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Abstract

Term extraction is to extract domain relevant terms from a do-
main specific, unstructured corpus, which in an organisational
setting can be used for categorisation and information re-
trieval. Previous statistical approaches to automatic term ex-
traction rely on term frequencies, which may not only hamper
the accuracy but also lower the rank of or even discard domain
relevant yet infrequent terms. This paper aims at minimising
the impact of term frequency and thus improving precision of
top-k terms, by using a graph based ranking algorithm with
the aids of latent vector representation of terms and term rela-
tions embedded in patents instead of general-domain knowl-
edge sources. We show that the proposed method outperforms
all the previous works significantly.

1 Introduction

In an organisational setting, unstructured data is considered
crucial and useful in improving operations or in creating new
business opportunities for an organisation (Blumberg and
Atre 2003). Utilising this information requires extraction of
relevant terms, which can be used in categorisation and en-
hancing search over unstructured data to retrieve relevant
information. However, manually extracting relevant terms
from domain specific corpora is a labour intensive and time
consuming activity, and thus there is a need for maximum
automation of this process.

Term extraction is to automatically extract domain rele-
vant terms from unstructured data. Current approaches to
term extraction can be classified into two categories: (i)
statistical and (ii) graph based approaches. Statistical ap-
proaches select linguistically admissible terms and utilise
frequency based methods such as C-value (Frantzi, Ana-
niadou, and Mima 2000) and TF-IDF (Salton and McGill
1986) to rank the terms according to their relevance. On the
downside, these techniques rely on large text corpus to pro-
vide reliable statistical information for extracting and rank-
ing terms accordingly, which may result in low ranks for
infrequent domain relevant terms. On the other hand, graph-
based approaches (Brin and Page 1998; Mihalcea and Tarau
2004) minimise the impact of term frequency during the pro-
cess of term extraction. These approaches are also proved
useful when used in combination with statistical approaches
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for improving the rank of extracted terms (Lossio-Ventura
et al. 2014). Basic idea behind the graph based approaches
is to build a graph from input documents by extracting key
phrases, adding edges whose weights are estimated based on
co-occurrences between the key phrases, and ranking nodes
by using a centrality algorithm. As domain-relevant yet in-
frequent terms are not extracted by statistical methods, how-
ever, domain-relevant yet infrequent co-occurrence relations
also have negative effect on term extraction.

Recent progress in distributional semantic modelling
(DSM) (Turian, Ratinov, and Bengio 2010; Pennington,
Socher, and Manning 2014; Mikolov et al. 2013; Levy,
Goldberg, and Dagan 2015; Cambria et al. 2015) provides
us with powerful tools to address the data sparseness issue
of co-occurrence metric. DSM learns the vector representa-
tion of words, called word embeddings, based on the distri-
bution of their contexts, so that the resultant vector elements
do not directly reflect individual word frequencies nor co-
occurrences. We can use the vectors to measure similarity
between words, which may replace the co-occurrences as
graph edges. As one of most successful DSMs, word2vec
tool (Mikolov et al. 2013), has achieved state-of-the-art per-
formance for many NLP applications, we adopt this tool for
our work on term extraction.

Furthermore, there are a number of efforts (Rospocher et
al. 2012; Vivaldi and Rodrı́guez 2010; Gazendam, Wartena,
and Brussee 2010; Cambria and Hussain 2015) that utilise
external knowledge sources such as ontology and thesaurus,
which include semantic relations (e.g. synonymy, is-a) be-
tween terms, in order to improve the statistical and graph
based approaches of term extraction. These efforts are based
on the assumption that such resources are already available
in given domains, but there is often no such comprehen-
sive knowledge source in a specialised technical domain,
and manually building one is time consuming and labour
intensive.

Alternatively, we propose to utilise term relations embed-
ded in patent documents, which are available for most tech-
nical domains and contain structural information that can be
utilised to extract domain specific terms (Judea, Schütze,
and Brügmann 2014), as follows: As shown in Figure 1,
patent documents often have numbers (or subscripts) that
are preceded by technical terms e.g., compressor 1, where
the terms preceding the same number may have the same or
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Figure 1: Structural information in patent for term extraction

similar meaning. We extract those terms with subscripts and
group those with the same subscript, called term maps. The
terms in the same term map are treated like the terms un-
der the same category in thesaurus and ontology. Note that
the domains of our interests in this paper do not have any
comprehensive thesaurus or ontology.

All together, we present a novel graph-based method of
term extraction, called “Term Ranker”, which utilizes both
word embeddings and term relations from patent structure.
We aim at improving precision of top k terms by minimis-
ing the impact of term frequency during the term extrac-
tion process. The method builds a well connected graph
whose edges’ weights are measured by using the term sim-
ilarity based on word embeddings and merges similar terms
in the graph, where the terms in a term map from patents
are considered similar. It then utilises a graph-based ranking
model (Mihalcea and Tarau 2004) to identify ‘central’ and
its ’neighbouring’ terms in the graph as domain relevant.

We evaluate the performance of Term Ranker against two
sets of domain text corpora: Aerospace domain and informa-
tion technology. The results reveal that Term Ranker as com-
pared to baselines achieves a better performance in terms of
precision@K. In the following section, we describe state of
the art approaches related to term extraction. In Section 3,
we present the proposed term extraction method, and its ex-
periment results in Section 4.

2 Related Work

Current approaches to term extraction mostly rely on fre-
quency based metrics and on the availability of external
knowledge sources. In (Ittoo and Bouma 2013), authors pro-
posed a two stage method for term extraction. First, it uses
a domain-independent corpus (i.e. Wikipedia) in contrast to
a corpus specific to a given domain, in order to assign high
scores to terms that are likely relevant to the given domain.
Second, it ranks multi-word terms based on their colloca-
tional strength to filter out non-relevant terms. This work is
different from our approach as it relies on frequency based
metric for extracting terms.

The authors of (Vivaldi and Rodrı́guez 2010) extracted
Wikipedia categories relevant for a domain of interest and
their associated category pages as candidate terms. How-
ever, such an approach is not suitable for highly specialised
domain e.g., aerospace domain, since Wikipedia does not
cover all terms of highly specialised domains. Other seman-
tic resources (e.g., WordNet) are also used to improve term
extraction. The work of (Zhang, Yoshida, and Tang 2009)
utilized an ontology to improve the precision of term ex-
traction as follows: Given a multi-word term, the method
locates the individual units (or words) of the term in the on-

tology and assigns a higher rank to the term if the individ-
ual units are closer to each other in the ontology hierarchy.
Also, the work of (Rospocher et al. 2012) utilises the Word-
Net to detect synonym terms, which can help in resolving
the impact of frequency on the extraction process by rank-
ing higher a synonym term even though it is ranked lower by
the statistical method. Differently from our approach, these
approaches rely on generic semantic resources that do not
provide good coverage for specialised domains. Addition-
ally, they are based on the assumption that an ontology is
already available for a domain, which is not true for most of
specific domains.

3 Method

Our method “Text Ranker” has the following four main com-
ponents, as illustrated in Figure 2:

• Extraction of single-word and multi-word terms by using
a statistical approach

• Identification of groups of semantically similar terms
(hereafter, referred as TermMap) from patents

• Estimating term similarity based on term embeddings
• Graph refinement and node centrality ranking

This method can be applied for any domains that have
patents or semantic resources like thesaurus available. The
following sections describe more details of each component.

Figure 2: A graph-based re-ranking approach

3.1 Generating term candidates

The first step of term extraction process is corpus pre-
processing, which includes removal of non content bear-
ing text, tokenisation, and lemmatisation (see Section on
domain-specific corpus collection for our evaluation). We
have implemented pre-processing scripts by using regular
expressions to remove undesirable content e.g., symbols, ta-
bles, equations, e-mail addresses. The text is lemmatised us-
ing Stanford NLP software1 to reduce inflectional forms of
a word to a common base form, which helps us measure the
distribution of candidate terms in base forms instead of in-
flected forms (Yarowsky 1994).

1http://nlp.stanford.edu/software/corenlp.shtml
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The second step is to extract terms (single or multi-word)
from pre-processed corpus that characterise and represent
the target domain. We have applied a linguistic filter to find
candidate terms as follows: extracting noun phrases by using
Stanford Parser2 (Klein and Manning 2003) and filtering out
those that are unlikely to be technical terms by using a stop-
words list (i.e. generic words in a language).

The final terminology list produced is validated for their
domain specificity by using the measure of termhood, de-
fined as “the degree that a linguistic unit is related to
domain-specific concepts” (Kageura and Umino 1996). We
use C-value (Frantzi, Ananiadou, and Mima 2000) and TF-
IDF (Salton and McGill 1986), which are termhood mea-
sures to filter and associate weight to terms according to
their relevance for the domain. C-value is a domain indepen-
dent method that favours the extraction of multi-word terms.
It uses frequency f(a) of a term a if it is not included in other
terms (line 1), where |a| indicates the number of words in the
term a. When a term a is part of longer terms, the frequency
of a is reduced by the average frequency of the terms in Ta

as shown in (line 2), where Ta represents the set of terms
that contain the term a.

C − value(a) =

⎧⎪⎨
⎪⎩

log2 (|a| × f(a)) if a is not nested (1)

log2

(
|a| × f(a)−

∑
bεTa

f(b)

|Ta|
)

otherwise (2)

On the other hand, TF-IDF (term frequency-inverse
document frequency) method (Salton and McGill 1986)
computes termhood for both single-word and multi-word
terms. The idea behind TF-IDF is that a term is important
for a document if it has high frequency in this document and
also occurs only in few other documents. Mathematically it
is defined as follows:

tf -idft,d = (1 + log(tft,d))︸ ︷︷ ︸
tf part

∗ log
(
1 +

|D(c)|
|D(c)

t |

)
︸ ︷︷ ︸

idf part

In order to establish relevance of a term (t) to a domain cor-
pus (c), we use the sum of TF-IDF values of the term for all
the documents in the corpus as proposed by (Manning and
Schütze 1999), as follows: tf -idf (c)

t =
∑

∀dεD(c)
t

tf -idft,d

After calculating both termhood values, we normalise
them by their maximum values and linearly combine to com-
pute a final domain score as follows, where α and β are
weights to emphasize C-value(t) or TF -IDF (t):

Score(t, c) = α. C-value(t)
maxtεc(C-value(t)) + β. TF -IDF (t)

maxtεc(TF -IDF (t))

Given a domain corpus c, we compute Score(t, c) for all
extracted terms t and choose k top-scored terms as domain-
relevant candidates. The values of k for our evaluation are
specified in Section 4.

2http://nlp.stanford.edu/software/lex-parser.shtml

Table 1: Term maps from patents in aerospace domain
Nozzle Guide Vane, Guide Vane, Outlet Guide Vane
Stator Vane, Variable Stator Vane
Compressor Shaft, Compressor Blade

3.2 Term Map construction

A patent is a technical document disclosing an invention,
which includes a written description and figures. The text
in a patent contains references to important concepts in-
volved in the invention, as exemplified in Figure 1. Ex-
tracting these terms requires identification of the left and
right boundaries of a term. While the number (or subscript)
marks the right boundary of a term, we use linguistic criteria
(JJ—NN)*(NN) to extract a valid term i.e., detecting the left
boundary of a term.

Patents not only provide a list of technical terms but can
also be used to build a resource of semantically similar
terms. In a patent, terms with the same subscript are often
synonyms or variations of a technical term. Consider Exam-
ple 1, in which the subscripts 42 and 36 associate {outer fan
duct wall adapter, outer wall duct wall adapter} and {box
structure, bifurcation structure}, respectively. We group
such terms to build a term map.

Example 1 “The forward edge of the outer fan duct wall
adapter 42 is sized.....The rearward edge of the outer wall
duct wall adapter 42 is sized to mate ..”

“ The box structure 36 has spaced, substantially par-
allel....so that the edges of the gaps abut the side walls of
the bifurcation structure 36”

Additionally, we merge overlapping term maps to cater
for scenarios, where a term appears in multiple documents
and is grouped with different synonymous terms. When
merging term maps, however, we discard shared terms that
are uni-grams, which often mislead the merging. More ex-
ample term maps extracted from patents in aerospace do-
main are shown in Table 1.

3.3 Term embeddings

As discussed in the Introduction, we use word embeddings
(i.e. vector representation of word) to compute term simi-
larity, which will be used as weights of edges between the
terms in a graph (see Section 3.4). Figure 3(a) depicts re-
lations between terms and their edge weights, even though
these terms did not appear together in text corpus.

Specifically, our word embeddings are learnt using skip-
gram model (Mikolov et al. 2013), which is a neural net-
work model trained to predict local context within a window,
given a centre word. The objective function is to maximize
the following log probability, where k is the size of local
context window, and T total number of word types.

1
T

∑T
t=1

∑
−k≤j≤k,j �=0 log

exp(v′�
c vw)

∑
c′ exp(v

′�
c′ vw)

To obtain such vector representation of multi-word terms
as well as single-word terms (called “term embeddings”),
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we utilise the candidate selection process described in Sec-
tion 3.1 to detect multi-word terms and then convert them
into single tokens before training the neural network of skip-
gram model. Once term embeddings have been learned, we
select top 10 similar terms for each candidate based on co-
sine similarity between term vectors and add edges from the
candidate to the 10 terms in a graph. Namely, the weight of
the edge connecting two term candidates (t1, t2) is defined
as follows:

E(t1, t2) =
vt1 · vt2

|vt1 | · |vt2 |
, where vt1 and vt2 are the term embeddings for term candi-
dates t1 and t2, respectively, and E(t1, t2) is the weight.

3.4 Graph refinement

The objective of graph refinement step is to improve the pre-
cision@k of term extraction process by re-ranking domain
relevant terms to the top of term list. In order to achieve this,
we adapt TextRank, a graph-based ranking model for text
processing (Mihalcea and Tarau 2004), by integrating in-
domain knowledge from patents (see Section 3.2) and term
similarity from term embeddings as edge weights.

Basic idea behind previous graph based approaches is to
build a graph from input documents by extracting all key
phrases, adding edges among them based on co-occurrence
relation, and ranking nodes by using a centrality algo-
rithm (Brin and Page 1998; Mihalcea and Tarau 2004). The
key differences of our approach from the previous ones are
that we use a statistical method to filter top-k terms as the
graph nodes, use term embeddings to give weights to the
edges regardless of the scores from the statistical method,
and use term maps from patents to merge similar terms. Fig-
ure 3 depicts an example graph with the weights from term
embeddings and a revised one with similar terms merged.

Once the term graph is constructed, the next step is to
assign a score to each node. For this purpose, we adopt Tex-
tRank (Mihalcea and Tarau 2004) graph-based ranking algo-
rithm. It uses eigenvector centrality measure and implements
the concept of voting. Eigenvector centrality measures the
centrality of a node based on the importance of its surround-
ing nodes. In detail, when a node links to another node, it
is casting a vote for its neighbour, and the importance of a
node is correlated to the number of such votes. In addition,
a node is considered important if it has a connection to an-
other node with high score. In summary, the score of node is
computed based on the votes it has, the importance of node
casting vote for it, and the edge weights.

Example 2 [Graph generation]: The graph in Figure 3(a)
has weighted edges between nodes that are derived from
term embeddings. In the current state, it has three nodes with
many votes: “Stator Vane, Core Engine, and Combustion
System”, ordered according to number of edges. There are
other relevant nodes that are ranked low because of fewer
connections and low scoring neighbours e.g., “High Pres-
sure Compressor, Creep Resistance, Inlet Air, and Nozzel
Guide Vane.

[Node merging]: We utilise the term maps built from
patent documents e.g., {Compressor Shaft, Compressor

Blade}, {Stator Vane, Variable Stator Vane}, {Nozzle Guide
Vane, Guide Vane, Outlet Guide Vane}. Based on the term
map information, we merge the nodes in the graph, as illus-
trated in Figure 3(b), which creates more ‘central’ nodes.
As a result, the nodes that were ranked low are now con-
nected to more high scoring nodes: For example, “Inlet
Air” and “High Pressure Compressor” are connected to
{Stator Vane, Variable Stator Vane}, and {Nozzle Guide
Vane, Guide Vane, Outlet Guide Vane}, respectively. Fol-
lowing the TextRank algorithm, these nodes will be ranked
higher because of their connection to high scoring nodes.

4 Evaluation

We compare our method with previous solutions for term
extraction including statistical and graph based approaches.
The methods are evaluated in terms of precision@k terms
for the aerospace and information technology domains. We
have used a combination of C-value and TF-IDF termhood
measures as a baseline system (described in Section 3.1) to
extract terms. Our evaluation results show that the proposed
approach improves the precision over the baseline solutions.
We briefly describe the text corpora utilised in our experi-
ments, along with the sources used to build domain specific
knowledge source, in Section 4.1. In Section 4.2, we com-
pare the performance of our approach against the previous
systems.

4.1 Data Sets

Domain-specific corpora This work has been carried out
in very specialised domains of aerospace and information
technology (IT). We have crawled from the Web to build
in-domain text corpora as follows: A set of domain relevant
keywords was created to crawl the web. Web pages match-
ing the search criteria of the keywords are downloaded. The
set of keywords for the aerospace domain is composed of
115 in-domain concepts (e.g., engine nozzle, Aerofoils, For-
eign Object damage). That for the IT domain is composed of
30 keywords (e.g. Computer aided design, Knowledge man-
agement, Model driven development). In order to reduce the
search space and restrict the crawler to our topic of interest
(i.e., jet engine), these keywords were combined with filter-
ing criteria e.g., Jet Engine. Hence, a query passed to the
crawler is the combination of a keyword and the filtering
criteria e.g., “Aerofoils + Jet Engine ”. The crawler down-
loaded 1,300 and 1,500 Web pages for the two domains, re-
spectively.

Patent Set We collected 208 patents related to the jet
engines published by the organisation “X” for building a
knowledge base of semantically equivalent terms. Since the
patents are published by the organisation “X”, this set of
patents will provide good coverage for the documents ex-
tracted with in-domain keywords.

For the second domain, we collected 742 patents using
the same keywords used for crawling text documents. These
patent collected, however, are very diverse in nature due to
the broadness of the domain.

313



(a) Graph with weighted edges from term embeddings

(b) Term map based graph refinement

Figure 3: TermRanker graph refinement

Table 2: Ranked list of terms from the baseline
Terms Score Frequency

Jet engine 0.959 2941
combustion chamber 0.493 1468

high temperature 0.163 452
high speed 0.132 359

overall pressure ratio 0.117 221
fan casing 0.024 66

electronic control unit 0.02 36
hush kit 0.018 47

4.2 Term Ranking & Performance Evaluation

We extracted terms by using the baseline system defined in
Section 3.1. An example term list along with term frequen-
cies and scores from the baseline is illustrated in Table 4.2.
These examples show that the baseline termhood measures
(C-value and TF-IDF) favour terms with high frequencies,
which results in extraction of frequent but non relevant terms
(e.g., high speed). This reliance on frequency not only ham-
pers the precision of the baseline system but also lowers the
rank or even discards domain relevant terms due to their in-
frequent presence in texts e.g., fan casing, electronic control
unit, with frequencies 66, and 36, respectively.

Since evaluating the entire ranked lists is tedious, we
narrowed down the terms to top-k terms. We manually in-
spected the top-500 candidates and, based on our knowl-
edge of the domains, marked them as true positive or false
positive. To ensure the accuracy of our evaluation, we have
verified the marked list with two domain experts. Table 3
presents and compares the results of our proposed method,
the previous systems, including the baseline (i.e. statistical
method) and TextRank (i.e. previous graph-based method),
and our method using the term embeddings, but not using
the patent term maps (labelled as “term embedings”). As it
can be seen from the results, Term Ranker outperformed all
the other systems significantly.

The second column of Table 3 lists results of the Tex-
tRank, which performs significantly poor as compared to
the baseline (first column). The graph based approach is ex-
pected to minimise the impact of frequency on term extrac-
tion by ranking terms according to their relations to other

terms and to the terms that are considered important in a
graph, but it depends on co-occurrence relation between
terms, which is found unreliable due to the data sparse-
ness problem, as discussed in the Introduction. Our analysis
of the results reveals that the majority of the terms ranked
higher by TextRank are uni-grams with significant presence
in text.

In order to mitigate this issue, instead of using co-
occurrences, we have utilised term embeddings to capture
semantic and syntactic similarities among terms. As shown
in the third column, it improves the result over TextRank and
also mostly over the baseline. Note that the improvements
are significant in both domains of aerospace and IT, which
may indicate that the usage of term embeddings are domain
independent and effective in both domains.

The fourth column presents the results of our approach,
which refines the graph built upon the term embeddings by
further incorporating the term maps extracted from patent
documents, which significantly outperforms the baseline.
When comparing our methods with and without the usage of
the term maps from patents, we found that the improvement
of using the term maps is more obvious in the aerospace do-
main than in the IT domain, in which the term maps from
patents are quite diverse and thus may lose their impact on
the re-ranking.

Term Ranker improves the precision@k by reducing the
impact of frequency on the term ranking process and by im-
proving the ranks of terms that are previously penalised by
their insignificant presence in a corpus. Table 4.2 shows such
example terms: For example, the rank of the term electronic
control unit has been improved significantly over the base-
line system, while the ranks of the terms high temperature
and high speed have been lowered.

The term combustion chamber with a high initial rank is
moved down the list because of its fewer term similarity
edges to top-k terms and no connection to a central node in
a graph. In this paper, we focused on term similarity, but did
not consider other semantic relations (e.g. part-of), where
combustion chamber is a part of a top ranked concept jet
engine, which we leave to future work.
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Table 3: Precision Comparison of TermRanker with baseline systems

(a) Aerospace
P@k C-

TFIDF
Text-
Rank

Term-
Embedding

Term-
Ranker

100 0.74 0.47 0.67 0.84
200 0.68 0.39 0.69 0.75
300 0.657 0.41 0.667 0.7
400 0.605 0.41 0.662 0.685
500 0.582 0.448 0.64 0.65

(b) Information System
P@k C-

TFIDF
Text-
Rank

Word-
Embedding

Term-
Ranker

100 0.71 0.43 0.7 0.73
200 0.57 0.32 0.62 0.64
300 0.53 0.29 0.61 0.63
400 0.50 0.34 0.59 0.59
500 0.48 0.42 0.56 0.57

Table 4: Re-ranked term list with Term Ranker
Baseline Rank Current Rank Term

654 6 electronic control unit
1 8 jet engine

458 17 fan casing
790 62 hush kit

2 759 combustion chamber
7 823 high temperature

13 869 high speed

5 Conclusions

A graph based method is proposed to improve the precision
of top-k terms extracted by a statistical method. It utilises
TextRank, a graph-based ranking model, to minimise the
impact of frequency on term extraction by ranking terms
according to their relations to other terms and to the cen-
troids in a graph. The original TextRank algorithm relies on
co-occurrence relation between terms to build graph, which
is affected by frequency of non relevant frequent terms and
also by distance between two relevant words in text. In con-
trast, Term Ranker mitigates this issue by learning vector
representations of term candidates (i.e. term embeddings)
and utilising it to capture similarities along with relation
strength between terms for adding edges between nodes, and
hence building a well connected graph. We capture semanti-
cally similar terms (called term maps) from patents and use
this information to put together semantically similar terms
in a graph, thus increasing the number of central nodes and
improving the rank of infrequent terms.
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