
Automatic Classification of Poetry by Meter and Rhyme

Chris Tanasescu,∗ Bryan Paget, and Diana Inkpen
University of Ottawa

800 King Edward Ave.
Ottawa ON Canada, K1N 6N5

Abstract

In this paper, we focus on large scale poetry classifica-
tion by meter. We repurposed an open source poetry
scanning program (the Scandroid by Charles O. Hart-
man) as a feature extractor. Our machine learning ex-
periments show a useful ability to classify poems by
poetic meter. We also made our own rhyme detector
using the Carnegie Melon University Pronouncing Dic-
tionary as our primary source of pronunciation informa-
tion. Future work will involve classifying rhyme and
assembling a graph (or graphs) as part of the Graph
Poem Project depicting the interconnected nature of po-
etry across history, geography, genre, etc.

Introduction
The huge amount of data available in the digital age has at-
tracted the attention of major scholars and has developed
into its own research paradigm. There is no consensus as
to when data are large or complex enough to qualify as the
object of data-intensive research, especially since huge or
massive may mean completely different things in different
fields and disciplines, but Levallois, Steinmetz, and Wouters
advance a relevant and potentially useful definition: “data-
intensive research [is] research that requires radical changes
in the discipline” involving “new, possibly more standard-
ized and technology-intensive ways to store, annotate, and
share data,” a concept that therefore “may point toward quite
different research practices and computational tools” (Lev-
alois, Steinmetz, and Wouters 2012). This paper introduces
our endeavour to redefine the scholarly approach to poetry
analysis by applying data-intensive research methods and
eventually mathematical graph theory.

The earliest stages of the Graph Poem Project (MAR-
GENTO 2015) resulted in the publication of a bulky collec-
tion of poems entitled Nomadosophy (MARGENTO 2012),
subtitled “a graph poem”. The author of this collection as-
sembled the graphs “manually” by identifying and connect-
ing the related poems himself, while also writing poems of
his own inspired by this very process.

The goal of our work is to create computational tools
necessary for identification and analysis of specific features

∗(Margento)
Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

in large collections of written poetry, such as meter, stan-
zaic patterns, verse forms, sonic devices (rhyme, allitera-
tion, euphonious characteristics in general), and style (dic-
tion, tropes, syntax and anatomy of line breaks and enjamb-
ments).

The purpose of the Graph Poem is to augment the study
of poetry. A poet’s oeuvre, a poetry school’s publications, or
all of the poetry ever published by a journal can be thus rep-
resented as graphs. Then by studying the features of those
graphs (connectivity, cliques, cut edges or cut vertices, etc.),
a number of relevant conclusions can be drawn about that
particular oeuvre/corpus/database or school/period. Such
conclusions can then be measured against the established lit-
erary criticism.

We will now discuss the groundwork that has been done
for the Graph Poem. The graph needs features to quantify
and qualify the relationships between poems.

We decided that the poetic meter was a fundamental fea-
ture of a poem, followed by line structure and use of rhyme.
The rest of this paper introduces our efforts to extract met-
rical related features from raw text and our initial classifi-
cation experiments. We also present early experiments in
rhyme detection in a later section.

Iambic pentameter is the most common meter used in En-
glish poetry. In its pure, traditional form, it consists of five
pairs (feet) of alternating unstressed and stressed syllables,
in that order. Variations are commonly used by poets inten-
tionally for a myriad of emotional, sensual and interpretive
effects. Common variations include reversal of the order-
ing of the first foot (stressed and unstressed) and a feminine
ending (adding an extra unstressed syllable to the last foot as
in “To be, or not to be: that is the question”, where the last
foot has three syllables, unstressed, stressed and unstressed).
There are of course many other variations, therefore identi-
fying iambic pentameter is not a straightforward task, as ex-
ceptions are the rule. We used a binary notation for scansion
(the act of scanning a line of poetry to determine its rhythm);
a “0” for an unstressed syllable and a “1” for a stressed syl-
lable. Therefore an iambic foot was represented by a “01”.

We experimented with different classifiers and discovered
that J48 with bootstrap aggregating provided the most accu-
rate results (Frank et al. 2009). Briefly, J48 is an open source
and updated implementation (written in Java) of C4.5 (writ-
ten in C, also open source but superseded by only the par-



tially open source C5.0) by Ross Quinlan. These algorithms
belong to a class of decision tree algorithms that utilize the
concept of information entropy when creating new branches
(Quinlan 2013).

Related Work
Computational analyses of small, manually labeled corpora
of poetry have been conducted before, notably by Malcolm
Hayward (Hayward 1991). In 1991, Hayward published a
paper on a connectionist constraint satisfaction model based
on a parallel distributed processing model by McClelland
and Rumelhat for analyzing the metrical features of poetry.
He was motivated by traditional metrical analytic methods’
inability to account for interactions between all aspects of
a poem and their overall effect on prosody during read-
ing performances. To improve analysis of iambic verse,
he manually labeled each syllable in the opening line of
Wordsworth’s “Tintern Abbey” with the likelihood of stress
(what he called activation) according to intonation, lexical
stress, prosodic devices, syntactic patterns and interpretive
emphasis.

Hayward divided the integral of activation in the soft po-
sition by the integral of activation in the hard position to
measure metrical regularity in iambic verse. Ratios close to
0 indicated a more regular iambic verse while ratios that ap-
proached 1 indicated a less regular use of iambic pentameter
(or none at all) (Hayward 1991).

Convinced that this model could be used to uncover indi-
vidual poet’s unique metrical style, in 1996 Hayward pub-
lished a follow up paper comparing 10 poets’ treatment of
iambic verse and was able to fingerprint them and determine
their period of writing (Hayward 1996).

While sophisticated, Hayward’s approach can not scale
as it relies on hand annotated data. Additionally, Hayward
analyzed only 1000 lines of poetry and it is unknown how
well his model will generalize for different corpora.

More recently, researchers in the digital humanities have
begun working with much larger datasets. Algee-Hewitt,
Heuser, et al. from the Stanford Literary Lab performed
data intensive poetry analysis via the Trans-Historical Lit-
erary Project. As of this writing they have not published a
paper, however an abstract of their work is available from
dharchive.org (Algee-Hewitt et al. 2014) and their source
code is available on Heuser’s github page (Heuser 2015).

According to their presentation notes (available on
github), their parser was able to correctly divide words into
syllables with an accuracy of 88%. They were also able to
correctly classify a sample of 205 poems as either binary or
ternary footed and according to the location of the stressed
syllable in the feet (either first or last position) with an accu-
racy of 99%.

As we will show in later sections, our scansion tool may
be more useful for poetry analysis than the Stanford Literary
Lab’s parser.

Methodology
Text classification requires that text be represented as vec-
tors of statistical features (see Figure 1).

Feature (%) Data Type
hard rhyme Float
soft rhyme Float
slant rhyme Float
eye rhyme Float
unknown rhyme Float
couplet (AABB) Float
cross (ABAB) Float
envelope (ABBA) Float
iamb Float
spondee Float
trochee Float
pyrrhus Float
anapest Float
dactyl Float
amphibrach Float

Example (Sonnet 133)
0.285714285714
0.0
0.214285714286
0.0
0.5
0.0714285714286
0.142857142857
0.0
0.571428571429
0.128571428571
0.142857142857
0.114285714286
0.0142857142857
0.0142857142857
0.142857142857

Figure 1: Truncated feature vector (due to space)

Word: ‘‘meter’’
Entry: ‘‘M IY1 T ER0’’

M ‘‘m’’ sound.
IY1 as in ‘‘bee’’; the ‘‘1’’ denotes lexical

stress activation.
T ‘‘t’’ sound.
ER0 as in ‘‘her’’; the ‘‘0’’ denotes a lack

of lexical stress.

Note: only vowel sounds include lexical stress information.

Figure 2: Example from CMU Pronouncing Dictionary

For the purpose of poetry classification we were interested
in prosodic (the rhythm of the poem) and phonetic (the pro-
nunciation of words) features. These two classes of features
were used to identify poetic meter and rhyme. Rhyme de-
tection is a work in progress; for more information see the
future work section.

We originally used the Carnegie Melon University’s Pro-
nouncing Dictionary (cmudict) to determine phonetic stress.
The cmudict contains entries for over 134,000 words and
their pronunciations.

The cmudict’s embedded stress information left a lot to
be desired. Other researchers have expressed dissatisfaction
with the cmudict as well (Greene, Bodrumlu, and Knight
2010). Specifically, the cmudict was not helpful if a word
was not already in the dictionary and most importantly, as
a dictionary it could not take into consideration the variable
nature of English prosody. See Figure 2 for an example en-
try.

To improve accuracy of lexical stress detection, we reused
code from the Scandroid by Charles O. Hartman (Hartman
2004). While the cmudict relies entirely on its dictionary,
the Scandroid uses a rule based algorithm to determine stress
and consults its own dictionary for words known to be ex-
ceptions. We modified the original Python source code, en-
abling the Scandroid to scan arbitrarily large collections of
poems and migrated most of its functions into our own com-
mand line Python scripts.

The Scandroid parses words into syllables and then fol-
lows a set of rules to guess which syllables were stressed
and which were unstressed. The Scandroid contains a dictio-
nary of a few hundred words which introduce ambiguity into



1. The number of lines in the poem.
2. The average number of metrical feet per line

and the standard deviation.
3. The count of each type of foot (iamb,

spondee, trochee, pyrrhus, anapest,
dactyl, amphibrach, tribrach, bacchius,
antibacchius, cretic, molossus).

4. The maximum number of feet of the same type
in a row.

5. The number of times the foot changed from
one type to another throughout the poem.

Figure 3: Features used to classify poems by meter

rule based pronunciation — such as ”reach” and ”react” —
and most monosyllabic pronouns, conjunctions and preposi-
tions. It also has a method for grouping stresses together into
feet. Grammatical words, such as monosyllabic prepositions
and pronouns are considered soft by default. The Scandroid
assigns a strong stress to all monosyllabic words not found
in the dictionary.

Hartman built the Scandroid’s syllable division system on
earlier work done by Paul Holzer (Holzer 1986). Stressed
syllables are determined using a method developed by Bern-
stein and Nessly known as Nessly’s Default (Bernstein and
Nessly 1981). Nessly’s Default assumes that most disyllabic
words have the stress in the first of the two syllable posi-
tions. Briefly, when the Scandroid scans a poem, two algo-
rithms are deployed and the one producing the most regular
scansion with the lowest complexity is chosen over the other
(Hartman 2005). The first algorithm — Corral the Weird —
checks for abnormal line endings and determines metricality
by excluding them. The second algorithm — Maximize the
Normal — searches for the longest run of iambic feet.

We worked mainly with poetry from the poetryfounda-
tion.org with some additional sonnets from sonnets.org. We
chose these two sources because their corpora were already
labeled and the former provided us with a well rounded —
in terms of verse form — selection of poetry from the 16th
century onward, including sonnets and free verse. We em-
ployed a machine learning technique called bootstrap aggre-
gating (also known as bagging) (Breiman 1996), which is a
meta-algorithm that can greatly improve decision tree accu-
racy. The decision tree algorithm used for this paper was
J48, as part of Weka. Bagging creates multiple training sub-
sets of the original training set by uniformly sampling with
replacement. Multiple decision trees are made on each sub-
set. The trees are then combined to make a more accurate
tree (Witten, Frank, and Hall 2011).

Experiments and Results for Meter
Classification

Scansion results for “Sonnet 133” by William Shakespeare
will be displayed first as an example, followed by classifica-
tion results from our corpus. “Sonnet 133” was chosen ran-
domly from a selection of sonnets by various poets. A son-
net is a traditional verse form usually written in iambic pen-
tameter and usually following a rhyming scheme (see Figure
4).

Beshrew that heart that makes my heart to groan
For that deep wound it gives my friend and me:
Is’t not enough to torture me alone,
But slave to slavery my sweet’st friend must be?
Me from myself thy cruel eye hath taken,
And my next self thou harder hast engrossed;
Of him, myself, and thee I am forsaken,
A torment thrice threefold thus to be crossed.
Prison my heart in thy steel bosom’s ward,
But then my friend’s heart let my poor heart bail;
Whoe’er keeps me, let my heart be his guard:
Thou canst not then use rigour in my jail.
And yet thou wilt; for I, being pent in thee,
Perforce am thine, and all that is in me.

Figure 4: Sonnet 133 by William Shakespeare (1564-1616)

Foot Type Binary Composition
Iamb 01 59.2%
Spondee 11 12.7%
Trochee 10 8.5%
Pyrrhus 00 12.7%
Anapest 001 1.4%
Dactyl 100 1.4%
Amphibrach 010 1.4%
Tribrach 000 0.0%
Bacchius 011 0.0%
Antibacchius 110 0.0%
Cretic 101 0.0%
Molossus 111 2.8%

Average number of feet per line: 5.07
Longest run of a single foot: 4
Percentage of foot changes 49.30%

Figure 5: Metrical breakdown of Sonnet 133

We used a Python script to compare the scansions of Son-
net 133 produced by the Scandroid and the Stanford Lit-
erary lab with one manually generated scansion produced
by one of the authors (see Figures 6, 7, 8, 9, 10 and 11).
Dropped and inserted syllables were taken into considera-
tion by a fail-safe which avoided underestimating similarity
due to frame-shifting (where the whole line is considered
different due to a missing or added character). The follow-
ing results relate to Sonnet 133.

We also randomly selected 41 poems and compared the
average similarity between the Scandroid and Stanford scan-
sions was 63.70%. We found a 50.87% similarity between
the Scandroid and cmudict scansions, and a 37.91% similar-
ity between the Stanford and cmudict scansions.

We also made a comparison with the double zeros in the
Stanford scansion replaced with single zeros, in which case
there was an 81.48% similarity for “Sonnet 133” and a sim-
ilarity of 83.55% for the 41 scansions overall.

We will now discuss classification results. With J48 and
bootstrap aggregating, we were able to achieve a 94.39%
success rate of correctly classifying poetry as metrical or
not (see Figure 11). We compared these results with the
results from two simple baseline algorithms, ZeroR (which
uses class frequency to predict the majority class) and OneR



Similarity with Manual Scansion
Scandroid 90.55%
Stanford 67.78%

Similarity between Scandroid and Stanford
68.07 %

Figure 6: Comparison of scansions of Sonnet 133

Original Digitized
01 01 01 01 01 01 01 01 01 01
00 11 01 01 0+ 00 11 01 01 01
0+ 01 01 0+ 0/+ 01 01 01 01 011
01 01 00 0/1 -1 01 01 00 011 11
+0 01 0-1 01 0 10 01 011 01 0
00 /+1 01 0+ 01 00 111 01 01 01
0+ 01 0+ 0+ 01 0 01 01 01 01 01 0
01 01 -+ /0 01 01 01 11 10 01
10 01 00 11 01 10 01 00 11 01
0+ 01 11 01 11 01 01 11 01 11
001 01 01 001 001 01 01 001
01 /+ 11 0+ 01 01 11 11 01 01
0+ 01 0+ 001 0+ 01 01 01 001 01
01 0+ 0+ 01 0+ 00 01 01 01 01

1 represents lexical stress and 0 represents a lack of it. +
denotes a promoted half-stress, / denotes an ordinary half-
stress and - denotes a demoted half-stress. The digitized
scansion was achieved by changing the half stresses to 1.

Figure 7: Manual scansion of Sonnet 133

(a one level decision tree) (Witten, Frank, and Hall 2011).
ZeroR classified these data with an 82.53% success rate, and
92.10% with OneR. These results were attained with a train-
ing dataset consisting of 871 metrical poems and 4115 non
metrical poems. The class imbalance was representative of
the relative scarcity of metered poetry when compared to the
abundance of non metered poetry. We used 10-fold cross-
validation.

We also trained additional classifiers with two balanced
datasets derived from the original by undersampling the non
metrical class (to create a balanced dataset with 871 of each
class) and oversampling the metrical class by 400% us-
ing SMOTE (Synthetic Minority Over-sampling TEchnique)
which resulted in a dataset with 4355 metrical poems and
4115 non metrical poems. SMOTE is an algorithm that cre-
ates synthetic data by examining similar data — determined
by proximity in Cartesian space — from the minority class
(Chawla et al. 2002). A separate test set was used to compare
these two classifiers with the original classifier (which was
also retrained on data that was free from the test instances).
The test dataset consisted of 42 metrical poems and 207 non
metrical poems. The three training sets produced classifiers
that were accurate to within 1% of each other.

Early Experiment on Rhyme Detection
Work done for meter detection led naturally to methods for
rhyme detection. For rhyme classification we considered
only rhymes located at the end of each line in the poem, oth-
erwise known as terminal rhymes. From this we were also
able to identify couplet (AABB), cross (ABAB) and enve-

Similarity
Scandroid & Stanford 63.70%
Scandroid & cmudict 50.87%
Stanford & cmudict 37.91%

Figure 8: Comparison within sample of 41 Poems

The Scandroid cmudict
10 01 01 01 01 ?11111111
01 11 01 01 00 1111111101
11 01 01 00 01 11101110101
01 01 00 01 100 11110011?111
00 01 01 10 10 11211101110
00 11 01 01 01 0111110101
00 01 01 01 010 11210111010
01 01 10 10 01 0121121111
10 01 01 11 01 101101110111
01 01 11 01 11 1111111111
10 10 10 11 01 ?011111111
01 11 11 00 01 1?111?011
01 01 001 01 01 01111110101
10 01 01 01 00 0111011101

Note: our code does not yet implement the promoted stress
algorithm as in the original Scandroid by Hartman.

Figure 9: Scansion comparison: The Scandroid and cmudict

lope (ABBA) terminal rhyme schemes. Issues arose when
trying to identify possible rhyming pairs. Rhymes come in
many varieties and poets often use the fact that words can
be made to rhyme by playing with their pronunciation, so
we had to design a flexible and inclusive way of classifying
them.

A rhyme has at least two components, the last stressed
(sometimes unstressed) vowel and all letters following that
vowel. Rhyming pairs can therefore be classified based on
which of these elements they share in common. To iden-
tify rhymes, we compared phonemes (the simplest linguistic
units of sound) of pairs of words and then classified them
based on what they shared in common. Often more than
one name is used for the same class of rhyme, so we chose
to classify rhymes as either perfect, slant (not perfect) and
eye (words that don’t rhyme but used by poets because they
look like they would). We felt that these three classes were
sufficient to describe all rhyme types.

We defined perfect rhymes as pairs of words sharing a
final stressed vowel sound and all remaining phonemes, e.g.
“snake” and “bake”. It is also possible for a perfect rhyming
pair to share a final unstressed vowel sound, for example
“handing” and “standing”.

We included multiple imperfect rhyme definitions in our
slant rhyme class, including pairs of words sharing a final
vowel sound but with different remaining letters, e.g. “band”
and “sang”, or words that do not share a final vowel sound
but share the remaining letters, e.g. “hand” and “bind”.
We included what are sometimes called embedded rhymes,
which are like perfect rhymes, but one of the two words is a
compound word, e.g. “band” and “sandcastle” — this type
of rhyme is sometimes used with an enjambment (poetic line
break) splitting the compound word in two.

We defined eye rhymes as pairs of words that do not share



The Scandroid Stanford Literary Lab
10 01 01 01 01 1 00 1 00 1 0 1 0 1
01 11 01 01 00 1 0 1 00 1 0 1 0 1
11 01 01 00 01 1 00 1 0 1 0 1 0 1
01 01 00 01 100 0 1 0 1 0 1 0 1 0 1 0
00 01 01 10 10 1 0 1 00 1 0 1 0 1 0
00 11 01 01 01 00 1 00 1 0 1 0 1
00 01 01 01 010 00 1 0 00 1 00 1 0
01 01 10 10 01 1 0 1 0 1 0 1 00 1
10 01 01 11 01 1 00 1 0 1 0 1 0 1
01 01 11 01 11 1 00 1 0 1 0 1 0 1
10 10 10 11 01 1 0 1 0 1 0 1 00 1
01 11 11 00 01 1 0 1 00 1 00 1
01 01 001 01 01 0 1 0 1 1 0 1 0 1 0 1
10 01 01 01 00 0 1 00 0 1 00 1 0

These results were obtained from Python code found on
Ryan Heuser’s github page. We followed the instructions
found in README.md (Heuser 2015).

Figure 10: Scansion comparison: The Scandroid and Stan-
ford Literary Lab

Classification Metrical Not Metrical
Metrical 682 (87.66 %) 189 (4.44 %)
Not Metrical 96 (12.34 %) 4019 (95.56 %)

Correctly Classified Instances : 4701 (94.39%)

Figure 11: Classification results

much at all in pronunciation but have similar spelling, such
that they may look like a perfect rhyming pair but sounding
completely different, e.g. “slaughter” and “laughter”. See
Figures 12, 13 and 14 for examples of how we compared
words.

For the purpose of this paper, we consider word pairs as
simply rhyming or not, i.e. the type of rhyme was not con-
sidered. This choice was made in light of the amount of
work we still need to do to improve the generalization abil-
ity of the rhyme detector for large scale poetry analysis. Ad-
ditionally, rhyme detection is just the beginning in our sonic
analysis. Our software for detecting rhyme has the resolu-
tion and versatility for other tasks such as identifying alliter-
ation, assonance, consonance and sonic devices in general.

We have completed preliminary work on rhyme detection.
To identify rhymes, we collected the last words from each
line of the poem. We then used the cmudict to compute the
Levenshtein edit distances for each phoneme, for each word,
for each line. We considered phonemes to be the same when
the Levenshtein edit distance was 0. We were able to detect
different kinds of rhymes because we were able to compare
assonance and consonance separately.

Conclusion and Future Work
As part of the Graph Poem project’s holistic approach to po-
etry analysis, we plan on incorporating additional features
like metaphor, diction (choice of words), stanzaic patterns,
verse forms, alliteration (and other euphonic devices), syn-
tax, the anatomy of enjambments and tropes in general, etc.
With relation to meter, a modern neural network could be

battle : cattle
B AE1 T AH0 L
K AE1 T AH0 L

nc *yv yc yv yc

Similarities are denoted by a y for a match or an n for no
match. A * indicates a match on a stressed vowel. v and
c represent vowels and consonants, respectively. A soli-
tary n denotes a complete mismatch, i.e. not only do they
not match, but one is a vowel and the other is a conso-
nant. Some examples: *yv represents a match on a stressed
vowel and nc represents a non matching pair of consonants.

Figure 12: A perfect rhyming pair

But-oh! ye lords of ladies intellectual,
Inform us truly, have they not hen-peck’d you all?

intellectual : hen-peck’d you all
IH2 N T AH0 L EH1 K CH UW0 AH0 L

HH EH1 N P EH1 K Y UW1 AO1 L

n n n nc *yv yc n yv nv yc

Figure 13: An example of a mosaic rhyme

used to reclaim some of the rhythmical richness lost in bi-
nary encoding by allowing the simultaneous analysis of all
features influencing stress (Hayward 1991).

Our binary classification experiments (metered or not me-
tered) were better than the baseline. The unbalanced test
experiment resulted in an accuracy of 94.39% (Figure 10),
which was significantly better than ZeroR (82.53%) but only
marginally better than OneR (92.10%). The two balanced
test results (from over and under sampling) were not signif-
icantly different from the original test (less than 1% differ-
ence between the three). Classification may improve with
more advanced classification algorithms and may improve
further still as we continue to add more training data to our
corpus.

The Scandroid was more accurate at determining lexical
stress and parsing text into metrical feet than the work done
by the Stanford Literary Lab. It may be possible to train a
neural network in a way similar to the work done by Hay-
ward (but using more modern methods) to further improve
accuracy and introduce sensitivity to different levels of stress
(not just binary encoding).

There are known issues with the Scandroid, including lex-
ical ambiguity and phrasal verbs (Hartman 2005). Lexi-
cal ambiguity affects the pronunciation of certain words de-
pending on whether they are verbs or nouns. Hartman uses
“con VICT” (verb) and “CON vict” (noun) as an example.
This ambiguity could be lessened by including contextual
information from a POS (Part of Speech) tagger. Phrasal
verbs are lexical units that operate as a single word but do
not look that way, e.g. “put out”, “put down” or “put away”.
Stress tends to be evenly distributed over the verb and gram-
matical structure following it. A POS tagger could also be
used to identify phrasal verbs and adjust stress appropriately.
Finally, our implementation of the Scandroid is missing the
ability to identify promoted stress. Source code cleanup
should make that easier to implement.



hand : hang
HH AE1 N D
HH AE1 NG

yc *yv nc

band : bind
B AE1 N D
B AY1 N D

yc nv yc yc

Figure 14: Examples of slant rhymes

Rhyme detection can be improved and extended by
adding the ability to detect internal/nonterminal rhymes and
rhymes spread out over multiple words (known as mosaic
rhymes), e.g. “Poet” and “know it”. If a word is not listed
in the cmudict, we used the double metaphone algorithm by
Lawrence Philips (Philips 1990) and spelling as crude back-
ups. A more sophisticated approach may involve the use of
a computer text to speech system.

References
Algee-Hewitt, M.; Heuser, R.; Kraxenberger, M.; Porter, J.;
Sensenbaugh, J.; and Tackett, J. 2014. The Stanford Literary
Lab Transhistorical Poetry Project Phase II: Metrical Form.
Proceedings, Stanford University, Lausanne.
Bernstein, J., and Nessly, L. 1981. Performance Compari-
son Of Component Algorithms For The Phonemicization Of
Orthography. In Proceedings of the 19th Annual Meeting of
the Association for Computational Linguistics, 19–22. Stan-
ford, California, USA: Association for Computational Lin-
guistics.
Breiman, L. 1996. Bagging predictors. Machine Learning
24(2):123–140.
Chawla, N. V.; Bowyer, K. W.; Hall, L. O.; and Kegelmeyer,
W. P. 2002. SMOTE: Synthetic Minority Over-sampling
Technique. Journal of Artificial Intelligence Research
16:321–357.
Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Wit-
ten, I. H.; and Hall, M. 2009. The WEKA Data Mining
Software: An Update. SIGKDD Explorations 11(1).
Greene, E.; Bodrumlu, T.; and Knight, K. 2010. Auto-
matic analysis of rhythmic poetry with applications to gen-
eration and translation. In Proceedings of the 2010 confer-
ence on empirical methods in natural language processing,
524–533. Association for Computational Linguistics.
Hartman, C. 2004. Charles Hartman Programs.
Online; accessed 01-August-2015. Retrieved from
http://oak.conncoll.edu/cohar/Programs.htm.
Hartman, C. 2005. The Scandroid Manual. On-
line; accessed 01-August-2015. Retrieved from
http://oak.conncoll.edu/cohar/Programs.htm.
Hayward, M. 1991. A connectionist model of poetic meter.
Poetics 20(4):303–317.
Hayward, M. 1996. Analysis of a corpus of poetry by a
connectionist model of poetic meter. Poetics 24(1):1–11.
Heuser, R. 2015. Stanford Literary Lab Github Ac-
count. Online; accessed 01-August-2015. Retrieved from
https://github.com/quadrismegistus/litlab-poetry.
Holzer, P. 1986. Machine Reading of Metric Verse. Byte
Magazine 11(02):224–225.

Levalois, C.; Steinmetz, S.; and Wouters, P. 2012. Sloppy
Data Floods or Precise Social Science Methodologies?
Dilemmas in the Transition to Data-Intensive Research in
Sociology and Economics. The MIT Press.
MARGENTO. 2012. Nomadosofia/Nomadosophy. Max
Blecher Press. Bilingual, Romanian and English.
MARGENTO. 2015. The Graph Poem Project.
Online; accessed 17-February-2016. Retrieved from
http://artsites.uottawa.ca/margento/en/the-graph-poem/.
Moretti, F. 2013. Distant Reading. Versa.
Philips, L. 1990. Hanging on the Metaphone. Computer
Language 7(12).
Quinlan, R. 2013. Data Mining Tools See5 and
C5.0. Online; accessed 01-August-2015. Retrieved from
http://rulequest.com/see5-info.html.
Witten, I. H.; Frank, E.; and Hall, M. A. 2011. Data mining:
practical machine learning tools and techniques. Morgan
Kaufmann series in data management systems. Burlington,
MA: Morgan Kaufmann, 3rd ed edition.


