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Abstract 
We have a limited understanding of how an opinion is orig-
inated, how an opinion gets conveyed, and how the commu-
nicated opinion is perceived and processed by others. Extant 
research concerning “opinions” primarily focuses either on 
the conditions and determinants for opinion formation or on 
opinion change induced by external influence. Furthermore, 
existing cognitive/computational models typically address a 
single opinion formation or change process and rarely con-
sider the interplay between these processes. We propose a 
new computational model for opinions that recognizes the 
learning nature of opinion change and the decision-making 
nature of opinion formation: what has been learned through 
internalizing an external influence guides how decisions are 
made to externalizing cognitive processes. The Double 
Transition Model (DTM) represents a networked space of 
reasoning processes providing a computational framework 
of opinions encompassing both formation, change, and their 
continuous interplay. We apply DTMs to a simulated dyad-
ic, multiple episode opinion change and formation problem 
to determine how to best train an advocate to convince oth-
ers regarding an institution’s ranking. 

 Introduction   
What are opinions? A workable definition from Wikipedia 
states: an opinion is a “[… subjective] statement […], i.e. 
based on that which is less than absolutely certain, and is 
the result of emotion or interpretation of facts. […] opinion 
may be the result of a person's perspective, understanding, 
particular feelings, beliefs, and desires.” We further con-
sider opinions to be personal beliefs (Krueger, 1996) – an 
opinion is belief as it is derived rather than recalled; an 
opinion is personal as it can be derived in diverse ways by 
different agents. The continuing interest in opinion mining 
research (e.g., sentiment analysis, etc.) has produced tech-
nologies across domains to elicit individual and group 
opinions. Yet, we are still scratching the surface to under-
stand (cognitively and computationally) how an opinion is 
originated, how an opinion and the information supporting 
and explaining it gets conveyed, and how the communicat-
ed opinion is perceived and processed by others.  

In existing computational models (Weisbuch et al. 2003; 
                                                
Copyright © 2016, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved. 
 

Yildiz et al. 2011), the opinion formation process and opin-
ion change process are studied separately. The area of 
opinion formation focuses on the conditions and determi-
nants for opinion formation (Watts & Dodds 2007) while 
the area of opinion change focuses on identifying internal 
and external (social) influence (Friedkin & Johnsen 2011). 
There is nothing learned from an opinion change process 
besides the opinion value itself and there are no decisions 
being modeled for an opinion formation process besides 
the opinion value itself (Martin et al. 2005).  

Our goal is to develop a computational framework to 
learn one’s cognitive state space by considering one’s per-
ceptions and behaviors. The use of this framework is two-
fold: 1) Infer an individual’s opinion and its change, and be 
able to explain the process; and, 2) Infer group dynamics 
on opinions. The key idea in designing the framework is 
based on the following observation: that of the learning 
nature of opinion change (Kelman 1961) and the decision-
making nature of opinion formation (Clayton 1997). These 
refer to changes in one’s own beliefs or at least supporting 
information when opinion change occurs. In turn, such 
ever-changing beliefs also yield different opinions later for 
the same or similar subject matters. The decision-making 
nature of opinion formation refers to the motivation driving 
a specific opinion. To put it more formally, the interplay of 
opinion change and formation is described as: 1) the inter-
nalization of an external influence (opinion change) guides 
the externalization of internal cognitive processes (opinion 
formation); and, 2) the externalization of an internal cogni-
tive process (opinion formation) becomes external influ-
ents that can in turn influence others’ opinions.  

The key insight to our model is to exploit the interplay 
between opinion change and the opinion formation pro-
cess. The core of our framework is an inter-connected 
knowledge-base of cognitive states. The opinion change 
process would affect the current cognitive state, while the 
opinion formation process can be considered as a “walk” 
through the cognitive states. Such a walk as we shall see 
can be computed from a Markov Decision Process (MDP).   

We present a new probabilistic cognitive model called 
the Double Transition Model (DTM) which is a networked 
space of reasoning processes where each node represents a 
cognitive state with different degrees of query and 
knowledge organization and incompleteness. The output of 
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a reasoning process is an emitting probability representing 
a possible opinion. The edges within a DTM denote how a 
query and knowledge differ between connecting states re-
flecting the influence that leads to opinion change. Edges 
can capture influence both exogenous and endogenous.  

Furthermore, we applied the DTM to simulating a dyad-
ic, multiple episode (multi-pair) opinion change and for-
mation problem where the goal is to train an individual to 
convince others regarding a target opinion. The process of 
training introduces learning episodes through exposure to 
different trainers that affects the trainee’s opinion for-
mation process and their own opinions. This is modeled as 
an MDP using Q-learning (Sutton and Barto 1998). After 
training, the trainee is then set to convincing a population 
of testers on the target opinion. We examine the successful 
consensus rates and number of interaction turns used by 
the trainee. Our results indicate that variations in trainee 
personal beliefs and goals are directly reflected in the ef-
fectiveness of the training process.  

Approach 
We define an opinion change process as the process of 
internalizing one's external influence, and we define an 
opinion formation process to be the process of externaliz-
ing one's internal cognitive processes. We define an opin-
ion formation task as undergoing a series of opinion for-
mation and opinion change processes on one issue in a 
single context. Intuitively, an opinion formation task can 
include situations such as a librarian wanting to suggest a 
good textbook on Artificial Intelligence, congress members 
trying to reach consensus in a debate, or two or more fami-
ly members collaborating on the Christmas gifts to buy. 

A framework that processes a sequence of opinion for-
mation tasks allows us to achieve a better understanding of 
how an external influence gets internalized (opinion 
change), how an internal opinion gets externalized (opinion 
formation), and the interaction between these two process-
es in both short-term (one task) and long-term (sequence of 
tasks) resolutions. To begin with, we can exploit the close 
interplay between formation and change processes within a 
task in order to learn the mechanisms of internalization. 

The challenges of modeling an opinion formation task 
lies in modeling both the learning and decision-making 
aspects within an interactive environment. We recognize 
that the individual performing an opinion formation task is 
essentially engaged in a sequential decision-making prob-
lem with a specific goal in mind. 

It is fairly easy to hypothesize what the external influents 
are by considering the behavior of an individual engaged in 
an opinion formation task. These external influents can 
come in a wide variety of forms such as receiv-
ing/observing an opinion from someone, perceiv-
ing/sensing the environment for evidence, actively seeking 
information, the question itself that asks for opinions, an 

action performed, or behavior (e.g. threats (Carver 1977)), 
punishment and external surveillance (Hoekstra 1995)), 
that can be observed from others. To simplify the problem, 
we concentrate on influents in the form of messages since 
what has been internalized is much less clear as it all hap-
pens within a human brain which, of course, lacks “visibil-
ity”. A variety of social theories have identified that the 
internalization may include the knowledge basis (McGuire 
1968) from which an opinion is formed, a value system 
(Kelman 1961), and sentiment towards others (Robinson et 
al. 2006). To be consistent with our simplification, we con-
centrate on the underlying knowledge base and the reason-
ing process from which an opinion can be derived. 

Our goal here is to develop a knowledge-centric compu-
tational framework that processes sequential opinion for-
mation tasks. Consider an opinion sequence for some indi-
vidual �: �� � ��� ��� �� � �� � ��� ��  where each �� is a 
degree of belief of an opinion over time �. The sequence in 
brackets is a sequence of opinions one has formed within 
the same context on one issue (e.g., one has been reading a 
collection of news articles on a presidential candidate, or 
one is having a heated back and forth discussion on who 
should be the next president). Each bracketed sequence is 
an opinion formation task. Lastly, well-established social 
theories have concluded that assumptions of �� � �� rarely 
holds. In other words, the final opinion formed within an 
interactive environment may not carry over into the next 
task – non-persistence (Pierro et al. 2012).  

Double Transition Model (DTM) 
An individual faces a sequence of different opinion for-
mation tasks ��� ��� ��� ��� �� � each with different subse-
quences of external and internal changes caused by the 
(task-interleaved) actions taken by the individual: 
� ��

�� �� � ��
�� �� � ��

�� �� � ��
�� �� � ��

�� �� � �� � ��
�� � �� � 

where ��
� is the kth action for task j and �� is the individu-

al’s state (knowledge, beliefs, experiences, etc.) after � 
actions taken. The decision process behind task �� is 
��
�� �� � ��

�� �� � ��
�� �� � ��

�� �� . 
A Double Transition Model (DTM) (Figure 1) consists 

of two sub-models: a query transition graph (QTG) and a 
memory transition graph (MTG). Each node in a QTG rep-
resents a single query at a time. Each query is captured 
when an opinion is being requested by someone else. 
Therefore, the creation of a new query is triggered by a 
task while the new creation of a memory is triggered by 
perception. The QTG reflects changes to the query over 
time. As a complement, the MTG embodies the changes in 
the memory of the individual as actions are taken over 
time. At any given time, the states of the QTG + MTG 
determine the answer (opinion) of the individual. Actions 
(internal and external) derived from the decision result in 
transformations in one or both graphs. Thus, the decision 
processes for the tasks is simply the simultaneous (cross-
product) transition “walk” through the QTG and MTG.  
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DTMs are defined as follows: A query is a propositional 

logic statement where the terms are different assignments 
to random variables (rvs) in �, the universe of rvs. The 
space of all possible queries is denoted �. For example, 
“Do you support abortion (r.v. A)?” is represented as query 
� � � ������� � � � ������� . A query transformation 
function (qtf) �� is a function from � to �, e.g., substituting 
assignment � � � with � � � in the query, simplifying by 
adding or removing terms (assignments), and even negat-
ing a clause are possible transformations. Each task �� has 
an associated query space � �� � � �� ��� ��  where 
� ��  is a finite set of queries and �� ��  is a finite set of 
qtfs. Basically, each transformation is a change in the ques-
tion being considered by the individual driven by both in-
ternal and external factors of the individual and his/her 
decisions/actions. For example, transformations include 
changing hypothesis or simplifying a query.  
Def 1. A QTG � is an undirected graph ����� , where 
�� is a finite subset of � ���  and ��

�
���

�
� �� only if 

�� ��
�
� ��

� for some �� � �� ��  and �. 
The representation of a query can simply be a vector 

such as �� � � � ���� ��  where a numeric value represents 
either a category or a discretized number for a feature of an 
entity (instead of a proposition), a question mark represents 
unknown value for a feature, and � represents the target 
feature of an entity. For example, one may ask another for 
opinions about a university: “This school has tuition 
around $42,000, yearly enrollment around 11,000 and an 
acceptance rate around 7.7%, do you think this is a tier 1 
school?” The other features that are not included in an in-
quiry are treated as unknown, and the targeted feature is 
the rank of the school. In Figure 1, unknown features are 
represented by white rectangles, known features are grey 
rectangles, and targeted features are black. 

Let � be the space of probabilistic networks over � 
which form the underlying knowledge/memory of the indi-

vidual in each cognitive space that can be defined on �. A 
memory transformation function (mtf) ��is a function from 
� to � which represents how memory changes. It could be 
a simple factual change to more sophisticated changes in-
troducing new linkages and re-arrangement of existing 
correlations. For example, a person may need to make de-
cisions under time pressure so must rely on heuristics such 
as recent experience instead of time-consuming, fully de-
tailed analysis (see (Yu 2013) for mechanisms to represent 
changes in reasoning heuristics in terms of memory transi-
tions). This is a transformation where recent memory and 
knowledge is emphasized by biasing the underlying proba-
bility distribution as reflected in the probabilistic network. 
Let � � ����  be the memory space where � is a finite 
set of probabilistic networks and �� is a finite set of mtfs 
operating on �. 
Def 2. A MTG � is an undirected graph ����� where 
�� is a finite set from � and ��

����
� � �� only if 

�� ��
�

� ��
� for some �� � ��. 

With the formulations of both query transition graphs 
and memory transition graphs as the basis for transfor-
mations, we combine them to form DTMs as follows: 
Def 3. A DTM � induced by QTG � and MTG � is the 
undirected graph �����  where �� � ����� and there 
is an edge between ��� � ��

�
���

�  and ��� � ��
�
���

�  if 
and only if (1) ��

�
� ��

� or ��
�
���

�
� �� and (2) 

��
�
� ��

� or ������� � ��.  
DTMs allow for probabilistic reasoning and can interact 

with other DTMs. Thus, the nodes in the MTG and QTG 
represent such networks and inferences to be computed, 
respectively. As we shall see, certain DTMs for opinion 
change can be mapped to Markov Decision Processes 
(MDPs) which allows the ordering and selection of deci-
sions and actions to be learned through Reinforcement 
Learning (RL) (Sutton and Barto 1998). This ordering is 
critical because changes to the environment and individu-
als can have different effects with different orderings.  

Representing Opinion Change and Formation 
A DTM can be used to compute an opinion given the tar-
get/current cognitive state, but why does a state change 
happen and why are new states constructed? Consider the 
space of all possible cognitive states arising from any/all 
mappings from perceptions (incl. biases, acceptance, expe-
rience, etc.) and tasks (incl. query variants, miscommuni-
cation, interactions, etc.) into a cognitive state. The cogni-
tive state can also reflect any number of opinion inferences 
using different reasoning style such as heuristics. As such, 
a DTM is constructed from this space and represents a par-
ticular instance/individual. From this point of view, to an-
swer our question about why (and how) DTM’s are dy-
namically formed goes directly to our recognition of the 
learning nature of opinion change and the decision-making 

Figure 1. DTM + RL 
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nature of opinion formation. The former occurs as we are 
dynamically building each DTM while the latter as we are 
choosing the transitions to take. Together, the decision 
processes is simply the simultaneous (cross-product) tran-
sition “walk” through the QTG and MTG.  

Figure 1 also demonstrates how a DTM functions in a 
dynamic environment. As shown in the sequence on the 
top of the figure, �� to �� are perceived learning episodes in 
three consecutive steps corresponding to tasks �� to ��. 
Tasks �� and �� are opinion formation tasks: For example, 
in ��, an external individual asks for an opinion on query 
��. The DTM then forms an opinion �� and sends it out. In 
the task sequence shown at the top of the figure, the non-
black rectangles are received information including percep-
tions (represented by learning episodes) and task infor-
mation (represented as queries and external opinions, e.g. 
��). The black rectangles are outgoing messages. We con-
sider �� to be a non-episodic opinion formation task as it 
does not maintain an interactive session with the individual 
who asks for opinions. In real-world problems, asking a 
librarian's opinion can be considered a non-episodic opin-
ion formation task where the individual tends to be the 
domain expert. Non-episodic opinion formation tasks are 
common also when the problem itself is not controversial.  

Lastly, �� is an episodic opinion formation task. Unfor-
tunately, determining both the cognitive state currently in 
use and the likely transition (and potential construction) to 
another cognitive state cannot be derived solely from a 
DTM as we mentioned above. To model episodic opinion 
formation tasks, we further classify such a task with re-
gards to whom an individual interacts with: A non-dynamic 
one-to-one episodic opinion formation task focuses on how 
to choose an action to fulfill his goal whereas his interlocu-
tor also has a particular goal to fulfill. A goal can simply 
be reaching opinion consensus, changing the other's opin-
ion, or do not care. A dynamic one-to-one episodic opinion 
formation task is that an individual engages in an opinion 
formation task with different people one at a time. 

Given that we can define goals and actions based on a 
space of possible episodic opinion formation tasks, the 
DTM state graph, opinion emission, actions, and goals 
form the components underlying a sequential decision-
making process, thus accounting for both the learning na-
ture of opinion change and the decision-making nature of 
opinion formation. We can then solve an episodic opinion 
formation task by defining it as a Markov decision problem 
(MDP): At each time step, determine what is the best ac-
tion to take to accomplish one's goal – e.g., a goal function 
that considers two aspects: 1) minimizing the gap between 
two players' opinions for next time step (both captured as 
DTMs), and 2) minimizing the change between his own 
opinions between two steps. It is very important to empha-
size here that an episodic opinion formation task subsumes 
a non-episodic opinion formation task by defining a finite-
horizon MDP with the horizon equal to one. This is a sim-
ple yet powerful generalization so that the episodic and 

non-episodic tasks can be modeled as MDPs. Given that 
each individual is unlikely to have perfect knowledge of 
another’s DTM, if training experience is available, a Q-
learning method can improve an agent's strategy by repeti-
tively participating in episodic opinion formation tasks. 
Thus, our framework handles dynamic opinion formation 
tasks that consist of a sequence of opinion formation and 
change with external influences from multiple sources.  

A Dyadic, Multiple Episodes Model 

We now describe a decision problem in an episodic opin-
ion formation task between two people as follows: 

Two agents, �� and ��, are exchanging influents with 
each other guided by their respective goals. At each 
time step, agent �� needs to decide an action to take. 

The goal for agent �� can be specified as 
���
����

�� ��
��� � ��

� � �� ��
��� � ��

���
� � 

where ��
� is the opinion for agent �� at time �, � � �, and 

�� � �� � ���  are control parameters. The first term repre-
sents the degree of opinion change from time � to � � � for 
�� while the second term represents the gap in the two 
agents' opinions at time � � �. Replacing ��

� by ��
� where 

� � � or � � � directly reflects the desire to revert to their 
original or an earlier opinion. The two goals cover the two 
ways to reduce the gap between two agents: one by moving 
��'s opinion towards ��'s and vice versa. Parameters �� and 
�� denote values on a malleability-idealism scale from 0 to 
1 representing an agent's willingness to change its own 
opinion; while parameters �� and �� are on a passivity-
activism scale from 0 to 1 representing an agent's eager-
ness for reaching a consensus. The higher the malleability-
idealism score is, the more idealistic an agent is (i.e., more 
unwilling to change its opinion). The higher the passivity-
activism score is, the more active an agent is (i.e., more 
eager to reach a consensus). Each goal assesses how desir-
able each transition between states is for an agent.  

Now consider the following hypothetical problem: 
Problem Setting: We want to train advocates at Dartmouth Col-

lege to be proficient at convincing others to believe it is a great 
university. We have materials about different universities, but 
unfortunately cannot recruit too many people to practice with 
that have a wide variety of beliefs and behaviors. 

Target Questions: What type of advocate is best? How critical is 
representative training? 

For this problem, “convincing” is when consensus is 
reached between the advocate and the current target indi-
vidual. This is focused on situations where consensus is 
actively sought for but individuals may differ in the way to 
reach consensus. We collected and pre-processed the U.S. 
News 2013 College Ranking Data which contains nine 
attributes we mapped to 0 or 1 (Table 1 and Table 2). 

Each university feature vector represents one piece of 
knowledge to be included or removed from memory – a 
single learning episode. Each learning episode (Table 2) is 
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directly encoded as a single Bayesian Knowledge-Base 
(BKB) fragment (see   

Figure 2). For this problem, each node in the MTG is 
simply a fusion of the BKB fragments (Santos et al., 2011) 
for each learning episode currently included, and an opin-
ion probability is computed using the target query as evi-
dence. Thus, we can determine the target opinion ‘X’ by 
reasoning over the fused BKB at each node in the MTG 
with evidence set based on the target query vector (in Ta-
ble 2, attributes 2 and 9). 

Table 1. U.S. News 2013 College Ranking Data Attributes 
# Feature Criteria for Value of 1 
1 Ranking ≥ 100 
2 Tuition ≥ $25,000 
3 Enrollment ≥ 20,000 
4 Accept ratio ≥ 35% 
5 Avg freshman retention ≥ 86% 
6 6-yr graduation rate ≥ 71% 
7 Classes < 20 ≥ 47% 

8+9 SAT/ACT 25th-75th % (low+high) ≥ 1,010 

Table 2. University and query feature vector samples. ‘X’ is the 
target opinion and ‘?’ is an unknown feature value 

Dartmouth 0 1 0 0 1 1 0 1 1 
UCLA 0 0 1 0 1 1 1 1 1 

Columbia 0 1 1 0 1 1 1 1 1 
GaTech 0 0 1 1 1 1 0 1 1 

Stevens IT 1 1 0 1 1 1 0 1 1 
WPI 1 1 0 1 1 1 1 1 1 

Query X 1 ? ? ? ? ? ? 1 

  
Figure 2. BKB fragment for learning episode {?,?,1,0} 

We examine two goal profiles for trainees: Idealistic-
Active (IA) profile (�� � � and �� � �) and Malleable-
Active (MA) profile (�� � � and �� � �). As both agents' 
opinions are used in evaluating the goal, each state at a 
time step needs to include both agents' opinions. In order to 
transition from one state to a desired state according to the 
goal, every agent needs to decide on the actions to take. 
We simplify the problem in that each external influent con-
tains one message (corresponding to a learning episode). 
Therefore, we construct a DTM with two states connected 
only if the difference between them is one learning epi-
sode. For our problem, the 5 schools (excl. Dartmouth) 
define 32 possible cognitive states (nodes) for the MTG. 
The QTG for this problem is relatively simple as the query 
is fixed throughout the simulation. 

Based on our ideas above, we consider 7 possible actions 
for each agent: (1+2) intadd(�) & intremove(�) –internal 
action to add/remove learning episode � from considera-
tion; (3+4) pasadd(�� �) & pasremove(�� �) – add/remove � 
from own memory as suggested by agent �; (5+6) actadd(�) 
& actremove(�� �) – suggest to agent � to add/remove � 

from their consideration; and, (7) donothing. Each action 
defines the transition in the MTG appropriately. 

We consider a range of trainers and testers to cover indi-
viduals with different backgrounds the trainee might en-
counter. Trainers practice with the trainee in order for the 
trainee to learn (Q-learning with �-greedy(0.05) behavior 
style) their decision-making process whereas testers are 
those the trainees must aim to convince that Dartmouth 
College is a Tier 1 ranked university. We generated 18 
different types who differ in both goal profiles �� �  from 
{(1,1), (0,1), (0,0), (1,0), (.75,.25), (25,.75)} and their be-
havioral styles {pureGreedy, �-greedy(0.05), and �-
softmax(1.0)} (Sutton & Barto 1998) which determines 
their action choices with regards to their goal. Each trainee 
starts with some knowledge basis for their initial opinion – 
i.e., one out of the 32 possible university sets. This is also 
the same for each trainer/tester. 

We consider two forms of dynamic opinion formation 
tasks – tasks where a trainee interacts with the same type 
of trainer (or a tester) and tasks where a trainee interacts 
with trainers (or testers) of different types. Every dynamic 
opinion formation task (also called one behavioral run) has 
1000 episodic opinion formation tasks. Within a dynamic 
opinion formation task, the trainee may keep changing its 
opinion by interacting with trainers (or testers) in a sequen-
tial manner. If a pair of individuals do not reach consensus, 
we terminate their discussions after ten rounds of interac-
tions and the trainee then continues to the next one in the 
queue. The initial opinion is randomly generated for the 
trainer (or a tester) in each opinion formation task. Within 
one behavioral run, a trainee may talk to agents of different 
types. For example, a trainee talks to pureIA-style agents 
for 500 times and talks to pureIP-style agents for 500 
times. For our testbed, we randomly generated nine com-
posite behavioral runs from the 18 types above. We con-
ducted simulations for all pairs of trainee-trainer and pairs 
of trainee-tester. In total, we have ~140k behavioral runs.  

The trainee is given the opportunity to initially determine 
what schools the trainer/tester considers to be top schools 
before beginning their discussion. This corresponds to the 
trainee knowing the DTM of the trainer/tester, and choice 
of actions is constrained when communication actions are 
employed, e.g., an agent cannot pasremove a learning epi-
sode � unless the other agent actremove �. 

At any given time, the state of the environment in a 
trainee-trainer or trainee-tester interaction consists of the 
current nodes for the trainee and trainer DTMs plus the 
specific learning episodes communicated (if any). Howev-
er, the trainee is not likely to have transition probabilities 
between states since this is in essence an on-line learning 
situation. Still, we have sufficient elements to apply Q-
learning methods to learn the best policy (i.e., what action 
to choose in a given state) for our trainee. We assume 
trainers/testers always make the greedy choice of actions 
with respect to the trainee’s action to achieve their goal.  

������������

����

��� ���

�	��	
 �	�

�	


�	
 �	
 �	

�	
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Simulation Results 
For the question, “What type of advocate is best?”, we use 
consensus rate and number of turns to measure success at 
reaching consensus in each behavioral run. For the second 
question regarding representativeness, we ran simulations 
where the trainers were representative of the testers and 
cases where they were not. We compute consensus rate as 
the % of opinion formation tasks that result in consensus 
out of 1000 tasks in total. We compute an averaged num-
ber of turns to measure the speed of consensus within each 
behavioral run. As an opinion formation task terminates 
after 10 rounds of interactions, the upperbound of an aver-
aged number of turns is 10. The remaining parameters for 
Q-learning are {Discount=0.5, Step size=0.1, � termina-
tion=0.005, � illegal action=-100}.  Table 3 compares the-
se two performance metrics for trainees with different goal 
profiles. Trainees with MA-style significantly outperforms 
IA-style trainees for both performance metrics. 

 
Even though trainees with MA-style perform better than 

IA-style trainees when representative training was re-
ceived, the results from non-representative (improper) 
training tell a slightly different story. IA-style trainees on 
average (��� � �����, ��� � �����) significantly take 
fewer turns to reach consensus compared to MA-style 
trainees (��� � �����, ��� � �����) with � � ���� � ��. 
Despite the fact that MA-style trainees perform well when 
the type of training they receive matches well with the test-
ing situation, IA-style trainees perform better at convincing 
unexpected types of testers. The results suggest that the 
performance observed in training is not representative of 
later performance. Thus, if sufficient training can be pro-
vided, MA-style trainees are preferred as they achieve bet-
ter performance compared to IA-style trainees. On the oth-
er hand, IA-style trainees are preferred if sufficient training 
cannot be provided. This indicates the importance of repre-
sentative training. 

Conclusion 
We have developed a probabilistic cognitive framework 
that can bridge the artificial gap between opinion formation 
and opinion change processes in current computational 
models. Our simulation results highlight how learning dur-
ing opinion change may impact the upcoming decisions 
during opinion formation. Numerous areas of future work 
should be explored including more detailed studies on 
opinion stability, alternative opinion inferencing (heuris-
tics), efficient algorithmic development, and larger scale 

simulations and human subject studies, such as in agent-
human negotiations (Lin et al., 2014). 
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Mean Stddev Mean Stddev
MA-style 0.775 0.058 1.428 1.058
IA-style 0.503 0.098 3.441 7.742

p= 2.75E-162 p= 1.84E-157

Consensus Rate # of Turns
Representative Training

Table 3. Results of representative training 
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