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Abstract

Uncovering effective relations from non-invasive functional
neuroimaging data remains challenging because the physical
truth does not match the modelling assumptions often made
by causal models. Here, we explore the use of causal Proba-
bilistic Graphical Models for decoding the effective connec-
tivity from functional optical neuroimaging. Our hypothesis
is that directions of arcs of the connectivity network left unde-
cided by existing learning algorithms can be resolved by ex-
ploiting prior structural knowledge from the human connec-
tome. A variant of the fast causal inference algorithm, seeded
FCI, is proposed to handle prior information. For evaluation,
we used an existing dataset from prefrontal cortical activity of
a cohort of 62 surgeons of varying expertise whilst knot-tying
was monitored using fNIRS. Seeded FCI is used to built the
prefrontal effective networks across expertise groups to re-
veal expertise-dependent differences. As hypothesized, the
incorporation of prior information from the connectome re-
duces the set of undecided links. Good nomological valid-
ity is achieved when data is retrospectively compared to the
findings in the original publication of the dataset. We con-
tribute to the analysis of effective connectivity in fNIRS with
the incorportation of structural information, and contribute to
the field of causal PGMs with a new structure learning algo-
rithm capable of exploiting existing knowledge to reduce the
number of links remaining undecided when only information
from observations is used. This work has implications thus
for both, the AI and the neuroscience communities.

Introduction
Modelling the effective (causal) connectivity is a necessity
to understand the brain behaviour by interrogating the neural
activity from a neuroimaging modality. Functional near in-
frared spectroscopy (fNIRS) (Jöbsis 1977) is an optical neu-
roimaging modality for monitoring the concentration of both
oxygenated and reduced haemoglobin species allowing to
obtain a set of observations of the neural activity. Notwith-
standing, causal relations cannot be modelled from observa-
tions alone (Pearl 2009). It necessitates that either certain
assumptions about the world are made, and/or external in-
formation is exploited.

Probabilistic graphical models (PGMs) encode statistical
independence relations among random variables by decom-
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posing the underlying joint probability distribution. Re-
cently, the use of these models have been suggested as a
suitable alternative to capture functional and effective con-
nectivity from fMRI data. This opens an interesting new
analytical line considering the wealth of variants available
among PGMs. Surprisingly, the use of causal PGMs for ef-
fective connectivity analysis remains uncharted territory.

The exploration of effective connectivity has been at-
tempted with analytical approaches of varied nature. For
instance, coherence based methods such as directed transfer
function (DTF) (Kaminski and Blinowska 1991) and partial
directed coherence (PDC) (Baccalá and Sameshima 2001)
were early attempts to retrieve the causal graph in neuroim-
ages. Structural equation modelling (SEM) is a multivari-
ate analysis technique in which the causal relationships are
not inferred from the data but assumed a priori (McIntosh
and Gonzalez Lima 1994) although is oblivious to tempo-
ral information. Dynamic causal modelling (DCM) (Fris-
ton, Harrison, and Penny 2003) proposes a double layered,
neural and haemodynamic, bilinear model in terms of differ-
ential equations. DCM has become the de facto standard for
revealing the effective connectivity. A closely related work
was that of Rajapakse and Zhou (Rajapakse and Zhou 2007)
and their use of DBNs.

In this research, we explore the suitability of a causal
PGM to reveal the effective relations among brain regions
as monitored with fNIRS. A priori knowledge was exploited
to guide the learning of the structure of the causal PGM.
In order to incorporate such background information, this
work further contributes with an extension of the Fast Causal
Inference (FCI) algorithm, the seeded FCI (sFCI), so that
the remaining undecided relations can be resolved. Using
real fNIRS dataset from an experiment for dexterity assess-
ment in novices, trainees and expert surgeons (Leff et al.
2007) three connectivity networks were constructed. In all
cases the number of undefined links decrease in contrast
with those obtained when applying plain FCI to the dataset.
The values in metrics of characteristic path length, global
efficiency and network diameter show consistency with pre-
vious work reported by Ohuchida (Ohuchida et al. 2009).

Causal Bayesian Networks
A Causal Bayesian Network (CBN) C consists of a
(G(V,E), θ) pair, where G is a DAG and θ encodes the local
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distribution such that the independence relations over vari-
ables can be obtained by the d-Separation (Sucar 2015) (as
in the classical BN). However, unlike classical PGM each
edge (X,Y ) ∈ E means that X is a cause for Y . Let V
be the set of variables on a causal system and Y ⊂ V, it is
assumed that C is compatible with all the probability distri-
bution over V resulting from interventions on Y ⊆ V.

Learning a causal model from data alone can be hard be-
cause: (i) the data set can be originated purely from observa-
tions without control over any variables, (ii) maybe there ex-
ist unobserved variables in the system, and/or (iii) the set of
samples may be limited. Most existing algorithms attempt to
go unaffected by these issues (Sucar 2015). In consequence,
they rely on a set of assumptions. Common assumptions are
causal markov condition: whereby a variable is independent
of its non-descendants given its direct causes (parents in the
graph), faithfulness: states that there are no additional inde-
pendencies between the variables that are not implied by the
causal Markov condition, and causal sufficiency: assumes
that there are no common confounders of the observed vari-
ables in the model.

In many situations, the above are not met. For instance,
although fNIRS measures the changes in concentration of
oxygenated and reduced haemoglobin that are a proxy of
brain activity, measures can be contaminated by the sys-
temic contributions such as scalp blood flow, blood pressure
or heart rate. Thus, assuming causal sufficiency in fNIRS is
daring.

Current causal discovery algorithms are able to discover a
equivalence class of the true causal structure. Those models
share invariant features, such as same skeleton, v-structures
and edge marks (tails or arrowheads) and can be represented
via Ancestral Graphs (AG) (Richardson and Spirtes 2002).
AG are an extension of DAGs in which bidirect arcs of the
type X ↔ Y and undirect arcs X − Y are allowed.

The equivalence class for AGs is represented by a Partial
Ancestral Graph (PAG) (Richardson and Spirtes 2002). In a
PAG invariant marks are preserved, such that tails (−) and
arrowheads (>) that appear in all members of the class are
conserved and the non-invariant edge marks are represented
by a circle (◦). A special symbol “∗” stands for any three
kinds of marks, i.e. X∗→ Y stands for X◦→ Y or X ↔ Y
or X → Y .

Seeded FCI: Incorporation of prior information to
decide the direction of unresolved links
The FCI algorithm (Spirtes, Meek, and Richardson 1995) is
a constraint-based algorithm for causal discovery. FCI al-
lows the possibility of considering latent and selection vari-
ables. However the output of FCI may be more informative
when prior information is encoded in the learning process.

The addition of a priori information may resolve some
of the undecided directions present in the output of the FCI
algorithm. This prior knowledge can be added in form of re-
strictions either by conditioning on fundamental or unneces-
sary relations. Algorithm 1 is our proposal, a seeded version
of FCI (sFCI), for permitting incorporation of prior informa-
tion to FCI.

The basic idea in sFCI is to start with a complete undi-
rected graph Q(V,E) and a set of invariant links L (prior
information). Then iteratively, select a pair of adjacent vari-
ables X,Y in Q and select a subset of adjacent variables to
both X and Y , remove the link between X and Y if they are
independent conditioned on L, otherwise hold it, and so on
for the rest of adjacent pairs. Next, orient all edges as unde-
fined (◦) and using the result of d-separation test reorient the
triplets of the form A ∗ − ∗B ∗ − ∗ C.

The structural connections of the human brain establishes
a set of constraints with respect to the possible paths in the
causal graph. In neuroimaging, this set of constraints can
be obtained from the so called human connectome, which
establishes the expected physical links in the human brain.

Data: set of variables V, set of a priori links L
Result: A partial ancestral graph F
1) Start a complete undirected graph Q(V,E) over the set of nodes V;
2) n = 0;
repeat

repeat
select an ordered pair X − Y ∈ E such that
|Adjacencies(Q, X)\{Y }| ≥ n, and a subset
S ⊆ Adjacencies(Q, X)\{Y } such that |S| = n;
if d-separated(X,Y |S) and X − Y /∈ L then

delete the edge X − Y from E;
record S in Sepset(X,Y ) and Sepset(Y,X);

end
until ∀{X,Y } : |Adjacencies(Q, X) \{Y }| ≥ n and
∀S ⊆ Adjacencies(Q, X)\{Y } such that |S| = n have been tested for
d-separation;
n = n + 1;

until ∀{X,Y } : |Adjacencies(Q, X) \{Y }| < n;
3) Let F(V,E′) be the undirected graph resulting from step 2), then orient
each edge as ◦ − ◦;
∀A − B − C such that
A − B ,B − C ∈ E′ and A − C /∈ E′ and A − B ,B − C /∈ L;

if B /∈ Sepset(A,C) then
orient A ∗ − ∗ B ∗ − ∗ C as A ∗ − > B < − ∗ C

end
4) ∀A − B ∈ E′ and A − B /∈ L;

if d-separated(A,B|S) such that S ∈ Possible-D-SEP(A,B)\{A,B}
or Possible-D-SEP(B,A)\{A,B} then

remove A − B;
record S in Sepset(A,B) and Sepset(B,A);

end
Algorithm 1: Seeded Fast Causal Inference (sFCI) algo-
rithm with a mechanism to consider prior information.

Decoding effective connectivity in fNIRS
Unlike the functional connectivity, effective connectivity
is concerned with decoding cooperating brain regions, and
most importantly, determining the direction of the flow of
information.

The system of interest is a fNIRS neuroimaging which is
able to take a snapshot of the cortical activity across brain
regions by acquiring bivariate data at each channel while the
subject is performing a certain task.

The differences in the physical processes of image for-
mation, and the image reconstruction function across neu-
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Figure 1: Channel distribution and structural information
from the connectome used as prior knowledge (Hagmann
et al. 2008; Joshi et al. 2010).

roimaging modalities (conferring different statistical proper-
ties to the observations) have to be considered for the mod-
elling. For instance, a critical limitation in the fNIRS do-
main is that the set of observations only can incorporate a
reduced number of samples due to the habituation effect in
the brain, a response decrement due to stimulus repetition
(Fischer et al. 2000).

In addition, the brain structural connectivity establishes a
set of restrictions regarding to their anatomical paths, which
is described by the connectome.

With this in mind, it is possible to state the problem of
recovering the effective connectivity observed with fNIRS
as the modelling of causal relations among a set of variables
limited by a set of samples and integrating prior information
from the connectome.

Experiments and results
The fNIRS neuroimaging dataset for this research was orig-
inally collected at Imperial College London back in 2007
to question about experience-dependent differences on pre-
frontal activity for a cohort of 62 surgeons (19 consultants,
21 trainees and 22 medical students) while repeating a knot-
tying task 5 times at self-pace, allowing 30 seconds recovery
between trials (Leff et al. 2007). All channels were set in the
prefrontal cortex.

The connectome information was recovered from (Hag-
mann et al. 2008; Joshi et al. 2010) and adapted to the chan-
nel location described in (Leff et al. 2007), and it is shown
in Fig 1.

A total of eight networks were built considering four
groups (novices, trainees, experts and all subjects) and two
variants, with and without connectome information using
the sFCI in Algorithm 1 and the “classical” FCI respectively.
Due to limitation of space Fig. 2 only presents novices,
trainees and experts groups networks. Table 1 summarizes
the number of undefined links and graph-theoretical mea-
sures (Rubinov and Sporns 2010) of functional integration

using both FCI and our proposal sFCI. As expected, the
number of undefined links decreases with the utilization of
prior information.

Novices Trainees Experts All
FCI sFCI FCI sFCI FCI sFCI FCI sFCI

UL 11 8 19 16 18 14 26 21
CPL 7.17 6.15 6.13 7.40 7.43 6.02 4.08 7.96
GE 0.20 0.21 0.25 0.20 0.20 0.22 0.35 0.20
ND 17 13 17 18 17 13 9 19

Table 1: Measures of brain connectivity (Rubinov and
Sporns 2010). UL: undefined links in the networks, CPL:
characteristic path length represents the average shortest
path length between each pair of nodes, GE: global effi-
ciency represents the brain capacity of parallel information
flow and ND: network diameter is the largest number of
nodes to travel between two nodes without loops.

In the original work of the dataset (Leff et al. 2007) the
greater activity of the novices’ prefrontal cortex leaded to a
more lateralised response; an effect which can also be appre-
ciated in the effective networks in Fig. 2. Interestingly, the
network metrics in Tab. 1 tell a story very much alike that
found in (Ohuchida et al. 2009) in which trainees evoked
higher activity than novices or experts. These two observa-
tions provides strong nomological evidence about the work-
ing of the model. When considering the prior information,
the network features tell a different story regarding the con-
figuration of the network e.g. different pattern of path length
and diameter, but shows a more intuitive higher efficiency of
the network of experts, suggesting that the incorporation of
the expected structural information can perhaps reveal more
realistic effective information. However, further evidence is
need before we make such claim.

Conclusions
Motivated by the neuroscientific demand of better modelling
tools for the analysis of effective connectivity, we have pre-
sented a solution that is (i) innovative from the computa-
tional side with the proposal of the algorithm sFCI, and
(ii) innovative from the fNIRS side with the exploitation of
structural information to resolve effective links which would
have otherwise been imposible to recover from data alone.
Good nomological validity is achieved with previous find-
ings. We plan to carry out additional experiments to afford
other types of validity for the methodology proposed.
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