following
sentence: “President Obama returned to Washington on
Sunday.” Disambiguating the toponym “Washington” re-
quires the use of contextual cues we argue are best pro-
vided by the event structure. After identifying “Obama”
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Globally ambiguous names

Duplicates Entries Percent

1 2,150,855 80.2%

2+ 531,550 19.8%

5+ 86,493 3.2%

10+ 30,759 1.1%

50+ 2,294 0.086%

100+ 617 0.023%

1000+ 5 0.0002%

Ambiguous names in corpus

Duplicates Names Percent

1 119 16.6%

2+ 596 83.4%

5+ 438 61.3%

10+ 310 43.3%

50+ 83 11.6%

100+ 16 2.2%

Table 1: Case study on ambiguous names. Globally am-
biguous names collected using USGS and NGA gazetteers.
Ambiguous names in corpus collected on 715 unique names
in 438 documents from SpatialML (Mani et al. 2008).

as a co-participant in the “returned” event with “Washing-
ton”, we know that some spatial relationship exists between
them. While there are numerous potential spatial relation-
ships between participants in events, often defining the ex-
act relationship requires the locations to already be spa-
tially grounded. But for the purpose of resolving toponyms,
we only need to provide the disambiguation algorithm with
enough information to choose the most likely candidate (i.e.,
“Washington, D.C.” over “Washington State”) using a shal-
low event structure.

The rest of this paper is organized as follows. Section 2
discusses related work in toponym resolution and event de-
tection. Section 3 outlines the approach for our ontology and
use of events and their participants. Section 4 proposes four
hypotheses to show how events can contribute information
to a disambiguation system. Section 5 details our experi-
ments and discusses the results. Finally, Section 6 summa-
rizes our conclusions and identifies areas of future research.
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Figure 1: (a) a sub-section of our geographic ontology, (b) the same sub-section with a non-geographic node (Ward Armstrong)
inserted and connected in an event with Carroll County and Virginia (event lines in bold).

2. Related Work

Much of the early work in toponym resolution emerged from
the study of Geographic Information Systems (GIS) and the
need to assign a location mention with a latitude and lon-
gitude for referencing on a map. (Smith and Crane 2001)
disambiguates toponyms for the purpose of visualizing in-
formation from a digital library. Their algorithm uses con-
textual heuristics derived using an expanding window tech-
nique. (Leidner, Sinclair, and Webber 2003) utilized a “one
sense per discourse” rule as well as a “bounding box” dis-
tance heuristic.

(Buscaldi and Rosso 2008) and (Volz, Kleb, and Mueller
2007) both employ ontologies to aid in the disambiguation
process, but in much different ways. (Buscaldi and Rosso
2008) utilizes the WordNet hierarchy directly and employs
a “conceptual density” approach based on a WordNet dis-
tance. (Volz, Kleb, and Mueller 2007), however, builds an
ontology from two large gazetteers and sets class weights to
rank candidates.

Toponym disambiguation may be viewed as a specialized
form of entity linking (such as the Knowledge Base Popula-
tion (KBP) task (McNamee and Dang 2009)) in which only
locations are considered. A further generalization is word
sense disambiguation (WSD). For a survey of WSD meth-
ods, see (Navigli 2009).

The SpatialML corpus (Mani et al. 2008) contains sev-
eral types of spatial information, including toponyms dis-
ambiguated into publicly available databases. They describe
a statistical ranking method which we use as the baseline for
our approach. Unfortunately, the numbers in that paper are
not easily comparable to our own, as we only intend to dis-
ambiguate a subset of the resolved toponyms in SpatialML,
as described below.

3. The Framework

While others have used ontologies to disambiguate geo-
locations, we intentionally simplify our ontology to facil-
itate learning. These pure ontological approaches, how-
ever, have traditionally under-performed simple statistical
ranking methods, which we validate with our own exper-
iments. We believe this under-performance exists for two

reasons. First, ontologies are difficult to disambiguate over
due to their graphical structure. Learning requires general-
ization, but proper geo-ontologies are difficult to generalize
as geo-political regions are organized according to local cus-
tom (e.g., New Zealand has no state/province structure, only
counties; the Vatican is a city-state; while Russia has federal
divisions, each of which may contain states (oblasts), semi-
autonomous Republics, federal cities, as well as other dis-
tinct types of first-order administrative divisions each with
different types of sub-divisions). Second, ontologies alone
do not model much of the linguistic information that can
be used to determine the correct geo-location. To overcome
these difficulties, we simplify our ontological structure and
introduce a novel approach by adding event information to
the ontology.

3.1 The Geo-Ontology

We have built an ontology of almost every geo-political en-
tity (GPE) on the planet. We define a GPE similar to the
ACE specification1, only omitting continents and arbitrary
regions. This ontology has a simple tree structure with four
levels: a root (i.e., Earth), countries, states, and localities.
We choose this structure for its strong consistency: rarely
do cities cross state/provincial borders, yet this is often the
case with counties (e.g., each of New York City’s five Bor-
oughs is itself a county).

Figure 1(a) illustrates a small part of our ontological struc-
ture. To populate this ontology, we have used the freely
available gazetteer Geonames2. We chose Geonames be-
cause it is actually a combination of the two most commonly
used gazetteers (GEOnet Names Server (GNS)3 provided
by the US National Geospatial-Intelligence Agency and the
Geographic Names Information System (GNIS)4 provided
by the US Geological Survey) as well as dozens of other
resources. The version of Geonames we have used con-
tains 6,912,700 entries (2,720,984 of which we categorize

1http://www.itl.nist.gov/iad/mig/tests/ace/
2http://www.geonames.org/
3http://earth-info.nga.mil/gns/html/
4http://geonames.usgs.gov/domestic/download data.htm
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as GPEs), each of which contain geo-coordinates, popula-
tion data, and alternate names including acronyms (“USA”
for “United States”), nicknames (“Big Apple” for “New York
City”), and non-English spellings.

3.2 Event Structures

An event mention in a natural language context is a span
of text that refers to a real-world event. Events need not
be limited to verbs. The TimeBank corpus (Pustejovsky
et al. 2003) specifies three syntactic classes for events:
(i) tensed verbs (“has left”, “was captured”, “will resign”),
(ii) stative adjectives (“sunken”, “stalled”, “on board”), and
(iii) event nominals (“merger”, “Military Operation”, “Gulf
War”). In addition to the event reference, each event has a
set of syntactically dependent participants (e.g., “John left
the company”), many of which include GPEs (e.g., “The
Pope returned to Rome”).

While most ontological disambiguation methods use
other location candidates in the document to help resolve a
given instance, we propose adding knowledge of event struc-
tures in addition to document-level knowledge. Evidence
that two entities participate in the same event is a strong indi-
cator of a locative relation between the participants. Alterna-
tive strategies to find these relations without event structures
are (1) using a sentence as a single event, and (2) accounting
for token distance between entities. But beyond the linguis-
tic theory, we believe that strategy (1) produces too many in-
correct relations, while (2) unnecessarily penalizes syntacti-
cally complex constructions. Results in (Buscaldi and Rosso
2008) suggest document context outperforms sentence con-
text. Combined with our results from Section 5, we believe
this confirms our belief in the importance of event context.

3.3 Linking Event Participants

We consider three types of entity participants in events: peo-
ple, organizations, and GPE locations. We start with the
base ontology constructed using locations from Geonames.
We then use links in Wikipedia to connect people and orga-
nizations to the GPEs that they are related to. Figure 1(b)
illustrates how one of these additional entities is connected
to our ontology in an event. In the example, the politician
Ward Armstrong is connected to Roanoke (where he was
born), United States, Collinsville (where he lives), and Car-
roll County (the district he represents). The bold lines be-
tween Ward Armstrong, Carroll County, and Virginia indi-
cate an event involving all three as participants. The details
behind selecting edges for a particular event are explained in
Section 4.

When mapping persons and organizations into Wikipedia,
we assume disambiguation is not required. If Wikipedia in-
dicates that the string Robert Burns predominately refers to
the Scottish poet, our algorithm assumes that is what the
document is referring to. On the other hand, if Wikipedia
uses a disambiguation page for entities such as Mark Wil-
son, we ignore the entity. Strategies for disambiguating in-
dividuals and organizations can be found in the KBP task
referenced earlier. Additionally, no coreference is used to
extend the number of events an entity participates in. Both
these tasks are left to future work.

Alternation Method (with examples) Strategy

None BASIC

Case: Alters capitalization. “us” to “US” and “Us” CASELESS

Type: Removes geo-type. “New York City” to “New York”

SAFE

Direction: Removes direction. “North Baghdad” to “Baghdad”

Abbreviation: Expands ISO-3166 abbreviations and

normalizes. “AF” to “Afghanistan”, “U.S.A.” to “USA”

Wikipedia Redirect: Uses Wikipedia redirect links.

“Myanmar” to “Burma”

Demonym: Maps gentilics to locations. “Texan” to “Texas”.

Wikipedia Suggest: Matches “For . . . , see XXX” pattern

MODERATE
at top of Wikipedia pages. “Washington” to “Washington, D.C.”

Comma Split: Takes first name in compounds.

“Atlanta, Georgia” to “Atlanta”

Wikipedia Disambiguation: Results from Wikipedia
AGGRESSIVE

disambiguation pages. “Lincoln” to “Lincoln, Nebraska”

Table 2: Gazetteer retrieval alternation modules and their
respective strategies (all higher level strategies inherit alter-
nation modules from lower level strategies).

Locations are mapped into Wikipedia using a simple
heuristic. For countries and U.S. states, the name is assumed
to be the exact Wikipedia article title. For cities in the U.S.,
the pattern [city-name, state-name] is used. For everything
else, [name, country-name] is used.

4. Identification of Geo-Locations

Detecting the correct geo-location for a mention in text pro-
ceeds in three steps: (1) finding location mentions, (2) re-
trieval of candidate gazetteer entries, and (3) disambiguat-
ing the gazetteer entries to determine the correct, normal-
ized geo-location. In this paper, we assume the mentions are
given as the output of a named entity system and thus limit
our scope to the last two steps.

4.1 Retrieval of Gazetteer Data

Our database contains over 2.7 million geo-political lo-
cations with over 1.8 million alternate names. However,
the alternate names provided by Geonames are often not
enough to find the correct database entry. For example, the
Geonames data contains “USA” as an alternate for “United
States”, but not “U.S.A.”, nor does it contain demonyms
like “New Yorker”, “Scottish”, or “Senegalese”. We there-
fore utilize a sequence of alternation modules to expand
the number of candidates. Table 2 shows the five alterna-
tion strategies employed with the corresponding alternation
modules for each strategy. The choice of a strategy depends
on a trade-off between precision and recall: more aggressive
strategies are more likely to retrieve the correct gazetteer en-
try, but also more likely to retrieve irrelevant candidates,
which may be incorrectly chosen. Our experiments with
these retrieval strategies are detailed in Section 5.

4.2 Disambiguation of Gazetteer Entries

Given a document with n toponyms, the retrieval step will
generate n candidate sets. Let Ci represent the set of can-
didates for the ith toponym mention in the document. The
goal of the disambiguation step is then to rank all c ∈ Ci
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such that the correct resolution, ĉ, is ranked in the top posi-
tion. In order to compare the performance of the event-based
system along with our geographical ontology, we used four
hypotheses for testing:

Hypothesis 1 (H1): “Flat” We propose a statistical rank-
ing model that chooses the best toponym resolution. Specif-
ically, given a set of target candidates Ci, we rank c ∈ Ci by
probabilistic function H1:

H1(c) =
1

1 + e−wT xc

(1)

where w is our learned weight vector and xc is the feature
vector that corresponds to candidate c. H1 intentionally con-
forms with the classic sigmoid function, 1

1+e−z , in order to

train a logistic regression classifier to maximize the prob-
ability that the candidate with the highest H1 score is the
correct resolution. We refer to this method as a flat disam-
biguator because it requires no ontological information.

Hypothesis 2 (H2): Ontology Transition Probability
We desire an ontological ranking mechanism that deter-
mines the most likely paths through the ontology to disam-
biguate toponym candidates. Given n unique toponym men-
tions, there are

∏n
i=1

|Ci| possible combinations for resolv-
ing these mentions. Note that the unique toponym mention
requirement structurally enforces a one sense per document
requirement on the system. Let Ψ be our ontology graph.
For each possible combination of candidates we create an
assignment tree A that is the subgraph of Ψ containing (i)
one candidate node for each toponym mention from the doc-
ument, and (ii) the minimum set of parent nodes and edges
of Ψ such that the nodes in A form a complete tree. Both per-
son and organization nodes may have more than one “par-
ent” in the ontology. When this happens, simple edge dis-
tance is used to find the closest node in the assignment tree.
Note that it is quite possible to have an intractable number of
potential assignment trees. We discuss our handling of this
in Section 5.1.

We propose a statistical ranking model for finding the best

the assignment tree Â that assigns every candidate to the cor-
rect entry in Ψ. Let an edge ex,y from parent x to child y in
A represent the probability that a node within the subtree
rooted by y contains a correct toponym resolution. Thus,
the weight on ex,y is the transition probability from x to y.
As above, we define the probability as a sigmoidal function
of the weights and features:

P (ex,y) =
1

1 + e−wT xe

(2)

where w again is the learned weights, but now xe is the fea-
ture vector for the edge ex,y. We then define the probabilis-
tic function H2 to be the product of the probabilities of the
edges in assignment tree A:

H2(A) =
∏

e∈A

P (e) (3)

Note that our training method does not allow for direct train-
ing on the assignment trees. Rather we attempt to indi-
rectly rank better assignment trees higher by adjusting edge
weights.

Hypothesis 3 (H3): Ontology Transition and Node Prob-
ability By limiting itself to the product of edge probabil-
ities, Hypothesis 2 presents some severe theoretical limita-
tions. Most important among these is that no candidate will
ever be selected if one of its ancestors is also a candidate
(e.g., the state “New York” will always be selected over the
city when both are candidates) because the assignment tree
with the child node is guaranteed to have a lower probability.
We therefore propose a statistical model that combines both
edge probabilities and node probabilities. Since Hypothesis
1 attempts to estimate node probabilities, we can alter H1

from (1) to work on assignment trees:

H1(A) =
∏

v∈A

H1(v) (4)

where v is both a vertex in A and a candidate for a mention.
Now, H3 is simply the product of H1 and H2:

H3(A) = H1(A)H2(A) (5)

If H1 and H2 are viewed as probabilistic models, then H3

is a linear combination of two conditionally dependent func-
tions. However, this model does allow the disambiguator to
overcome the New York problem from above if the H1 prob-
ability of New York City is sufficiently high.

Hypothesis 4 (H4): Ontology Event and Node Probabil-
ity We require an ontological model that is able to account
for the event structure within a document. To accomplish
this, we convert a given assignment tree into an assignment
forest by only considering the edge probabilities between
events. Each event in the document represented by the as-
signment tree A is then extracted into its own assignment
tree, Ae. We then define H4 similarly to H3:

H4(A) = H1(A)
∏

Ae∈A

H2(Ae) (6)

Note that H4 is capable of traversing the same edge proba-
bility multiple times if more than one event covers a node.
This occurrence is common in natural language documents
and has a desirable consequence: highly unlikely event as-
signment trees penalize H4 multiple times. Because H4

makes no attempt to analyze the complete assignment tree,
this model ignores document-wide context. Event context
is assumed to be sufficient information to resolve mentions.
Candidates that do not take part in an event are evaluated on
their H1 score alone.

Features While there are numerous possible features for
toponym resolution (see (Leidner 2006)), experimental re-
sults identified just a few important features for both H1 (5
features) and H2 (6 features). In contrast to the complex
heuristics mentioned in Section 2, our features are quite sim-
ple. Most of the more complicated features mentioned in
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those papers were largely ignored by the learning system,
favoring instead features that provided a simple glimpse of
the location’s profile. In our experiments, we used the fol-
lowing features:
� LOG(POPULATION) � The population of the target node
was the dominant indicator (a logarithmic function was used
for smoothing);
� STRINGMATCH � Exact string matches;
� SUBSTRINGMATCH � Sub-string matches were used to
help indicate spurious candidates;
� ADMINFEATURE � Assigns a value of 0.5 for state capitals
and 1.0 for national capitals to give preference to adminis-
tratively important locations;
� TYPEFEATURE � Actually three boolean features to indi-
cate the node is a country, state, or city;
� EDGEFEATURE � While the logistic regression intercept
has no impact on flat classification, it is used to weight the
default edge probability, thus giving relative favor to assign-
ment trees with fewer edges and also accounting for how
persons and organizations relate to the geographical nodes
in the ontology.

5. Experimental Results

5.1 The Data

The SpatialML corpus (Mani et al. 2008) consists of 428
documents manually tagged with numerous spatial informa-
tion, including 6,337 PLACE (geo-location) annotations. Of
interest to us are the 5,573 PLACE annotations that we con-
sider to be GPEs. We have discarded 48 documents that
contain no GPEs and 11 that contain only one, leaving 369
documents with 5,562 GPE annotations. Each PLACE an-
notation is then mapped to the gold Geonames ID for evalu-
ation purposes.

Many SpatialML documents contain far too many am-
biguous annotations to generate all potential assignment
trees. Indeed, using the MODERATE retrieval strategy we
found 17 documents that would generate more than 231 as-
signment trees. To provide a more computationally tractable
dataset, we used the flat disambiguator to limit each candi-
date set to 10 candidates. This alone would not be enough,
for there would still be 10n possible assignment trees for
a document with n mentions. We therefore used the flat
disambiguator again to choose the top 500 candidate com-
binations for each document. Limited testing indicates this
actually improved results by a narrow margin.

For detecting people and organizations, we use the freely
available BIOS named entity tagger5. It has an F-measure of
85.49 on person names and 92.2 on organization names on
the CoNLL test set. For detecting events, we used the system
described in (Bejan 2007) based on the TimeBank 1.2 corpus
(Pustejovsky et al. 2003). It achieves an F-measure of 82.94
using 5-fold cross validation.

5.2 Retrieval Experiments

For each of the 5,562 toponyms in SpatialML, we computed
precision, recall, and F-measure for each of the five strate-

5http://www.surdeanu.name/mihai/bios/

Strategy Candidates Precision Recall F-measure

BASIC 58,560 5.97 62.67 10.89

CASELESS 67,154 5.71 68.78 10.54

SAFE 83,800 6.31 94.81 11.82

MODERATE 85,764 6.31 97.01 11.37

AGGRESSIVE 617,995 0.88 97.36 1.74

Table 3: Result of gazetteer retrieval stage for the five alter-
nation strategies.

Accuracy Ontology Score

H1 92.00 93.27

H2 87.85 92.08

H3 92.35 94.72

H4 93.57 94.83

Table 4: Accuracy scores across 5,562 instances for the four
hypotheses discussed in Section 4.

gies listed in Table 2. The results are listed in Table 3. Pre-
cision is measured over all candidates, of which there can be
at most 1 correct. This can be thought of as the precision of a
disambiguation system that chooses a candidate at random.

While the SAFE strategy achieved the highest F-measure,
the retrieval module cannot be looked at as a complete sys-
tem: the quality of the disambiguation system affects the
choice of strategy. While higher precision certainly helps
the downstream disambiguator, the retrieval recall funda-
mentally limits the final accuracy of the system. The MOD-
ERATE strategy actually performs best as input to the disam-
biguator. The additional incorrect locations are likely out-
liers that the disambiguator can easily ignore. The AGGRES-
SIVE strategy, however, is far too imprecise. It often returns
common, populous locations as erroneous candidates, and
thus confuses the disambiguator heavily. But to confirm the
point made above, the AGGRESSIVE strategy well outper-
forms both the BASIC and CASELESS strategies in limited
end-to-end testing.

5.3 Disambiguation Experiments

We evaluated all four hypotheses on the SpatialML data.
We use two metrics to evaluate the accuracy of our system.
The first is simple accuracy, or the number of correct to-
ponym resolutions ranked in the top position. The second
is an ontology-inspired metric that assumes wrong answers
that at least share a parent of the correct answer are better
than ones that do not. For instance, if the correct resolu-
tion for “Henry” is “Henry County, Virginia, USA”, while
both “Henry, Georgia, USA” and “Henry, Zambia” are in-
correct, the former is sightly more correct than the latter. We
consider this is a valid approach for a secondary metric be-
cause many reasoning approaches might only need the state,
country or distance between two locations, so the “closer”
location, while still wrong, is better. Since our ontology has
three levels of content, we award a full point for an exact
match, 0.66 points for matching the correct state, and 0.33
points for matching the correct country. This metric gives
us an idea of the type of errors each hypothesis makes by
comparing the ontology score to the simple accuracy. The
results on the four hypotheses using 5-fold cross validation
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N Recall Ontology Recall

1 93.57 94.83

2 94.64 95.67

3 95.32 96.10

4 95.48 96.21

5 95.68 96.33

6 95.74 96.39

7 95.74 96.39

8 95.78 96.40

9 95.81 96.43

10 95.84 96.46

Table 5: Recall of H4 when selecting the top N candidates
ranked by the disambiguator.

Figure 2: Average error of H1 and H4 by number of to-
ponyms in the document.

are shown in Table 4.

H4 outperformed all other hypotheses in both accuracy
and ontology score, revealing that participants in events are
more tightly linked than a document-wide approach such as
H3. Additionally, while H2 is by far the worst system, the
fact that its ontology score is close to H1 relative to their re-
spective accuracies suggests that it does select ontologically
more likely candidates, but has difficulty selecting the best
candidate. In examining the errors that H2 makes, it com-
monly selects small towns closer to the other nodes in the
ontology instead of selecting large, well-known cities. By
combining H1 with H2 to form H3, H2 contributes little to
the normal accuracy, but clearly raises the ontology score.

Table 5 shows our evaluation on using H4 as a ranking
method. Only slight improvements are made by choosing
more than one candidate in an attempt to maximize recall.
Given our choice of the MODERATE retrieval strategy, the
upper bound for recall is 97.01, suggesting that about 1%
of the toponyms are extremely difficult to disambiguate, not
even being selected in the top 10 ranked candidates.

Ontological methods are designed to incorporate context.
To test this we experimented with disambiguator perfor-
mance as a function of document size. Figure 2 illustrates
the average precision of H4 as compared to H1, our non-
ontological model. Many of the larger documents proved
easier for both hypotheses, though H4 consistently performs
better for n > 6. While documents with large numbers of to-

ponyms do not necessarily contain large numbers of events,
there is a correlation. The average document contains 1.2
events with more than one participant, while documents with
at least 6 toponyms contain an average of 2.7 such events.

6. Conclusion

Our work has demonstrated the importance of event struc-
tures when disambiguating toponyms. While previous mod-
els have utilized ontologies with document-wide informa-
tion, a probabilistic model that only estimates probabili-
ties of events outperformed a document-wide approach. In
the future we plan to study in further detail how individ-
ual events can affect the spatial grounding. For instance, an
event such as “John swam from San Francisco to Oakland”
suggests a tighter relation than “John flew from Los Ange-
les to Tokyo”. Utilizing this kind of linguistic information
should allow us to disambiguate even more ambiguous to-
ponyms.
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