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Abstract

The majority of Bayesian networks learning and infer-
ence algorithms rely on the assumption that all random
variables are discrete, which is not necessarily the case
in real-world problems. In situations where some vari-
ables are continuous, a trade-off between the expressive
power of the model and the computational complexity
of inference has to be done: on one hand, conditional
Gaussian models are computationally efficient but they
lack expressive power; on the other hand, mixtures of
exponentials (MTE), bases or polynomials are expres-
sive but this comes at the expense of tractability. In this
paper, we propose an alternative model that lies in be-
tween. It is composed of a “discrete” Bayesian network
(BN) combined with a set of monodimensional con-
ditional truncated densities modeling the uncertainty
over the continuous random variables given their dis-
crete counterpart resulting from a discretization pro-
cess. We show that inference computation times in this
new model are close to those in discrete BNs. Exper-
iments confirm the tractability of the model and high-
light its expressive power by comparing it with MTE.

Introduction

For several decades, Bayesian networks (BN) (Pearl 1988)
have been successfully exploited for dealing with uncer-
tainties. Their popularity has stimulated the development
of many efficient learning and inference algorithms (Shafer
1996; Dechter 1999; Madsen and Jensen 1999; Bacchus,
Dalmao, and Pitassi 2003; Chavira and Darwiche 2008).
While these algorithms are relatively well understood when
they involve only discrete variables, their ability to cope with
continuous variables is often unsatisfactory. Dealing with
continuous random variables is much more complicated than
dealing with discrete ones and one actually has to trade-off
between the expressive power of the uncertainty model and
the computational complexity of its learning and inference
mechanisms. Conditional Gaussian models and their mix-
ing with discrete variables (Lauritzen and Wermuth 1989;
Lauritzen 1992; Lerner, Segal, and Koller 2001) lie on one
side of the spectrum. They compactly represent multivariate
Gaussian distributions. As such, they lack expressive power
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but their inference mechanisms are computationally very ef-
ficient. On the other side of the spectrum, there are expres-
sive models like mixtures of exponentials (MTE) (Moral,
Rumı́, and Salmerón 2001; Cobb, Shenoy, and Rumı́ 2006;
Rumı́and Salmerón 2007), mixtures of truncated basis func-
tions (Langseth et al. 2012b; 2012a) and mixtures of polyno-
mials (Shenoy 2011; Shenoy and West 2011; Shenoy 2012).
Those can approximate very well arbitrary density functions
but this comes at the expense of tractability: their exact in-
ference computation times tend to grow exponentially with
the number of continuous variables, which makes them un-
usable when they contain hundreds of random variables.

In this paper, we propose an alternative model that lies in
between these two extremes. The key idea is to discretize the
random variables, thereby mapping each (continuous) value
of their domain into an interval within a finite set of inter-
vals. Of course, whenever some discretization is performed,
some information about the continuous random variables is
lost. But this can be significantly alleviated by modeling the
distribution of the continuous values within an interval by a
density function which is not necessarily a uniform distribu-
tion (which is the implicit assumption when using a clas-
sical discretization). The set of density functions over all
the intervals of a continuous variable constitutes its “con-
ditional truncated density” given its discretized counterpart.
Now, our uncertainty model is a (discrete) BN over the set
of discrete and discretized random variables combined with
the set of conditional truncated densities assigned to the con-
tinuous random variables that were discretized. This model
is derived from the result of an algorithm for learning BNs
from datasets containing both discrete and continuous ran-
dom variables (Mabrouk et al. 2015).

By assigning conditional truncated densities to continu-
ous variables, our model gains expressive power over a BN
in which all continuous variables are discretized. For infer-
ence, the density functions need only be included in the
BN as discrete evidence (computed by integrations) over
the discretized variables and, then, only a classical inference
over discrete variables is needed to complete the process. As
the density functions are monodimensional, integrations can
be performed quickly. So the inference computational com-
plexity in our model is very close that of an inference in a
classical BN, which makes it tractable. Experiments high-
light this point but also the expressive power of the model.
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The paper is organized as follows. In the next section, we
recall related works. Then we present our model and its in-
ference mechanism. Next, its efficiency and effectiveness are
highlighted through experiments. Finally, a conclusion and
some perspectives are provided in the last section.

Related Works

In the rest of the paper, capital letters (possibly subscripted)
refer to random variables and boldface capital letters to sets
of variables. To distinguish continuous random variables
from discrete ones, we denote by X̊i a continuous variable
and by Xi a discrete one. Without loss of generality, for
any X̊i, variable Xi represents its discretized counterpart.
Throughout the paper, let XD = {X1, . . . , Xd} and X̊C =

{X̊d+1, . . . , X̊n} denote the set of discrete and continuous
random variables respectively. We denote by X = XD∪X̊C

the set of all random variables. Finally, for any variable X
or set of random variables Y or Y̊, let ΩX (resp. ΩY or ΩY̊)
denote the domain of X (resp. Y or Y̊).

The closest works related to our model are MTE, MOP
and MTBF. In MTE (Moral, Rumı́, and Salmerón 2001), the
distribution over the set of all random variables X is speci-
fied by a density function f such that:

•
∑

xD∈ΩXD

∫
ΩX̊C

f(xD, x̊C) dx̊C = 1,

• f is an MTE potential over X , i.e.:

Definition 1 (MTE potential) Let Y = {Xr1 , . . . , Xrp}
and Z̊ = {X̊s1 , . . . , X̊sq} be sets of discrete and continu-
ous variables respectively. A function φ : ΩY∪Z̊ �→ R

+
0 is a

MTE potential if one of the two following conditions holds:

1. φ can be written as:

φ(y, z̊) = a0+
m∑
i=1

ai exp

⎧⎨
⎩

p∑
j=1

b
(j)
i xrj+

q∑
k=1

b
(p+k)
i x̊sk

⎫⎬
⎭ (1)

for all (xr1 , . . . , xrp) ∈ Y, (̊xs1 , . . . , x̊sq ) ∈ Z̊, where ai,
i = 0, . . . ,m and b(j)i , i = 1, . . . ,m, j = 1, . . . , p + q,
are real numbers.

2. There exists a partition Ω1, . . . ,Ωk of ΩY∪Z̊ such that the
domain of the continuous variables, ΩZ̊, is divided into
hypercubes, the domain ΩY of the discrete variables is
divided into arbitrary sets, and such that φ is defined as:

φ(y, z̊) = φi(y, z̊) if (y, z̊) ∈ Ωi,

where each φi, i = 1, . . . , k, can be written in the form of
Eq. (1), i.e., it is a MTE potential on Ωi.

MTEs present attractive features. First, they are expres-
sive in the sense that they can approximate (w.r.t. the
Kullback-Leibler distance) any continuous density function
(Cobb, Shenoy, and Rumı́ 2006; Cobb and Shenoy 2006).
Second, they are easy to learn from datasets (Moral, Rumı́,
and Salmerón 2002; Romero, Rumı́, and Salmerón 2004).
Finally, they satisfy Shafer-Shenoy’s propagation axioms

(Shenoy and Shafer 1990) and inference can thus be per-
formed using a junction tree-based algorithm (Moral, Rumı́,
and Salmerón 2001; Cobb and Shenoy 2006).

This algorithm can be described as follows. An undirected
graph called a Markov network is first created: its nodes cor-
respond to the variables of X and its edges are such that,
for every MTE potential φi, all the nodes involved in φi are
linked together. This graph is then triangulated by eliminat-
ing sequentially all the nodes. A node elimination consists
i) in adding edges to the Markov network in order to create a
clique (a complete subgraph) containing the eliminated node
and all its neighbors; and ii) in removing the eliminated node
and its adjacent edges from the Markov network. The cliques
created during this process constitute the nodes of the junc-
tion tree. They are linked in order to satisfy a “running inter-
section” property (Madsen and Jensen 1999). Finally, each
MTE potential φi is inserted into a clique containing all its
variables.

A collect-distribute message-passing algorithm can then
be performed in this junction tree, hence enabling to com-
pute a posteriori marginal distributions of all the random
variables. As usual, the message passed from one clique Ci
to a neighbor Cj is the projection onto the variables in Ci∩Cj
of the combination of the MTE potentials stored in Ci with
the messages received by Ci from all its neighbors except
Cj . By Eq. (1), combinations and projections are Algebraic
operations over sums of exponentials. Unfortunately, these
operations have a serious shortcoming: when propagating
messages from one clique to another, the number of ai/exp
terms in Eq. (1) tends to grow exponentially, hence limiting
the use of this exact inference mechanism to problems with
only a small number of cliques.

To overcome this issue, approximate algorithms based on
MCMC are provided in the literature (Moral, Rumı́, and
Salmerón 2001; Rumı́and Salmerón 2007).

Mixtures of polynomials (MOP) are similar to MTE ex-
cept that functions φ : ΩY∪Z̊ �→ R

+
0 of Eq. (1) are substi-

tuted by polynomials over the variables in Y ∪ Z̊ (Shenoy
2011; Shenoy and West 2011). MOPs have several advan-
tages over MTEs: their parameters for approximating den-
sity functions are easier to determine than those of MTEs.
They are also applicable to a larger class of deterministic
functions in hybrid BNs. As MTE, the MOP model satis-
fies Shafer-Shenoy’s propagation axioms and inference can
thus be performed by message-passing in a junction tree.
But, similarly to Eq. (1), the number of terms these mes-
sages involve tends to grow exponentially with the number
of cliques in the junction tree, thereby limiting the use the
message-passing algorithm to junction trees with a small
number of cliques/random variables.

Finally, mixtures of truncated basis functions (MTBF)
generalize both MTEs and MOPs (Langseth et al. 2012b).
The definition of an MTBF is the same as Definition 1 ex-
cept that Eq. (1) is substituted by:

φ(y, z̊) =

m∑
i=0

q∏
k=1

a
(k)
i,yψi(̊xsk), (2)

where potentials ψi : R �→ R are basis functions. MTBFs

657



are defined so that the potentials are closed under combina-
tion and projection which, again, ensures that inference can
be performed by message-passing in a junction tree. By ex-
ploiting cleverly factorizations of terms in Eq. (2), inference
in MTBFs can be more efficient than in MTEs (Langseth
et al. 2012a). But, like all the other aforementioned models,
the sizes of the messages tend to grow with the number of
cliques in the junction tree.

In the next section, we propose an alternative model that
overcomes this issue while still being expressive.

BNs with Conditional Truncated Densities
As mentioned in the introduction, our model combines a dis-
crete BN B with a set of conditional truncated densities as-
signed to each continuous random variable.
Definition 2 (Bayesian network) A (discrete) BN B is a
pair (G,θ) where G = (X,A) is a directed acyclic graph
(DAG), X = {X1, ..., Xn} represents a set of discrete
and/or discretized random variables1, A is a set of arcs,
and θ = {P (Xi|Pa(Xi))}ni=1 is the set of the conditional
probability tables/distributions (CPT) of the variables Xi in
G given their parents Pa(Xi) in G. The BN encodes the joint
probability over X as P (X) =

∏n
i=1 P (Xi|Pa(Xi)).

A discretization of a continuous variable X̊ is a function
dX̊ : ΩX̊ → {0, . . . , g} defined by an increasing sequence
of g cut points {t1, t2, ..., tg} such that:

dX̊ (̊x) =

⎧⎨
⎩

0 if x̊ < t1,
k if tk ≤ x̊ < tk+1, for all k ∈ {1, . . . , g − 1}
g if x̊ ≥ tg.

Thus the discretized variable X corresponding to X̊ has
a finite domain of {0, . . . , g}. Therefore, after discretiz-
ing all the continuous random variables, the uncertainty
over all the discrete and discretized random variables X =
{X1, ..., Xn} can be represented by a classical BN in which
very efficient message-passing inference mechanisms can be
used, notably junction tree-based algorithms (Shafer 1996;
Madsen and Jensen 1999).

However, discretizing continuous random variables raises
two issues: i) which discretization function shall be used to
minimize the loss of information? and ii) will the loss of
information affect significantly the results of inference? A
possible answer to the first question is to exploit “condi-
tional truncated densities” (Mabrouk et al. 2015). The an-
swer to the second question of course strongly depends on
the discretization performed but, as we shall see, conditional
truncated densities can limit the discrepancy between the ex-
act a posteriori marginal density functions of the continuous
random variables and the approximation they provide.

Definition 3 (Conditional Truncated Density) Let X̊ be a
continuous random variable. Let dX̊ be a discretization of
X̊ with set of cutpoints {t1, t2, ..., tg}. Finally, let X be a
discrete random variable with domain ΩX = {0, . . . , g}. A
conditional truncated density is a function f(X̊|X) : ΩX̊ ×
ΩX �→ R

+
0 satisfying the following properties:

1By abuse of notation, we use interchangeably Xi ∈ X to de-
note a node in the BN and its corresponding random variable.

1. f (̊x|x) = 0 for all x ∈ ΩX and x̊ �∈ [tx, tx+1] with, by
abuse of notation t0 = inf ΩX̊ and tg+1 = supΩX̊ ;

2. the following equation holds:∫ tx+1

tx

f (̊x|x) dx̊ = 1, for all x ∈ ΩX . (3)

In other words, f (̊x|x) represents the truncated density
function of random variable X̊ over the interval of dis-
cretization [tx, tx+1].
Lemma 1 Let P (X) be any probability distribution over
the discrete random variable X of Definition 3. Then
f(X̊|X)P (X) is a density function over ΩX̊ × ΩX .

Proof. By definition, f(X̊|X) and P (X) are non-negative
real-valued functions, hence f(X̊|X)P (X) is also a non-
negative real-valued function. So, to prove that it is a density
function, it is sufficient to show that:∑

x∈ΩX

∫
ΩX̊

f (̊x|x)P (x) dx̊ = 1.

By Property 1., f(X̊ = x̊|X = x)P (X = x) = 0 for
all x ∈ ΩX and x̊ �∈ [tx, tx+1]. So, the above equation is
equivalent to:∑

x∈ΩX

∫ tx+1

tx

f (̊x|x)P (x) dx̊ = 1,

which, by the fact that x is a constant inside the integral and
by Eq. (3), is also equivalent to:∑

x∈ΩX

P (x)

∫ tx+1

tx

f (̊x|x) dx̊ =
∑

x∈ΩX

P (x) = 1.

As a consequence, f(X̊|X)P (X) is a density function. �
Let us introduce “Bayesian networks with conditional

truncated densities” (ctdBN): let XD = {X1, . . . , Xd} and
X̊C = {X̊d+1, ..., X̊n} be sets of discrete and continuous
random variables respectively. Let XC = {Xd+1, . . . , Xn}
be a set of discretized variables resulting from the discretiza-
tion of the variables in X̊C. Then, a BN with conditional
truncated densities is a pair (G,θ) where G = (X,A) is
a directed acyclic graph, X = XD ∪ XC ∪ X̊C and A

is a set of arcs such that nodes X̊i ∈ X̊C have no chil-
dren and exactly one parent equal to Xi. This condition is
the key to guarantee that inference in a ctdBN is as fast as
that in a classical BN. Finally, θ = θD ∪ θC, where θD =
{P (Xi|Pa(Xi))}ni=1 is the set of the conditional probability
tables of the discrete and discretized variables Xi in G given
their parents Pa(Xi) in G, and θC = {f(X̊i|Xi)}ni=d+1 is
the set of the conditional truncated densities of the contin-
uous random variables of X̊C. Note that θC needs a very
limited amount of memory compared to θD since truncated
densities are monodimensional (e.g., a truncated normal dis-
tribution f(X̊i|Xi) is specified by only 2|ΩXi | parameters).

An example of ctdBN is given in Figure 1. The model
contains 3 continuous variables, X̊C = {X̊1, X̊3, X̊5} rep-
resented by dotted circles, which are discretized into XC =
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X5

X6X̊5

X4X3

X2X1

X̊3

X̊1

P (X1)

P (X3|X1)

P (X2)

P (X4|X2)

P (X5|X3, X4)

P (X6|X5)

f(X̊1|X1)

f(X̊3|X3)

f(X̊5|X5)

Figure 1: A BN with conditional truncated densities.

{X1, X3, X5}. Nodes in solid circles XC and XD form a
classical BN. Finally, all the continuous nodes X̊i ∈ X̊C

are children of their discretized counterpartXi and none has
any child. The key idea of ctdBNs is thus to extend BNs by
specifying the uncertainties over continuous random vari-
ables X̊i as 2-level functions: a “rough” probability distri-
bution for discrete variable Xi and a finer-grain conditional
density f(X̊i|Xi) for X̊i. This idea can be somewhat related
to second order probabilities (Baron 1987).

Proposition 1 In a BN with conditional truncated densi-
ties defined over X = XD ∪ XC ∪ X̊C, where XD =

{X1, . . . , Xd}, XC = {X̊d+1, . . . , X̊n} and X̊C =

{X̊d+1, . . . , X̊n}, function h : X �→ R
+
0 defined as:

h(X) =

n∏
i=1

P (Xi|Pa(Xi))

n∏
i=d+1

f(X̊i|Xi) (4)

is a density function over X.

Proof. First, note that all the terms in the product are
non-negative real-valued functions, hence h is also a non-
negative real-valued function. Let

α =
∑

x1∈X1

· · ·
∑

xn∈Xn

∫
X̊d+1

· · ·
∫
X̊n

n∏
i=1

P (xi|Pa(xi))

n∏
i=d+1

f (̊xi|xi)dx̊n · · · dx̊d+1

=
∑

x1∈X1

· · ·
∑

xn∈Xn

n∏
i=1

P (xi|Pa(xi))×(∫
X̊d+1

f (̊xd+1|xd+1)dx̊d+1

)
· · ·

(∫
X̊n

f (̊xn|xn)dx̊n

)
.

By Property 2 of Definition 3, each integral of a conditional
truncated density is equal to 1, hence:

α =
∑

x1∈X1

· · ·
∑

xn∈Xn

n∏
i=1

P (xi|Pa(xi)).

This formula is also equal to 1 since its terms constitute a
discrete BN. Therefore, h(X) is a density function. �

Inference in ctdBNs

Let us now investigate how to perform inference in ctdBNs.
The terms in Equation (4) satisfy Shafer-Shenoy’s propaga-
tion axioms (Shenoy and Shafer 1990), so we can rely on
a message-passing algorithm in a junction tree. The latter
is constructed by node eliminations from the Markov net-
work, as described previously. It was proved that first elim-
inating all simplicial nodes, i.e., nodes that, together with
their neighbors in the Markov network, constitute a clique
(a complete maximal subgraph), cannot prevent obtaining a
junction tree that is optimal w.r.t. inference (van den Eijkhof
and Bodlaender 2002). By the definition of ctdBNs, all the
continuous nodes X̊i ∈ X̊C constitute a clique with their
parent Xi (for instance, in Figure 1, {X3, X̊3} is a com-
plete maximal subgraph and is thus a clique). As a conse-
quence, the junction tree of a ctdBN is simply the junction
tree of its discrete BN part defined over XC ∪XD to which
cliques {Xi, X̊i}, for X̊i ∈ X̊C, have been added (linked to
a clique containing Xi). Figure 2 shows a junction tree re-
lated to the ctdBN of Figure 1. All the CPTs P (Xi|Pa(Xi)),
i = 1, . . . , n, are inserted into cliques not containing any
continuous node of X̊C. Of course, conditional truncated
densities are inserted into cliques {Xi, X̊i}, X̊i ∈ X̊C.

The inference process can now be performed by message
passing within the junction tree, for instance using a collect-
distribute algorithm in a Shafer-Shenoy-like architecture, se-
lecting a root clique CR not containing a continuous node
of X̊C. Let Ci = {Xk, X̊k} be a clique containing a con-
tinuous variable X̊k and let Xk be the discretized variable
corresponding to X̊k. Assume that {t1, . . . , tg} are the cut-
points of the discretization function applied to X̊k. By con-
struction, clique Ci has only one neighbor clique, say Cj , and
the separator between Ci and Cj is necessarily Sij = {Xk}.
During the collect phase, as clique Ci contains only condi-
tional truncated density f(X̊k|Xk), the message from clique
Ci to clique Cj is a vector of size g + 1 corresponding to:

MCi→Cj (xk) =

∫
ΩX̊k

f (̊xk|xk) dx̊k = 1, for all xk ∈ ΩXk
.

If evidence eX̊k
of the type “X̊k belongs to interval [a, b]”

is received, this can be entered into clique Ci as a function
f(eX̊k

|X̊k) : ΩX̊k
�→ [0, 1] equal to 1 when X̊k ∈ [a, b] and

X1X2X4X1X1X̊1

X1X4

X1X3X4X3X3X̊3

X3X4

X3X4X5X5X5X̊5 X5 X5X6

Figure 2: A junction tree for the ctdBN of Figure 1.
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0 otherwise. More generally, beliefs about X̊k can be en-
tered as any [0, 1]-valued function f(eX̊k

|X̊k). In this case,
message MCi→Cj

(xk) needs simply be updated as:

MCi→Cj
(xk) =

∫
ΩX̊k

f (̊xk|xk)f(eX̊k
|̊xk) dx̊k.

In all cases, note that message MCi→Cj
is computed by in-

tegrating a monodimensional function, which, in practice, is
not time consuming (it can be done either exactly in closed-
form formula or approximately using a MCMC algorithm).
The resulting message MCi→Cj is a real-valued vector of
size |ΩXk

| = g + 1. All the other messages sent during the
collect phase are computed exactly as in a classical (discrete)
junction tree. As a consequence, for the collect, the mes-
sages sent are precisely the same as those that would have
been sent in the junction tree, had clique Ci not existed and
evidence on Xk been entered into clique Cj in the form of
belief vector MCi→Cj

. So, for the collect phase, except for
the monodimensional integrations, the computational com-
plexity of inference is the same as in the discrete case.

For the distribute phase, it is easy to see that all the mes-
sages are computed w.r.t. discrete random variables and are
thus similar to messages computed in a classical (discrete)
junction tree. Consequently, this property holds for the com-
putations of all the messages in a Shafer-Shenoy-like archi-
tecture. To complete inference, there remains to compute the
marginal a posteriori distributions of all the nodes. For the
discrete ones, as usual, it is sufficient to select any clique
containing the node and to multiply the CPTs stored in it
with the messages it received, to marginalize out all the
other variables and then to normalize the result. Here, there
is no overhead compared to an inference w.r.t. only discrete
nodes. For continuous node X̊k of clique {Xk, X̊k}, the pro-
cess is similar: message MCj→Ci

must be multiplied by the
conditional truncated density stored in clique Ci and, then,
Xk must be marginalized out, which amounts to compute:

g∑
xk=0

MCj→Ci(xk)f(X̊k|Xk)f(eX̊k
|̊xk).

This corresponds to a mixture of conditional truncated den-
sities since MCj→Ci(xk) is just a real number. Finally, the
normalization amounts to integrate again a monodimen-
sional function. Overall, except for the monodimensional
functions integrations, inference in ctdBNs is thus of the
same complexity as that in standard BNs.

Experiments

For evaluating the expressive power of our model as well
as the efficiency of the above inference algorithm, a set of
hybrid Bayesian Networks (HBN) of different sizes are ran-
domly generated (Moral, Rumı́, and Salmerón 2002). In ev-
ery HBN, half of the random variables are discrete; den-
sities of the continuous variables are MTE potentials. The
domain size of each discrete variable is randomly chosen
between 2 and 4. The domain size ΩX̊i

of each contin-
uous random variable X̊i is randomly partitioned into 1,

Table 1: Average number of parents per node.
#nodes Mean(#parents)

4 2
8 1.83

16 1.66
32 1.5
64 1.33
128 1.16
256 1.1

2, or 3 subdomains Ωk with probabilities of occurrence of
20%, 40% and 40% respectively. In each subdomain Ωk, the
number of exponential function terms in the density func-
tions is chosen randomly among 0 (uniform distribution),
1 and 2, with respective probabilities 5%, 75% and 20%.
In addition, the number of parents of all the nodes follow
a Poisson distribution with a mean varying w.r.t. the num-
ber of nodes in the HBN as described in Table 1. For each
number of nodes, 500 different HBNs are generated. Fi-
nally, the DAG structures are constrained to contain only
one connected component. To construct these HBNs, we use
the ELVIRA library (http://leo.ugr.es/elvira).
Then, from each HBN, a dataset is generated, from which
a ctdBN is learnt using the learning algorithm described in
(Mabrouk et al. 2015), constraining it to use the same set of
arcs as the HBN. As a consequence, the ctdBN can be con-
sidered as an approximation of an exact multivariate density
function specified by the HBN.

In each HBN, we perform an exact inference using the
ELVIRA library in order to compute the marginal probabil-
ities of all the random variables in the HBN. Similarly, for
the ctdBN, we execute the inference algorithm of the pre-
ceding section, using a non-parallel implementation in C++
and the aGrUM library (http://agrum.lip6.fr). All
the experiments are performed on a Linux box with an In-
tel Xeon at 2.40GHz and 128GB of RAM. For compar-
ing MTEs and ctdBNs, we use two criteria: i) the Jensen-
Shannon Divergence (JSD) between the marginal distribu-
tions in the ctdBNs and those in the corresponding HBN;
and ii) the times for computing these marginal distributions.
The first criterion allows to assess the expressive power of
ctdBNs whereas the second one allows to assess the effi-
ciency of our inference algorithm.

Tables 2 and 3 report for each network size, specified by
its number of nodes, the average over the 500 networks gen-
erated for this size of the JSD between the marginal distri-
butions of the nodes obtained in the ctdBN model and those
obtained in the MTE model. The tables display the average

Table 2: JSD for discrete variables.
#nodes μJSD σJSD minJSD maxJSD

4 0.0065 0.0040 0.0024 0.0105
8 0.0076 0.0078 0.0007 0.0201

16 0.0078 0.0099 0.0003 0.0303
32 0.0122 0.0137 0.0004 0.0510
64 0.0354 0.0269 0.0016 0.1111

128 0.0831 0.0527 0.0028 0.2326
256 0.1329 0.0805 0.0033 0.3752
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Table 3: JSD for continuous variables.
#nodes μJSD σJSD minJSD maxJSD

4 0.0059 0.0017 0.0042 0.0077
8 0.0064 0.0024 0.0036 0.0099

16 0.0064 0.0026 0.0030 0.0114
32 0.0071 0.0032 0.0028 0.0146
64 0.0101 0.0044 0.0033 0.0215

128 0.0161 0.0072 0.0045 0.0349
256 0.0222 0.0098 0.0054 0.0476

Table 4: Inference computation times (in milliseconds).
#nodes TMTE TctdBN TMTE/TctdBN

4 40.92 0.27 151.56
8 279.16 0.84 332.33

16 7416.75 1.96 3784.06
32 42304.21 4.51 9380.09
64 88738.92 10.26 8649.02
128 94307.49 28.48 3311.36
256 122185.62 71.52 1708.41

of these JSDs over the nodes of the networks (μJSD) but
also their standard deviations σJSD and their min (minJSD)
and max (maxJSD) values. As can be observed from these
tables, the JSDs always remain small (remind that, for any
distributions P,Q, JSD(P‖Q) ∈ [0, 1]). This shows that
our model is expressive and faithful since its approximation
of the true (MTE) densities is accurate. As shown in Table 4,
which reports the inference execution times, this accuracy
is not at the cost of inference performance: our algorithm
significantly outperforms MTE inference and, the larger the
network, the higher the discrepancy between the computa-
tion times of the two inference algorithms.

Conclusion

In this paper, a new graphical model for handling uncertainty
over sets of continuous and discrete variables is introduced.
As shown by experiments, this model is both expressive and
tractable for inference. For future works, we plan to enrich
it by allowing the conditional truncated densities to depend
not only on the discretized nodes but also on their parents.
This shall increase the expressive power of the model. In
addition, keeping the conditional truncated densities of the
same form as the CPTs of the discretized nodes shall ensure
tractability of inference. Of course, new algorithms will be
needed for learning this model from data.
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