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Abstract

In this paper we focus on a scenario where one or several
robotic bodyguards protect a VIP moving in a public envi-
ronment from physical assaults. To provide maximal physical
protection, the robotic bodyguards need to consider the move-
ment of the crowd as well as the obstacles in the environment.
We propose two algorithms: Threat Vector Resolution (TVR)
for a single bodyguard robot and Quadrant Load Balancing
(QLB) for multiple bodyguards acting as a team. We evalu-
ate the proposed approaches using metrics of the threat level
and movement dynamics. The simulation study compares the
results of the proposed approaches against rigid bodyguard
team formations for various crowd configurations and team
sizes.

Introduction

The capabilities of human-scale mobile robots are gradually
reaching a level where robots can act in environments in the
presence of dense populations of humans. Examples of prac-
tical applications include robotic museum guides (Thrun et
al. 1999), people tracking (Schulz et al. 2003), telepres-
ence (Michaud et al. 2007) and so on.

In this paper we are considering the problem of one or
more robotic bodyguards providing effective physical cover
to secure a human VIP from physical assaults. The VIP
is moving in a public space in the presence of other hu-
mans. The robotic bodyguards must assess the members of
the crowd as possible threats and position themselves ac-
cordingly. When there are multiple robotic bodyguards, they
must act as a team, collaborating to minimize the level of
threat. The robotic bodyguards must take into account the
movement of the VIP, the density and movement pattern of
the crowd as well as the natural obstacles and covers in the
environment. We focus only on the direct physical assaults
that can be protected against by providing physical cover
(protection strategies against armed assailants or snipers are
based on very different principles).

The expertise and training techniques of human body-
guards (“close protection operatives”) are clearly relevant to
this problem. Unfortunately, the training manuals use narra-
tive descriptions and in-situ practical examples, not directly
applicable to the control of mobile robots.
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In this paper, after introducing several metrics to quan-
tify the threat to the VIP we propose two algorithms de-
signed to lower the threat level. The Threat Vector Resolu-
tion (TVR) algorithm controls a single robotic bodyguard by
performing probabilistic threat assessments and the resolu-
tion of multiple threat vectors. To extend this model to teams
of bodyguard robots, we introduce the Quadrant Load Bal-
ancing (QLB) algorithm in where a team of robotic body-
guards share the load of physical cover task. In an exper-
imental study, we compare the performance of these algo-
rithms against rigid formation strategies.

Related Work

The robotic bodyguard problem is related to a number of
research areas that received significant attention in recent
years, such as robot team coordination, patrol scheduling,
security checkpoint allocation and human crowd modeling.

Many studies related to security such as ARMOR (Pita
et al. 2008), IRIS (Tsai et al. 2009), GUARDS (Pita et al.
2011) and RaPtoR (Varakantham, Lau, and Yuan 2013) con-
sider the placement of checkpoints and deployment of patrol
teams to provide protection against probable attacks by im-
minent adversaries. This requires generating mixed strate-
gies for a group of defenders and adversaries using an expo-
nential number of routes or schedules, which increases the
computation requirements for the autonomous robots with
limited computation, communication and power resources.
(Khan, Arif, and Bölöni 2014) propose a technique in which
robots learn to imitate human strategies to resolve the micro-
conflicts that occur while moving in a dense crowd.

A multi-robot patrolling framework for cross-cultural en-
vironment is proposed in (Khan et al. 2012). The framework
captures and analyzes the behavioral perception of the ac-
tions of the soldier and the robot by the local population. The
multi-robot patrolling problem is usually formulated (Ag-
mon, Kaminka, and Kraus 2011; Vanek et al. 2010) as a
variation of the classical traveling salesman problem. Multi-
agent based patrolling requires exponential decision making
in order to minimize time lags between two consecutive vis-
its of the agents to the same locations or gain advantage over
adversary by protecting a particular geographical area.
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Bodyguard Positioning Problem
We are considering a very important person (VIP) protected
by a group of bodyguard robots R = {r1, r2, . . . , rp}. The
crowd members G = {g1, g2, . . . , gk}, perform purposeful
movement according to their own goals, but they also rep-
resent a threat of physical assault to the VIP. The robotic
bodyguards aim to minimize the risk of physical harm to the
VIP by providing physical cover: they position themselves to
prevent potential attackers from reaching the VIP. To quan-
tify the protection offered by a team of bodyguards, we first
need to provide definitions to the concepts of line-of-sight
and safe distance.
Definition 1 The line of sight function LoS(x, y) ∈ {0, 1}
specifies whether the agent x can observe the other agent y.

In the 2D space we are considering, LoS(x, y) = 1 im-
plies that there is no obstacle between the positions of the
agents. In defining line of sight, we assume that the robotic
bodyguards have a 360° vision, thus their line of sight does
not depend on the direction they are facing. This is en-
abled by the fact that there are many relatively inexpensive
360° degree cameras and laser scanners such as Hokuyo
URG-04LX-UG01 (Tsui et al. 2012) currently being used
on mobile robots.
Definition 2 The safe distance, SafeDist, is defined such
that if Dist(V IP, gi) ≥ SafeDist then crowd member gi
can be ignored in the assessment of threats to the VIP.

The safe distance captures the intuition that the robotic
bodyguard would be able to physically stop an attacker be-
fore reaching the VIP if it starts outside the specified dis-
tance. The safe distance depends on the speed of the robot
compared to a human, but in general it can be 10-15 meters
or more. In crowded public places it is not feasible to keep
every crowd member at a safe distance.
Definition 3 We define the threat level TL(gi, V IP ) ∈
[0, 1] as the probability that crowd member gi ∈ G can suc-
cessfully assault the VIP.

Human close protection operatives perform the assess-
ment of the threat level based on physical, physiological and
environmental attributes, taking advantage of their training,
real life experience and intuition. Robotic bodyguards do not
have the advantage of intuition and psychological assess-
ment. In our model, we estimate the TL using the distance
from the VIP as follows.

TL(gi, V IP ) =

⎧⎪⎨
⎪⎩

LoS(gi, V IP ) · e−(A·(Dist(gi,V IP )))/B

if Dist(gi, V IP ) < SafeDist

0 if Dist(gi, V IP ) ≥ SafeDist
(1)

where Dist(gi, V IP ) is the distance between the crowd
member and the VIP. A and B are the positive constants
which define the slope and the magnitude of the risk curve
respectively.
Definition 4 We define the cumulative threat CT posed to a
VIP by a crowd G = {g1, g2, . . . , gk} as:

CT (G, V IP ) = 1−
k∏

i=1

(1− TL(gi, V IP )) (2)

Note that CT is defined as a cumulative probability of the
TL values. As the VIP and the crowd are moving, the cumu-
lative threat level will change CT = CT (t). Next, we need
to find a metric that measures the threat to which a VIP is
exposed during the full scenario.

Definition 5 Let us consider a VIP moving through a crowd
over a scenario from time t = 0 to T . We define the total
threat TT as:

TT =

∫ T

0

CT(t) dt (3)

For a given crowd, the TT value depends on the speed of
movement and the trajectory of the VIP. If the VIP moves
faster and avoids dense crowds, the total threat will be
smaller.

Let us now consider the ways bodyguards lower the
threat level. We will call the residual threat and denote with
RT (gi, V IP,R) the threat to the VIP assuming the pres-
ence of the bodyguard team R = {r1, r2, . . . , rp} at specific
locations. This threat level depends on the relative location
of the VIP, the threat and the bodyguards. In general, the
threat level is lowered when the threat’s possible ways for
approaching to the VIP are blocked by a bodyguard.

Having defined the residual threat level RT , we define
the cumulative residual threat CRT (G, V IP,R) = 1 −∏k

i=1(1 − RT (gi, V IP,R)) and the total residual threat
TRT (R,C) =

∫ T

0
CTR(t) dt in analogy to the definitions

of cumulative threat and total threat.
In addition to the goal of protection, the bodyguard

robots must also operate discreetly and “smoothly”. Fre-
quent changes in the relative position of bodyguards dis-
tracts the VIP and increase the energy consumption. Tak-
ing a physical analogy, we aim to minimize the mechanical
work performed by the bodyguard robots (that is, the curvi-
linear integral of the force �F = m�a over their trajectory).
The physical analogy is not perfect, because we do not re-
ally care about the mass of the bodyguard robots. Thus, the
total cumulative acceleration TCA will be the integral over
the absolute value of the accelerations summed for all the
bodyguard robots:

TCA(R) =

p∑
i=1

∫ T

0

|�ai(t)| dt =
p∑

i=1

∫ T

0

∣∣∣∣d�vi(t)dt

∣∣∣∣ dt (4)

Frequent changes in the positioning decisions of the
robotic agents produce higher TCA while it may or may not
produce lower TRT. By the above definitions, the bodyguard
positioning problem is having lower TRTs with acceptable
TCAs for various scenarios.

Bodyguard Positioning Algorithms

Threat Vector Resolution

The threat vector resolution (TVR) algorithm is designed to
position a single bodyguard robot such that the total threat is
minimized. We define the threat vector �TV as the sum of the
unit vectors from the crowd members to the VIP, weighted
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Figure 1: Positioning of a single robot r1 with TVR.

Figure 2: Assigning two robots to the quadrants q2 and q3
with highest loads.

by the threat level:

�TV (V IP,G) =

∑k
i=1 TL(gi, V IP ) · �V (gi,V IP )

||�V (gi,V IP )||∑k
i=1 TL(gi, V IP )

(5)

The threat level TL already encompasses the calculation of
lines of sight due to obstacles as well as the maximum threat
distance. According to the TVR algorithm the bodyguard
robot will position itself at a fixed distance from the VIP
in the direction of the threat vector.

Fig. 1 shows an example of the operation of the TVR al-
gorithm. Crowd members g1 and g4 do not pose a threat to
the VIP: g1 is farther than SafeDist and g4 is blocked by an
obstacle. g2 and g3 create their threat vectors �V2 and �V3 re-
spectively. As g3 is closer to the VIP, its threat vector will
be larger. The unit vector �TV is obtained by summing and
normalizing the threat vectors. The bodyguard robot r1 po-
sitions itself at a constant distance from the VIP in the direc-
tion of �TV .

Quadrant Load Balancing

TVR is not appropriate for the control of teams of body-
guards because it will position all the robots very close to
each other in the direction of the threat vector, ignoring
threats coming from other directions. To overcome this, we
propose the Quadrant Load Balancing (QLB) algorithm that

Algorithm 1 Quadrant Load Balancing (QLB)
procedure QLB(G,V IP ,R)

R ← R− ri
while Q �= null do

Select qmax ∈ Q with max lq
if qmax = null then

qmax ← ri.qdefault
end if
wmax ← ||gqmax

||
for all r ∈ R do

if r.q = qmax then
if r.w < wmax then

wmax ← wmax − r.w
else

wmax ← 0
end if

end if
end for
if wmax > 0 then

�p ← TV (gqmax
, V IP )

Pri ← PXY (�p)
return

else
Q ← Q− qmax

end if
end while

end procedure

allows a team of bodyguards to more evenly distribute the
tasks of protection from specific crowd members. In this ap-
proach, the protection circle of a VIP is divided into quad-
rants with each bodyguard being responsible for protecting
against threats in one or more quadrants. This protection can
be more or less difficult depending on the number of threats
in the quadrant and their threat level TL. The intuition be-
hind the QLB algorithm is that the bodyguards must have
tasks with approximately equal difficulty (their load must be
balanced).

Algorithm 1 describes the operation of the QLB model.
Q = {q1, q2, q3, q4} is the set of quadrants, Gqi is the
set of crowd members corresponding to the quadrant qi.
R = {r1, r2, . . . , rk} represents the set of robotic body-
guards except ri who generate QLB request, where k is
initially equal to the total number of robot bodyguards.
L = {lq1, lq2, lq3, lq4} is a set of threat level associated with
individual quadrant (q). The algorithm iteratively evaluates
all the quadrants in the decreasing order of quadrant load.
The workload associated with robot bodyguard r is given
by r.w and wmax represents the load value of quadrant with
current maximum load qmax.

PXY (�p) is the proximity function that provides an unoc-
cupied position close to the position vector �p. The position
vector �p is the resolved vector over the sum of the threats in
the quadrant q computed by Equation 5. PXY returns the
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position as follows:

PXY (�p) =

{
PV IP + �p · ProtectDist if unoccupied

PXY ( �(p)
′
) otherwise

(6)
where

�(p)
′
=

(
�p.x · cos(θ), �p.y · sin(θ)), (7)

such that ProtectDist is the protection distance of the robot
bodyguards from the VIP. ProtectDist is shown by the inner
circles in Fig. 1 and Fig. 2. θ is the minimum angle which
produces an unoccupied location value in any one of the two
directions for PXY ( �(p)

′
). We define a location as occupied

if there exists another robot bodyguard or an obstacle on
it. Hence, PXY function produces an unoccupied location
having the same distance from PVIP and being closest to the
ideal case of PVIP + �p · ProtectDist.

Algorithm 1 assigns the quadrant with the highest TL to
qmax at each iteration of the while loop. In case of no threat
in any quadrant, the bodyguard ri who is running QLB fol-
lows a locker-room agreement (pre-decided before execu-
tion) by making qmax as ri.qdefault. qdefault is the default
quadrant which is assigned to the bodyguard ri before start-
ing the operation. In the inner loop, the algorithm checks
for the total load of the quadrant qmax covered by existing
bodyguards in the same quadrant. If the load of the quadrant
qmax is higher than the total load covered by existing robot
bodyguards, then the bodyguard ri move to the position on
qmax given by Pr, otherwise, this process repeats for the rest
of the quadrants.

Fig. 2 illustrates an example case of the QLB algorithm.
In this figure, the quadrant q1 has no crowd member, q4 has
no visible crowd member (lq3 = lq4 = 0) and qmax = q2.
Among the two unassigned robotic bodyguards, r1 is first
assigned to q2 with the highest load. In the second iteration,
the load of q2 is updated and r2 is assigned to the quadrant
q3 with the highest remaining load lq3 .

Simulation Study

Simulation environment

We carried out simulation experiments using the Java-based
YAES Simulator (Bölöni and Turgut 2005)developed by our
research group. The simulator is interconnected with the V-
Rep simulator from Coppelia Robotics. Our simulations do
not use the physics engines from V-Rep, but they use simple
control models.

We compared the experimental results of four crowd con-
figurations: “static crowd”, “with the flow”, “against the
flow” and “mixed crowd”. In the “static crowd” configu-
ration, crowd members are static and they occupy distinct
locations on the map. This configuration provides the base
case for comparing sudden changes in the threat metric with
respect to crowd movement. In the “with the flow” config-
uration, crowd members move in the same direction as the
VIP, often encountered in situations where the crowd and the
VIP aim to enter or exit a building. In this configuration the
robotic bodyguards need to evaluate the threats approach-
ing from the rear. In the “against the flow” configuration,

the crowd moves against the direction of the VIP. Similarly,
in the “mixed crowd” configuration, each crowd member
chooses a random destinations on the map and traverses the
shortest path toward the selected destinations using the D*
Lite algorithm (Koenig and Likhachev 2002). In all config-
urations, the crowd members initialize with random move-
ment speeds between 1ft to 5ft per time step, before the start
time of simulation. These variations in speed represent di-
versity of gait preferences of the humans in crowd. In the
simulation, the VIP traverses through 10 different paths on
a given map and configuration covering most possible cases
of interactions of crowd and robotic bodyguards. Each sim-
ulation run corresponds to a different path taken by the VIP
on the simulation map.

Performance Results

Swarm robotics algorithms focus on maintaining fixed team
formations of robots while performing path planning. We
compared our approaches against the fixed formation in or-
der to assess the decrease in TRT of the configuration. More-
over, we compared effectiveness of the approach over dif-
ferent number of robotic bodyguard agents deployed in the
simulation. Realistic bodyguard training literature provides
these fixed formations which depend on various factors such
as location, threat intensity, number of bodyguards, and so
on. For the fixed formations, we considered Cartesian plane-
based quadrants where origin and ordinate axis of the plane
as VIP coordinates and heading direction, respectively. The
order of placement varies as the number of bodyguards in-
creases.

Experiment 1: Cumulative Residual Threat We first
compared the cumulative threat CT and cumulative resid-
ual threat CRT values at every accessible location for the
VIP over the simulation map with static crowd configura-
tion as shown in Fig. 3. Fig.3-middle shows distribution of
CT values in the case of no protection. The peaks represent
the locations with lowest security, which correspond to the
locations of the crowd members in Fig.3-left. Flat regions in
Fig.3-middle correspond to the obstacles and walls. Fig. 3-
right reveals the effect of the QLB algorithm with 3 body-
guards over the same crowd configuration. We observed that
QLB produces significantly lower CRT values in most re-
gions of the map compared to the case of no protection.
However, peaks still exist due to the fact that if the VIP is
too close to a crowd member, blocking an attack becomes al-
most impossible by a robotic bodyguard. On the other hand,
the goal of the proposed positioning algorithms is avoiding
these cases by preventing the crowd members to stay in the
protection circle of the VIP.

Experiment 2: Total Residual Threat In this experiment,
we compared the total residual threat TRT values of seven
bodyguard strategies over multiple simulation runs in four
crowd configurations. The TRT for the ‘No bodyguard’ case
is actually the same as the total threat TT value, and illus-
trates the actual threat to the VIP from the crowd members
in the absence of bodyguards. We are considering these val-
ues as benchmark for comparison of the TRT values. We
did not include the results for QLB with 1 bodyguard since
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Figure 3: Comparison of CT and CRT over simulation map. Left: static crowd configuration, Middle: CT for no bodyguard,
Right: CRT for 3 bodyguard robots with QLB.
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Figure 4: TRT comparison of No bodyguard, 1 bodyguard, 2 bodyguards and 3 bodyguards with fixed formation, TVR and
QLB. The different crowd configurations were (a) static crowd, (b) “with the flow”, (c) “against the flow” and (d) mixed.

QLB produces very similar output to TVR in that case. In
general, the lower the TRT, the better the VIP is protected in
the given scenario.

We start with the “static crowd” configuration in Fig. 4-
(a). In this scenario, the differences in the TRT values of
the ‘No bodyguard’ scenario over multiple simulation runs
depend on the movement of the VIP - for instance, some-
times the presence of an obstacle lowers the TRT by pro-
viding physical cover from crowd. As expected, the higher
the number of robotic bodyguards, the lower the TRT val-
ues. Nevertheless, the proposed adaptive strategies provide
a better protection than the fixed formation strategies. For in-
stance, the TVR strategy with a single bodyguard provides
protection comparable to and sometimes (simulation runs 1
and 2) significantly better than the fixed formation strategy
with 3 bodyguards. As expected, the QLB strategy with 3
bodyguards provided the lowest TRT for all simulation runs.

Fig. 4-(b) shows the results of the “with the flow” config-
uration, where the crowd is moving in the same direction as
the VIP, although their speeds and final destinations may dif-
fer. In the fixed configuration, the bodyguards position them-
selves at behind-left and behind-right of the VIP at an arm
length distance. Therefore, the VIP has less frequent varia-
tion in the TRT in case of approaching crowd from behind.
Due to this reason, 3 robotic bodyguards sometimes perform
better as shown in the second simulation run.

Fig. 4-(c) shows the results of the “against the flow” con-
figuration, where the crowd is moving in the opposite di-

rection from the VIP. The increase in the TRT values of
‘No bodyguard’ is due to the increase in the crowd density
and the movement time. 3 bodyguards, with fixed formation
strategy ‘Fixed(3)’, also slow down to protect VIP as the
crowd density increases. 3 bodyguards with QLB algorithm
‘QLB(3)’ consistently produces lower TRT values for all the
simulation runs.

Finally, Fig. 4-(d) reveals the results of the “mixed crowd”
configuration. As in the other scenarios, QLB with 3 body-
guards is the winner as it produces lower TRT values while
TVR with 1 bodyguard performs better then fixed formation
with 3 bodyguards for all distinct VIP paths. Overall, we
observed that TVR and QLB provide lower TRT values for
various movement paths of the VIP and the crowd configu-
rations.

Experiment 3: Mean Total Cumulative Acceleration In
this experiment, we presented Mean-TCA results of differ-
ent bodyguard teams deploying fixed and algorithmic strate-
gies for multiple simulation runs as shown in Fig. 5. Well-
coordinated bodyguard teams should have minimal Mean-
TCA with the low Mean-TRT values at all times. The higher
Mean-TCA values are caused by various factors such as
frequent shuffling of positions, one agent performing more
work than the other team members or noisy communication
in threat assessment and task allocation.

As shown in Fig. 5, fixed formation strategies have better
coordinated movement compared to the algorithmic strate-
gies deployed by the bodyguard teams because of the un-
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Figure 5: Mean-TCA comparison of 1 bodyguard, 2 body-
guards and 3 bodyguards with fixed formations, TVR and
QLB for different crowd configurations.

affected behavior of fixed formation team by crowd move-
ment. In static crowd configuration, Mean-TCA attained by
‘TVR(1)’ is very close to Mean-TCA by 3 bodyguards team
in fixed formation. This is a result of no abrupt changes in
threat to VIP in the absence of crowd movement. Moreover,
the Mean-TCA results of 2 bodyguards team in “with the
flow” and “against the flow” configurations are much higher
compared to the results of other bodyguard teams, due to the
frequent shuffling in alternate quadrants by 2 bodyguards
during parallel and opposite crowd movements. In “ with
the flow” configuration, 3 bodyguards team has equal Mean-
TCA to 1 bodyguard team. This is due to one bodyguard
performing excessive task of guarding multiple quadrants
compared to other bodyguards in the team. The excessive
increase in the Mean-TCA of multiple bodyguards in the
“mixed crowd” configuration is a result of frequent mis-
communication and misjudgment in identifying each others’
position and intentions. Fig. 5 reveals the improvement re-
quired on QLB algorithm in terms of the effective commu-
nication among bodyguards.

Conclusions

In this paper, we focused on the positioning of single and
multiple robotic bodyguards during movement to protect the
VIP. We proposed Threat Vector Resolution (TVR) approach
for single robot bodyguard positioning and Quadrant Load
Balancing (QLB) for collaborative security using multiple
robot bodyguards. We evaluated the proposed approaches
against rigid formation of robotic bodyguards by the simu-
lation experiments. The proposed approaches provide better
total residual threat values for various movement scenarios
and bodyguard teams with different sizes.
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