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Abstract

Causality has been recently introduced in databases, to
model, characterize and possibly compute causes for query
results (answers). Connections between query-answer causal-
ity, consistency-based diagnosis, database repairs (wrt. in-
tegrity constraint violations), abductive diagnosis and the
view-update problem have been established. In this work we
further investigate connections between query-answer causal-
ity and abductive diagnosis and the view-update problem.
In this context, we also define and investigate the notion
of query-answer causality in the presence of integrity con-
straints.

1 Introduction

Causality is a deep subject that appears at the foundations
of many scientific disciplines; and also something we want
to represent and compute to deal with uncertainty of data,
information and theories. In data management in particu-
lar, there is a need to represent, characterize and compute
causes that explain why certain query results are obtained
or not, or why natural semantic conditions, such as integrity
constraints, are not satisfied. Causality can also be used to
explain the contents of a view, i.e. of a predicate with virtual
contents that is defined in terms of other physical, material-
ized relations (tables).

Most of the work on causality by the computer science
community has been done in the context of knowledge rep-
resentation, but little has been said about causality in data
management. This work is about causality as defined for
queries posed to relational databases.

The notion of causality-based explanation for a query re-
sult was introduced in (Meliou et al., 2010), on the basis
of the deeper concepts of counterfactual and actual causa-
tion. This approach can be traced back to (Halpern & Pearl,
2005). We will refer to this notion as query-answer causal-
ity (or simply, QA-causality). Under this approach, expla-
nations for query answers are provided in terms causes for
query answers; and these causes are ranked according to
their degree of responsibility, which quantifies the extent
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by which a QA-cause contributes to an answer. In (Meliou
et al., 2011), view-conditioned causality (vc-causality) was
proposed as a restricted form of QA-causality, to determine
causes for unexpected query results, but conditioned to the
correctness of prior knowledge that cannot be altered by
counterfactual tuple-deletions.

In (Salimi & Bertossi, 2015a), connections were es-
tablished between QA-causality and database repairs
(Bertossi, 2011), which allowed to obtain several complex-
ity results for QA-causality related problems. A connec-
tion between QA-causality and consistency-based diagno-
sis (Reiter, 1987) was established in (Salimi & Bertossi,
2015a), characterizing causes and responsibilities in terms
of diagnoses, and leading to new results for QA-causality.
In (Salimi & Bertossi, 2015b) connections between QA-
causality and abductive diagnosis (Console et al., 1991;
Eiter et al., 1997) were presented.

The definition of QA-causality applies to monotone
queries (Meliou et al., 2010), but all complexity and algo-
rithmic results in (Meliou et al., 2010; Salimi & Bertossi,
2015a) have been for first-order monotone queries, mainly
conjunctive queries. However, QA-causality can be applied
to Datalog queries (Abiteboul et al., 1995), which are also
monotone, but may contain recursion. Oh the other hand,
abductive diagnosis can be done on top of Datalog specifi-
cations, leading to Datalog-abduction, for which there are
known complexity results (Eiter et al., 1997). Actually, in
(Salimi & Bertossi, 2015b) computational and complexity
results were obtained for Datalog QA-causality from a con-
nection with Datalog-abduction. In this work we further ex-
ploit this connection to obtain new complexity results for
Datalog QA-causality.

In (Salimi & Bertossi, 2015b), connections are reported
between QA-causality and the classical view-update prob-
lem in databases, which is about updating a database through
views (Abiteboul et al., 1995). One wants the base relations
(also called “the source database”) to change in a minimal
way while still producing the view updates. When only dele-
tions are performed on monotone views, we have the delete-
propagation problem, from views to base relations (Bune-
man et al., 2002; Kimelfeld, 2012; Kimelfeld et al., 2012).
This is the one considered in this work.

In (Salimi & Bertossi, 2015b), several connections be-
tween QA-causality and the delete-propagation problem
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were established and used to obtain new results for the for-
mer. In this work we obtain new results for view-conditioned
causality from this connection.

We define and investigate the notion of query-answer
causality in the presence of integrity constraints. The latter
are logical dependencies between database tuples that, under
the assumption that they are satisfied, should have an effect
on determining causes for a query answer. We propose a no-
tion of cause that takes them into account.

A slightly extended version of this work, with more ex-
amples, can be found in (Salimi & Bertossi, 2016).

2 Preliminaries

We consider relational database schemas, S = (U,P), with
U a possibly infinite data domain, and P a finite set of
database predicates of fixed arities. We may use implicit
built-in predicates, e.g. �=. Schema S determines a language,
L(S), of first-order (FO) predicate logic. An instance D for
S is a finite set of ground atomic formulas, a.k.a. tuples,
P (c1, ..., cn), with ci ∈ U , and P ∈ P is not a built-in.

A conjunctive query (CQ) is a formula of L(S) of the
form Q(x̄) : ∃ȳ(P1(s̄1) ∧ · · · ∧ Pm(s̄m)), with the Pi(s̄i)
atomic formulas, i.e. Pi ∈ P or is a built-in, and the s̄i are
sequences of terms, i.e. variables or constants of U . The x̄ in
Q(x̄) shows all the free variables in the formula, i.e. those
not appearing in ȳ. A sequence c̄ of constants is an answer
to query Q(x̄) if D |= Q[c̄], i.e. the query becomes true
in D when the variables are replaced by the corresponding
constants in c̄. We denote the set of all answers to a query
Q(x̄) with Q(D). A conjunctive query is Boolean (a BCQ),
if x̄ is empty, i.e. the query is a sentence, in which case, it is
true or false in D, denoted by D |= Q (or Q(D) = {true})
and D �|= Q (or Q(D) = {false}), respectively.

Query Q is monotone if for any instances D1 ⊆ D2,
Q(D1) ⊆ Q(D2). CQs and unions of CQs (UCQs) are
monotone, so as (possibly not FO) Datalog queries (Abite-
boul et al., 1995). We consider only monotone queries.

An integrity constraint (IC) is a sentenceϕ ∈ L(S). Then,
given an instance D for schema S , it may be true or false in
D (denoted D |= ϕ, resp. D �|= ϕ). Given a set Σ of ICs, a
database instance D is consistent if D |= Σ; otherwise it is
said to be inconsistent. In this work we assume that sets of
ICs are always finite and logically consistent.

A particular class of ICs is formed by inclusion dependen-
cies ( INDs), which are sentences of the form ∀x̄(Pi(x̄) →
∃ȳPj(x̄

′, ȳ)), with x̄′∩ ȳ = ∅, x̄′ ⊆ x̄. Another special class
of ICs is formed by functional dependencies (FDs). For ex-
ample, ψ : ∀x∀y∀z(P (x, y) ∧ P (x, z) → y = z) specifies
that the second attribute of P functionally depends upon the
first. Notice that it can be written as the negation of a BCQ:
¬∃x∃y∃z(P (x, y) ∧ P (x, z) ∧ y �= z).

A Datalog query (DQ) Q(x̄) is a program Π, con-
sisting of positive definite rules of the form P (t̄) ←
P1(t̄1), . . . , Pn(t̄n), with the Pi(t̄i) atomic formulas, that
accesses an underlying extensional database D (the facts).
In particular, Π defines an answer-collecting predicate
Ans(x̄) by means of a top rule of the form Ans(x̄) ←
P1(s̄1), . . . , Pm(s̄m), where the Pi on the RHS are defined

by other rules in Π or are database predicates for D. Here,
the s̄i are lists of variables or constants, and x̄ ⊆ ⋃

i s̄1.
When Π∪D |= Ans(ā), ā is an answer to query Π on D.

Here, |= means that the RHS belongs to the minimal model
of Π ∪ D. The Datalog query is Boolean (a BDQ) if the
top answer-predicate is propositional, with a definition of the
form ans ← P1(s̄1), . . . , Pm(s̄m) (Abiteboul et al., 1995).
CQs can be expressed as DQs.

3 QA-Causality and its Decision Problems

Following (Meliou et al., 2010), in the rest of this work, un-
less otherwise stated, we assume that a relational database
instanceD is split in two disjoint sets,D = Dn∪Dx, where
Dn andDx are the sets of endogenous and exogenous tuples,
respectively. The former are admissible, interesting potential
causes for query answers; but not the latter. In the rest of this
work, whenever a database instance is not explicitly parti-
tioned, we assume all tuples are endogenous.

A tuple τ ∈ Dn is a counterfactual cause for an answer ā
to Q(x̄) in D if D |= Q(ā), but D � {τ} �|= Q(ā). A tuple
τ ∈ Dn is an actual cause for ā if there exists Γ ⊆ Dn,
called a contingency set, such that τ is a counterfactual cause
for ā in D � Γ. Causes(D,Q(ā)) denotes the set of actual
causes for ā. If Q is Boolean, Causes(D,Q) contains the
causes for answer true. We collect all minimal contingency
sets associated with τ ∈ Dn: Cont(D,Q(ā), τ) := {Γ ⊆
Dn |D�Γ |= Q(ā), D�(Γ∪{τ}) �|= Q(ā), and for all Γ′ �
Γ, D � (Γ′ ∪ {τ}) |= Q(ā)}.

The causal responsibility of a tuple τ for answer ā is
ρQ(ā)

(τ) := 1
1+|Γ| , with Γ a smallest contingency set for τ .

When τ is not an actual cause for ā, ρQ(ā)
(τ) := 0.

QA-causality can be applied to DQs, denoting with
Causes(D,Π(ā)) the set of causes for answer ā.

Example 1. Consider the instance D with a single binary
relation E as below. t1-t7 are tuple identifiers (ids). Assume
all tuples are endogenous.

E A B
t1 a b

t2 b e

t3 e d

t4 d b

t5 c a

t6 c b

t7 c d

Instance D can be rep-
resented as the directed
graph G(V, E) in Figure
1, where V coincides with
the active domain of D
(i.e. the set of constants in
E), and E contains an edge

(v1, v2) iff E(v1, v2) ∈ D. Tuple ids are used as labels for
the edges in the graph. For simplicity, we refer to the tuples
by their ids. Consider the DQ Π that collects pairs of ver-
tices of G that are connected through a path, and is formed
by the rules: Ans(x, y) ← P (x, y). P (x, y) ← E(x, y).
and P (x, y)← P (x, z), E(z, y).

It is easy to see that, 〈c, e〉 is an answer to query Π on
D. That is, Π ∪ D |= Ans(c, e). This is because there
are three distinct paths between c and e in G. All tu-
ples except for t3 are actual causes: Causes(E,Π(c, e)) =
{t1, t2, t4, t5, t6, t7}, because all of them contribute to at
least one path between c and e. Among them, t2 has the
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Figure 1: Graph G for database D in Example 1.

highest responsibility, because, t2 is a counterfactual cause
for the answer, i.e. it has an empty contingency set. �

The complexity of the computational and decision prob-
lems that arise in QA-causality have been investigated in
(Meliou et al., 2010; Salimi & Bertossi, 2015a). For a
Boolean monotone query Q, the causality decision prob-
lem (CDP) is (deciding about membership of): CDP(Q) :=
{(D, τ) | τ ∈ Dn, and τ ∈ Causes(D,Q)}. It is tractable
for UCQs (Salimi & Bertossi, 2015a).

For a Boolean monotone query Q, the responsibility de-
cision problem (RDP) is (deciding about membership of):
RDP(Q) = {(D, τ, v) | τ ∈ Dn, v ∈ {0} ∪ { 1k | k ∈ N+},
D |= Q and ρQ(τ) > v}. It is NP-complete for UCQs
(Salimi & Bertossi, 2015a).1

3.1 View-conditioned causality

Consider a query Q with Q(D) = {ā1, . . . , ān}. Fix an an-
swer, say ā1 ∈ Q(D), while the other answers will be used
as a condition on ā1’s causality. Intuitively, ā1 is somehow
unexpected, we look for causes, but considering the other
answers as “correct”, which has the effect of reducing the
spectrum of contingency sets, by keeping Q(D)’s extension
fixed, as a view extension, modulo ā1 (Meliou et al., 2011).
More precisely, if V := Q(D)� {ā1}: (a) Tuple τ ∈ Dn is
a view-conditioned counterfactual cause (vcc-cause) for ā1
(in D wrt. V ) if D � {τ} �|= Q(ā1), but Q(D � {τ}) = V .
(b) Tuple τ ∈ Dn is a view-conditioned actual cause (vc-
cause) for ā1 if there exists a contingency set, Γ ⊆ Dn,
such that τ is a vcc-cause for ā1 in D � Γ wrt. V . (c)
vc-Causes(D,Q(ā1)) denotes the set of all vc-causes for ā1.
(d) The vc-causal responsibility of a tuple τ for answer ā1 is
vc-ρQ(ā1)

(τ) := 1
1+|Γ| , where |Γ| is the size of the smallest

contingency set that makes τ a vc-cause for ā1.
Clearly, vc-Causes(D,Q(ā)) ⊆ Causes(D,Q(ā)), but

not necessarily the other way around.

Definition 1. (a) The vc-causality decision problem (VCDP)
is about membership of VCDP(Q) = {(D, ā, τ) | ā ∈
Q(D) and τ ∈ vc-Causes(D,Q(ā)) }. (b) The vc-causal
responsibility decision problem is about membership of
VRDP(Q) = {(D, ā, τ, v) | τ ∈ Dn, v ∈ {0} ∪ { 1k | k ∈
N+}, D |= Q(ā) and vc-ρQ(τ) > v}. �

Since leaving the other answers fixed is a strong con-
dition, it makes sense to study the complexity of deciding
whether a query answer has a vc-cause or not.

1All the results are in data complexity.

Definition 2. For a monotone query Q, the vc-
cause existence problem is (deciding about member-
ship of): VCEP(Q) = {(D, ā) | ā ∈ Q(D) and
vc-Causes(D,Q(ā)) �= ∅ }. �

4 Causality and Abduction

An abductive explanation for an observation is a formula
that, together with a background logical theory (a system
description), entails the observation. In database causality
we do not have an explicit system description, but just a set
of tuples. Something like a system description emerges with
a query, and causal relationships between tuples are captured
by the combination of atoms in it. With a DQ , we have a
specification in terms of positive definite rules.

A Datalog abduction problem (Eiter et al., 1997) is of the
form AP = 〈Π, E,Hyp,Obs〉, where: (a) Π is a set of
Datalog rules, (b)E is a set of ground atoms (the extensional
database), (c) the hypothesis, Hyp, is a finite set of ground
atoms, the abducible atoms,2 and (d) Obs , the observation,
is a finite conjunction of ground atoms.

The abduction problem is about computing a subset-
minimal Δ ⊆ Hyp, such that Π ∪ E ∪ Δ |= Obs . In this
case, Δ is called an abductive diagnosis. So, no proper sub-
set of Δ is an abductive diagnosis. Sol(AP) denotes the set
of abductive diagnoses for problem AP . Now, a hypothesis
h ∈ Hyp is relevant for AP if h contained in at least one
diagnosis of AP , otherwise it is irrelevant. Rel(AP) col-
lects all relevant hypothesis forAP . A hypothesis h ∈ Hyp
is necessary for AP if h contained in all diagnosis of AP .
Ness(AP) collects all the necessary hypothesis for AP .

The relevance decision problem (RLDP) is about deciding
the membership of: RLDP(Π) = {(E ,Hyp,Obs, h) | h ∈
Rel(AP),with AP = 〈Π, E,Hyp,Obs〉}. The neces-
sity decision problem (NDP) is about deciding the mem-
bership of: NDP(Π) = {(E ,Hyp,Obs, h) | h ∈
Ness(AP),with AP = 〈Π, E,Hyp,Obs〉}.

The following results can be obtained adapting results in
(Eiter et al., 1997, the. 26) and (Friedrich et al., 1990): For
every Datalog program Π, NDP(Π) is in PTIME (in data);
and, for Datalog programs, Π,RLDP(Π) is NP-complete.

For a BDQ Π with Π ∪ D |= ans , the causality deci-
sion problem takes the form: CDP(Π) := {(D, τ) | τ ∈
Dn, and τ ∈ Causes(D,Π)}. It turns out that, for Datalog
system specifications, actual causes for ans can be obtained
from abductive diagnoses of the associated causal Datalog
abduction problem (CDAP): APc := 〈Π, Dx, Dn, ans〉,
where Dx takes the role of the extensional database for Π.
Accordingly, Π ∪ Dx becomes the background theory, Dn

becomes the set of hypothesis, and atom ans is the observa-
tion.

Proposition 1. For an instance D = Dx ∪Dn and a BDQ
Π, with Π ∪ D |= ans , and its associated CDAP APc, the
following hold: (a) τ ∈ Dn is an counterfactual cause for
ans iff τ ∈ Ness(APc). (b) τ ∈ Dn is an actual cause for
ans iff τ ∈ Rel(APc). �

2The hypothesis can be all the possible ground instantiations of
abducible predicates, which do not appear in rule’s LHSs.
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Example 2. Consider the instance D with relations R and S
as below, and the query Π: ans ← R(x, y), S(y), which is
true in D. Assume all tuples are endogenous.

R A B
a1 a4

a2 a1

a3 a3

S A
a1

a2

a3

Here, APc = 〈Π, ∅, D,
ans〉, which has two (min-
imal) abductive diagnoses:
Δ1 = {S(a1), R(a2, a1)}

and Δ2 = {S(a3), R(a3, a3)}. Then, Rel(APc) = {S(a3),
R(a3, a3), S(a1), R(a2, a1)}. It is clear that the relevant hy-
pothesis are actual causes for ans . �

We can use the results mentioned above to obtain new
complexity results for Datalog QA-causality. First, for the
problem of deciding if a tuple is a counterfactual cause for
a query answer. This is a tuple that, when removed from the
database, undermines the query-answer, without having to
remove other tuples, as is the case for actual causes. Actu-
ally, for each of the latter there may be an exponential num-
ber of contingency sets (Salimi & Bertossi, 2015a). A coun-
terfactual cause is an actual cause with responsibility 1. The
complexity of this problem can be obtained from the con-
nection between counterfactual causation and the necessity
of hypothesis in Datalog abduction.

Proposition 2. For BDQs Π, CFDP(Π) := {(D, τ) | τ ∈
Dn and ρQ(τ) = 1}. is in PTIME (in data). �

For BDQs Π, deciding actual causality, i.e. the prob-
lem CDP(Π), is NP-complete (in data) (Salimi & Bertossi,
2015b). The same problem is tractable for UCQs (Salimi &
Bertossi, 2015a). Finally, we establish the complexity of the
responsibility problem for DQs.

Proposition 3. For BDQs Π,RDP(Π) is NP-complete. �

5 Causality and View-Updates

There is a close relationship between QA-causality and
the view-update problem in the form of delete-propagation
(Abiteboul et al., 1995).

Let D be a database instance, and Q a monotone query.
For ā ∈ Q(D), the minimal-source-side-effect deletion-
problem is about computing a subset-minimal Λ ⊆ D, such
that ā /∈ Q(D � Λ).

Now, following (Buneman et al., 2002), let D be a
database instance D, and Q a monotone query: (a) For ā ∈
Q(D), the view-side-effect-free deletion-problem is about
computing a Λ ⊆ D, such that Q(D)� {ā} = Q(D � Λ).
(b) The view-side-effect-free decision problem is (deciding
about the membership of): VSEFP(Q) = {(D, ā) | ā ∈
Q(D), and exists D′ ⊆ D with Q(D) � {ā} = Q(D′)}.
The latter decision problem is NP-complete for conjunctive
queries (Buneman et al., 2002, theorem 2.1).

Consider a relational instance D, a view V defined by a
monotone queryQ. Then, the virtual view extension, V(D),
is Q(D). For a tuple ā ∈ Q(D), the delete-propagation
problem, in its most general form, is about deleting a set
of tuples from D, and so obtaining a subinstance D′ of D,
such that ā /∈ Q(D′). It is natural to expect that the deletion
of ā from Q(D) can be achieved through deletions from D
of actual causes for ā (to be in the view extension). However,

to obtain solutions to the different variants of this problem,
different combinations of actual causes must be considered
(Salimi & Bertossi, 2015b).

In particular, in (Salimi & Bertossi, 2015b), it has been
shown that actual causes of ā with their minimal contin-
gency sets are in correspondence with the solutions to the
minimal-source-side-effect deletion-problem of ā.

Now, in order to check if there exists a solution to the
view-side-effect-free deletion-problem for ā ∈ V(D), it is
good enough to check if ā has a view-conditioned cause. Ac-
tually, it holds (Salimi & Bertossi, 2015b): For an instance
D, a view V defined by a monotone query Q with Q(D) =
{ā1, . . . , ān}, and āk ∈ Q(D), (D, āk) ∈ VSEFP(Q) iff
vc-Causes(D,Q(āk)) �= ∅.

We now consider the complexity of the view-conditioned
causality problem (cf. Definition 1). By appealing to the con-
nection between vc-causality and delete-propagation, we ob-
tain for the vc-cause existence problem (cf. Definition 2):
For CQs Q, VCEP(Q) is NP-complete (in data) (Salimi &
Bertossi, 2015b). A polynomial-time Turing (or Cook) re-
duction from this problem allows us to obtain the next result
about deciding vc-causality (cf. Definition 1).

Proposition 4. For CQs Q, VCDP(Q) is NP-complete. �
By a (Karp) reduction from this problem, we settle the

complexity of the vc-causality responsibility problem for
conjunctive queries.

Proposition 5. For CQs Q, VRDP(Q) is NP-complete. �
These results on vc-causality also hold for UCQs.

6 QA-Causality under Integrity Constraints

To motivate a definition of QA-causality in the presence of
integrity constraints (ICs), we start with some remarks.

Interventions are at the base of Halpern & Pearl’s ap-
proach to causality (Halpern & Pearl, 2005), i.e. actions on
the model that define counterfactual scenarios. In databases,
they take the form of tuple deletions. If a databaseD satisfies
a prescribed set of integrity constraints (ICs), the instances
obtained from D by tuple deletions, as used to determine
causes, should be expected to satisfy the ICs.

On a different side, QA-causality in (Meliou et al., 2010)
is insensitive to equivalent query rewriting (as first pointed
out in (Glavic & Miller, 2011)): QA-causes coincide for log-
ically equivalent queries. However, QA-causality might be
sensitive to equivalent query rewritings in the presence of
ICs, as the following example shows.

Example 3. Let S = {Dep(DName, TStaff ),
Course(CName,LName,DName)} be relational schema
with inclusion dependency I : ∀x∀y (Dep(x, y) →
∃u Course(u, y, x)); and instance D for S:

Dep DName TStaff
t1 Computing John
t2 Philosophy Patrick
t3 Math Kevin

Course CName LName DName
t4 Com08 John Computing
t5 Math01 Kevin Math
t6 Hist02 Patrick Philosophy
t7 Math08 Eli Math
t8 Com01 John Computing

Clearly, D |= I . Now, consider the CQ that collects the
teaching staff who are lecturing in the department they are
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associated with:

Q(TStaff ) ← Dep(DName,TStaff ), (1)
Course(CName,TStaff ,DName).

Here, Q(D) = {John,Patrick ,Kevin}. Answer 〈John〉
has the actual causes: t1, t4 and t8. t1 is a counterfactual
cause, t4 has a single minimal contingency set Γ1 = {t8};
and t8 has a single minimal contingency set Γ2 = {t4}.

Now, in the presence of IC I , Q is equivalent with the
following queryQ′: (denotedQ ≡{I} Q′, and meaning they
give the same answers for every instance that satisfies I)

Q′(TStaff ) ← Dep(DName,TStaff )).

In particular, 〈John〉 is still an answer to Q′ from D. How-
ever, on the basis of query Q′ and instance D alone, there is
single cause, t1, which is also a counterfactual cause. �
Definition 3. Given an instance D = Dn ∪Dx that satisfies
a set Σ of ICs, i.e. D |= Σ, and a monotone query Q with
D |= Q(ā), a tuple τ ∈ Dn is an actual cause for ā under
Σ if there is Γ ⊆ Dn, such that:

(a) D � Γ |= Q(ā), and (b) D � Γ |= Σ.
(c) D � (Γ ∪ {t}) �|= Q(ā), and (d) D � (Γ ∪ {t}) |= Σ.
Causes(D,Q(ā),Σ) denotes the set of actual causes for ā
under Σ. �

Example 4. (ex. 3 cont.) Consider answer 〈John〉 to Q, for
which t4 was a cause with minimal contingency set Γ1 =
{t8}. It holds D � Γ1 |= I , but D � (Γ1 ∪ {t2}) �|= I . So,
the new definition does not allow t4 to be an actual cause
for answer 〈John〉 to Q. Actually, Q and Q′ have the same
actual causes for answer 〈John〉 under I , namely t1. �

Since functional dependencies (FDs) are never violated
by tuple deletions, they have no effect on the set of causes
for a query answer. Actually, this applies to all denial con-
straints (DCs), i.e. of the form ¬∀x̄(A1(x̄1)∧· · ·∧An(x̄n)),
with Ai a database predicate or a built-in.

Proposition 6. Given an instance D, a monotone query Q,
and a set of ICs Σ, the following hold:

(a) Causes(D,Q(ā),Σ) ⊆ Causes(D,Q(ā)).
(b) Causes(D,Q(ā), ∅) = Causes(D,Q(ā)).
(c) When Σ consists of DCs, Causes(D,Q(ā),Σ) =

Causes(D,Q(ā)).
(d) For a monotone query Q′ with Q′ ≡Σ Q:

Causes(D,Q(ā),Σ) = Causes(D,Q′(ā),Σ).
(e) For a monotone query Q′ which is minimally con-

tained in Q with Q′ ≡Σ Q:3 Causes(D,Q(ā),Σ) =
Causes(D,Q′(ā)). �
Notice that item (e) here relates to the rewriting of the

query in Example 3. Notice that this rewriting resembles
the resolution-based rewritings used in semantic query op-
timization (Chakravarthy et al., 1990).

Since FDs have no effect on causes, the causality decision
problems in the presence of FDs have the same complexity

3This means Q′ ⊆ Q and there is no Q′′ with Q′′ � Q′ and
Q′′ ≡Σ Q.

upper bound as causality without FDs. For example, for Σ
a set of FDs, RDP(Q,Σ), the responsibility problem now
under FDs, is NP-complete (as it was without ICs (Salimi
& Bertossi, 2015a)). However, when an instance satisfies a
set of FDs, the decision problems may become tractable de-
pending on the query structure. For example, for the class of
key-preserving CQs, deciding responsibility over instances
that satisfy the key constraints (KCs) is in PTIME (Cibele et
al., 2016). A KC is a particular kind of FD where some of
the predicate attributes functionally determine all the others.
Given a set κ of KCs, a CQ is key-preserving if, whenever
an instance D satisfies κ, all key attributes of base relations
involved in Q are included among the attributes of Q.

By appealing to the connection between vc-causality
and delete-propagation (Salimi & Bertossi, 2015b), vc-
responsibility under KCs is tractable (being intractable in
general, because the problem without KCs already is, as
shown in Proposition 5):

Proposition 7. Given a set κ of KCs, and a key-preserving
CQ query Q, deciding VRDP(Q, κ) is in PTIME. �

New subclasses of (view-defining) CQs for which dif-
ferent variants of delete-propagation are tractable are intro-
duced in (Kimelfeld, 2012; Kimelfeld et al., 2012) (general-
izing those in (Cong et al., 2006)). The established connec-
tions between delete-propagation and causality should allow
us to adopt them for the latter.

QA-causality under ICs can capture vc-causality:

Proposition 8. For a conjunctive query Q(x̄) ∈ L(S),
and an instance D for S , with Q(D) = {ā1, . . . , ān} and
a fixed k ∈ {1, . . . , n}, there is a set of inclusion de-
pendencies Σ over schema S ∪ {V }, with V a fresh |x̄|-
ary predicate, and an instance D′ for S ∪ {V }, such that
vc-Causes(D,Q(āk)) = Causes(D′,Q(ā),Σ). �

Deciding causality in the absence of ICs is tractable, but
their presence has an impact on this problem. The following
is obtained from Propositions 4 and 8.

Proposition 9. For CQs Q and a set Σ of inclusion depen-
dencies, Q, CDP(Q,Σ) is NP-complete. �

Some ICs may be implicative, which makes it tempting
to give them a causal semantics. For example, in (Roy &
Suciu, 2014) and more in the context of interventions for
explanations, a ground instantiation, Pi(t̄i) → Pj(t̄j), of
an inclusion dependency is regarded a causal dependency
of Pj(t̄j) upon Pi(t̄i). On this basis, a valid intervention re-
moves Pj(t̄j)whenever Pi(t̄i) is removed from the instance.

Giving to ICs a causal connotation is controversial. Ac-
tually, according to (Halpern & Hitchcock, 2010) logical
dependencies are not causal dependencies per se. Our ap-
proach is consistent with this view. Even more, we should
point out that there are different ways of seeing ICs, and they
could have an impact on the notion of cause. For example,
according to (Reiter, 1992), ICs are “epistemic in nature”,
in the sense that rather than being statements about the do-
main represented by a database (or knowledge base), they
are statement about the contents of the database, or about
what it knows (cf. (Reiter, 1992) for a discussion).
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Abduction has been applied to view-updates (Kakas &
Mancarella, 1990), with ICs on the base relations (Console
et al., 1995). On the other side, we have connected QA-
causality with both abduction and view-updates. We briefly
illustrate using our ongoing example how the approach in
(Console et al., 1995) can be used to determine view-updates
in the presence of ICs, which should have an impact on the
characterization and computation of causes, now under ICs.

Example 5. (ex. 3 cont.) Formulated as a view-update prob-
lem on a Datalog setting, we have the query (1) defining an
intensional predicate, Q(TStaff ). The tuples in the under-
lying database are all considered to be abducible. The view-
update request is the deletion of Q(John).

According to (Console et al., 1995), the potential abduc-
tive explanations are maximal subsets E of the original in-
stance D, such that R plus rule (1) does not entail Q(John)
anymore. They are: E1 = D�{t1}, andE2 = D�{t4, t8},
and are determined by finding minimal abductive explana-
tions for Q(John). However, without considering the IC I .

Now, these explanations have to be examined at the light
of the ICs. In this case, E1 does satisfy I , but this is not the
case for E2. So, the latter is rejected. As a consequence, the
only admissible update is the deletion of t1 from D.

The admissible (and minimal) view-updates could be used
to define actual causes under ICs. In this case, and according
to Section 5, the admissible view-update (under ICs) should
be in correspondence, by definition, with an admissible and
minimal combination of an actual cause and one of its con-
tingency sets. This would make t1 the only actual cause (also
counterfactual) for 〈John〉 under I , which corresponds with
the result obtained following our direct definition. �

7 Conclusions

In combination with the results reported in (Salimi &
Bertossi, 2015a), we can see that there are deeper and mul-
tiple connections between the areas of QA-causality, ab-
ductive and consistency-based diagnosis, view updates, and
database repairs. Abduction has also been explicitly applied
to database repairs (Arieli et al., 2004). The idea, again, is to
“abduce” possible repair updates that bring the database to
a consistent state. Connections between consistency-based
and abductive diagnosis have been established, e.g. in (Con-
sole & Torasso, 1991). Exploring and exploiting all the pos-
sible connections is matter of ongoing and future research.
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