
Learning Decision Trees from Histogram
Data Using Multiple Subsets of Bins

Ram B. Gurung, Tony Lindgren and Henrik Boström
Dept. of Computer and Systems Sciences,

Stockholm University, Sweden
Email: gurung@dsv.su.se, tony@dsv.su.se, henrik.bostrom@dsv.su.se

Abstract

The standard approach of learning decision trees from his-
togram data is to treat the bins as independent variables.
However, as the underlying dependencies among the bins
might not be completely exploited by this approach, an al-
gorithm has been proposed for learning decision trees from
histogram data by considering all bins simultaneously while
partitioning examples at each node of the tree. Although the
algorithm has been demonstrated to improve predictive per-
formance, its computational complexity has turned out to be
a major bottleneck, in particular for histograms with a large
number of bins. In this paper, we propose instead a sliding
window approach to select subsets of the bins to be consid-
ered simultaneously while partitioning examples. This signif-
icantly reduces the number of possible splits to consider, al-
lowing for substantially larger histograms to be handled. We
also propose to evaluate the original bins independently, in
addition to evaluating the subsets of bins when performing
splits. This ensures that the information obtained by treat-
ing bins simultaneously is an additional gain compared to
what is considered by the standard approach. Results of ex-
periments on applying the new algorithm to both synthetic
and real world datasets demonstrate positive results in terms
of predictive performance without excessive computational
cost.

Introduction

The standard decision tree learning algorithm is trained on
data represented by numeric or categorical variables (Quin-
lan 1986; Breiman et al. 1984). The histogram decision tree
learning algorithm is an extension of this standard decision
tree algorithm that considers also the data in the form of his-
togram variables (Gurung, Lindgren, and Boström 2015) on
the following form: each histogram variable Xi, i = 1...n
, has mi bins xij , j = 1...mi where each bin is assigned a
relative frequency rij such that

∑mi

j=1 rij = 1. Each sin-
gle bin can of course be handled as a single feature, which
means that the standard decision tree learning approach can
be applied to histogram data. However, the extended al-
gorithm was introduced to exploit dependencies among the
bins, which are ignored when bins are represented as ordi-
nary variables.

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Research on histogram variables are not in abundance
and this is also the case for research on learning classifiers
from histogram variables. One exception to this is (Gu-
rung, Lindgren, and Boström 2015), in which an algorithm
for constructing decision trees that utilize histogram vari-
able(s) is introduced. In that study, results from employing
the histogram tree algorithm to both synthetic and real-world
datasets were presented, showing that the exploitation of de-
pendencies in histogram data may have positive effects on
both predictive performance and model size. These gains
were however associated with an increased computational
cost, mainly as a result of the employed brute force approach
for finding the best splitting hyperplane. In order to reduce
this complexity, an approximation was proposed, which con-
sidered only a small number of data points to generate split-
ting hyperplanes. This approximation method was useful
for handling large numbers of observations (n) in a node.
However, the computational complexity also depends on the
size (number of bins) of histogram variable. A straightfor-
ward approach of compromising the resolution of histogram
by merging some bins was performed. This however would
risk in giving away potentially useful information.

In this paper, we propose an extension of the histogram
tree learning algorithm (Gurung, Lindgren, and Boström
2015) to address the important issue of handling large num-
bers of bins. In addition to this, the heuristic approach to
select a small number of data points has been simplified,
while at the same time, a technique to refine the approxi-
mate splitting hyperplane has been introduced to produce a
better split.

In the next section, the proposed method is described
in detail. The simplified method for finding relevant split
points is first presented, followed by the algorithm for refin-
ing the splitting hyperplane. In the Experiment section, the
experimental setup and results are presented. The empirical
findings of the experiment and limitations of the proposed
approach are discussed in the Discussion section. Finally, in
Concluding Remarks section, we summarize the main con-
clusions and point out directions for future research.

Method

In the earlier algorithm for learning decision trees from his-
togram data (Gurung, Lindgren, and Boström 2015), the
number of evaluated splits for a histogram variable X with

Proceedings of the Twenty-Ninth International
Florida Artificial Intelligence Research Society Conference

430

m bins, would be
(

n
m−1

)
, where n is number of observa-

tions. Clearly, the computation cost increases with both n
and m. The problem of handling large n was addressed by
an approximation that considered only a few candidate data-
points sp (sp�n) to be used for generating splitting hyper-
planes. In order to handle the problem of large m, we here
propose that instead of using all m bins simultaneously to
find a splitting hyperplane, l bins can be considered, where
1 ≤ l ≤ m. However, the algorithm still would have to
evaluate

(
m
l

)
combinations of bins which is expensive. So,

out of all the possible combinations, we suggest to consider
only those combinations that have adjacent bins in sequen-
tial order. Assuming that bins that are adjacent to each other
are relevant to be considered simultaneously, we can limit
the possible combinations to have only bins that are in con-
secutive order of their bin boundaries. In real world situ-
ations, bin boundaries of histograms are often naturally or-
dered, so considering adjacent bins together might be useful.
This leaves us with only m − l + 1 sets of bins to evaluate.
So, the complexity of finding the best split in a node for a
histogram variable X is linear to

(
sp
l

)
. Using a smaller sub-

sets of histograms could be useful if some of the bins are non
informative or even noisy. The explanation of the algorithm
follows in the various subsections below.

Using a sliding window to select subsets of bins

The number of bins of histogram variable to be evaluated si-
multaneously, l ranges from lmin to lmax where 1 ≤ lmin ≤
lmax and lmin ≤ lmax ≤ m. For a given value of l, slid-
ing window of size l is assumed across an ordered set of
bin indices. Bins are ordered according to their bin bound-
aries. Bins covered by the window are selected as set of
bins to be evaluated together for determining best splitting
hyperplane. For example, consider a histogram variable
of 5 bins. So, the bin indices bidx = (1, 2, 3, 4, 5). Let
lmin = 3 and lmax = 4 be range of window size l. Then,
the set of indices of bins to be evaluated together would
be {(1, 2, 3), (2, 3, 4), (3, 4, 5), (1, 2, 3, 4), (2, 3, 4, 5)}. The
first part of the algorithm therefore is to find the set of all
bins to be considered together given a range of window size.
The procedure is presented in algorithm (1). Bins of his-
togram are indexed sequentially in variable b idx. For in-
creasing window size from lmin to lmax, consecutive bins
are selected from b idx and a list bin combinations is
formed (lines 2 to 9).

Split points selection method

Observations for each set of bins would be considered as a
point in l dimensional space, if l bins are in the set. Only
sp points out of n points are used for generating the split-
ting hyperplane such that l ≤ sp ≤ n. sp is updated as
sp = sp + number bins (line 1). Each point in l dimen-
sion space has a class label. The objective is to find the
points around the class boundary region assuming that there
exists such a boundary. The algorithm for selecting candi-
date split points is presented in algorithm 2. The centroid
C+ for all points of the positive class is calculated by taking
mean and similarly centroid C− is calculated for points of

Algorithm 1 Find sets of bins to evaluate simultaneously
Input: b idx: ordered list of bin indices in a histogram

lmin: minimum number of bins to be selected
lmax: maximum number of bins to be selected

Output: bin combinations: list of set of bins to be evalu-
ated

1: m← total number of bins, size of b idx
2: for all l in between lmin and lmax do
3: if l ≥ 1 and l ≤ m then
4: for all i from 1 to (m− l + 1) do
5: bin set← indices in b idx from i to (i+ l − 1)
6: bin combinations← add bin set to the list
7: end for
8: end if
9: end for

the negative class (lines 3 and 4). Euclidean distance of all
points of negative class from C+ and distances of all points
of positive class from C− point are calculated (lines 5 to 12).
All the points are ordered in ascending order of its distance
from opposite classed centroid (line 13). In the most ideal
case, when there is a clear separation between two classes,
the points closest to the opposite classed centroid will be the
ones near the optimal boundary as shown in figure 1. The sp
points from top of the ordered list are selected (line 14).

Algorithm 2 Selecting split points for a given set of bins
Input: h bins: indices of bins in selected combination

h points: points formed by bins in h bins
hp class: class label of h points
sp: number of split points required

Output: split points: candidate split points
1: sp← sp+ |h bins|
2: if |h points| > sp then
3: C+ ← get centroid of points of positive class
4: C− ← get centroid of points of negative class
5: for all point in h points do
6: if point is positive class then
7: dist← distance from point to C−
8: else
9: dist← distance from point to C+

10: end if
11: point dist list← add dist for point and save
12: end for
13: asc point dist ← sort point dist list by ascending

dist
14: split points← take top sp points in asc point dist
15: else
16: split points← h points
17: end if

Figure 1 shows split point selection process for syntheti-
cally generated experimental data that has single histogram
variable with three bins. Only two bins (first and third) are
plotted and the patterns injected is such that if bin1+bin3 <
0.5 point belongs to positive class else it belongs to negative
class. There is clear boundary between two classes as shown

431

Figure 1: Selecting candidate split points

in top left figure. Centroids of two class are marked as two
big circles as shown in top right part of the figure. Selected
split points are marked as asterisk. The best splitting hyper
plane is obtained by using the selected points as shown by
straight line in the figure.

Generating splitting hyperplane

For each set of bins, corresponding best splitting plane is
determined. The algorithm is presented in algorithm 3. De-
tails of the algorithm can be found in(Gurung, Lindgren, and
Boström 2015). If sp is the number of candidate split points
and l is the number of bins used in a set,

(
sp
l

)
split planes

need to be evaluated (line 3). For each combination of l
points, square matrix A is created (line 5). If inverse of A
exists, it is multiplied by column vector B of length l that
has value 1s (lines 7 and 8). Multiplication of inverse of
matrix A and B gives the coefficients of the splitting plane
split plane coefs(line 8). Information gain obtained by the
split is obtained and the split plane is preserved if it is better
than previous best split (lines 9 to 21).

Refining the best split plane

Once the best splitting hyperplane is obtained for one of the
set of bins of a histogram variable, it can further be read-
justed. The idea is to again find sp points that are closest
to this splitting hyperplane and use those nearest sp points
to find new splitting hyperplane. We select the new best
splitting hyperplane if it is better than previous one. The al-
gorithm for refining best split is presented in algorithm 4.
sp nearest points to the current best split plane are selected
(lines 2 to 7) which are then used to find new best split plane
(line 12). The new best plane is preserved if it is better than
the previous best plane (lines 14 to 18). Figure 2 shows the
refining of the best split plane. The points closest to best
split plane are marked by asterisks in the figure. The refined
splitting hyperplane is shown as blue line in bottom right
section of the figure.

Overall algorithm: putting the pieces together

The overall algorithm obtained by putting together all its
subroutines, explained before, is presented in algorithm 5.

Algorithm 3 Generate a split plane for a given set of bins
Input: h points: observations in a node for selected bins

of a histogram variable
hp class: class label of each h points
split points: points to use for generating split plane

Output: best split plane: coefficients of best split plane
1: best info gain← 0, initialize variable
2: l← number of bins considered in h points
3: split p combns ← ways to choose l points in

split points
4: for all p combn in split p combns do
5: A← l by l matrix of points in p combn
6: if A−1 exists then
7: B ← column vector of l ones.
8: split plane coefs← multiply A−1 and B
9: for all point in h points do

10: value←multiply point and split plane coefs
11: if value < 1 then
12: l obs← assign point to left node
13: else
14: r obs← assign point to right node
15: end if
16: end for
17: info gain← info gain(split plane coefs)
18: if info gain > best info gain then
19: best info gain← info gain
20: best split plane← split plane coefs
21: end if
22: end if
23: end for

Algorithm 4 Refining the best split plane in a node
Input: h points: observations of selected set of bins

current best plane: coefficients of best split plane
sp: number of split points required

Output: refined split plane: coefficients of refined
plane

1: if |h points| > sp then
2: for all point in h points do
3: dist ← find distance of point from

current best plane
4: point dist← append dist with point and save
5: end for
6: asc dist ← sort point dist by ascending value of

dist
7: refine points← fetch first sp points from asc dist
8: else
9: refine points← h points

10: end if
11: best info gain← info gain(current best plane)
12: new best plane← find best plane(refine points)
13: new best info gain← info gain(new best plane)
14: if new best info gain > best info gain then
15: refined split plane← new best plane
16: else
17: refined split plane← current best plane
18: end if

432

Figure 2: Refining best split plane

For each histogram variable, a list of the set of bins
list bin sets for window size from lmin to lmax is gen-
erated (line 8, algorithm 1). For each set of bins bin set
in list bin sets, split points are obtained (line 16, algo-
rithm 2). The best splitting hyperplane is obtained by using
split points (line 17, algorithm 3). If the bin set has single
bin, standard decision tree method to find best cutoff point
is used (lines 12 to 15).

The best split planes of all the sets of bins for all his-
togram variables are sequentially compared which ulti-
mately results in the best set (lines 19 to 25). Once the
best set is selected, its best split plane is saved for further
readjustment (line 29 to 31, algorithm 4). Readjustment /
refinement is applied on the best split plane.

Experiments

The proposed approach has been implemented in R1. Ex-
periments were performed on a synthetic and real-world
datasets. The bin values in the synthetic dataset were ob-
tained from uniform random sampling. The bins of a his-
togram were later normalized to satisfy the unit sum con-
straint. Synthetic dependencies among the bins were then
injected by labeling the examples according to a set of for-
mulated rules. The real-world dataset was provided by the
truck manufacturing company Scania CV AB and consists
of histogram variables that describe operational profiles of
trucks. Operational profiles of trucks are used to classify
trucks with broken NOx sensor from those that has fully
functional NOx sensor. One publicly available dataset from
the domain of image recognition was also used for the exper-
iment. The predictive performance of both standard decision
tree learning algorithm and the proposed approach are com-
pared with respect to classification accuracy and area under
ROC value as estimated using five fold cross validation. Re-
sults of previous histogram tree method are also presented
where applicable. In addition to average accuracy and AUC,
the tree size, i.e., the number of nodes, is also presented for
each method. Average training time relative to average train-
ing time for standard decision tree is also reported. If the

1http://www.r-project.org/

Algorithm 5 Overall algorithm
Input: obs: observations in a node

hist vars: list of histogram variable names
sp: Number of split points to use
lmin: minimum size of sliding window
lmax: maximum size of sliding window

Output: best split plane: coefficients of best split plane
1: best info gain← 0, initialize best information gain.
2: best var ← ∅ stores best variable.
3: best split plane← ∅ initialize split plane.
4: best bin set← ∅ initialize best set of bins.
5: for all hist in hist vars do
6: m← number of bins in hist
7: b idx← indices of bins in hist
8: list bin sets ← find list bin sets(b idx, lmin, lmax)
9: for all bin set in list bin sets do

10: h points← points in a node for bin set
11: hp class← class label of each h points
12: if |bin set| is 1 then
13: all cutoffs ← candidate cutoff points for nu-

meric variable
14: split plane ← find best cutoff point, standard

tree method
15: else
16: split points ←

get split points(bin set, h points, hp class, sp)
17: current split plane ←

get best split(h points, hp class, split points)
18: end if
19: info gain ← get info gain(current split plane)
20: if info gain > best info gain then
21: best info gain← info gain
22: best var ← hist
23: best split plane← current split plane
24: best bin set← bin set
25: end if
26: end for
27: end for
28: num bin bestvar ← |best var|
29: if num bin bestvar > 1 then
30: best split plane ←

refine split plane(h points, best split plane, sp)
31: end if

number of training examples in a node is equal or lower than
5 examples, no more splitting is done to that node. 20 per-
cent of training data is set aside for post pruning. The num-
ber of split points to use, is set to 1, 5 and 7 for synthetic
experiments and 1, 3 and 5 for all real world experiments.
The window size range used is 1 to 4 in all the experiments.
Brief descriptions of the datasets, the experimental settings
and the results observed from the experiment are provided
in respective sub-sections.

Synthetic Data

Experiments on two synthetic datasets were conducted.

433

Table 1: Synthetic Data: Linear pattern
Histogram Approach with sliding window

Split pts. Win. Nodes Time Acc. AUC
1 1-4 56.2 1.24 92.05 0.953
5 1-4 41 1.48 92.67 0.970
7 1-4 42.2 2.20 93.14 0.976
Histogram Approach without sliding window
1 — 57 1.98 90.69 0.928
5 — 32.2 1.41 92.57 0.952
7 — 35.4 1.28 93.41 0.963

Bins Treated Individually (Standard Tree Algorithm)
— — 77.8 1 90.01 0.947

Histogram with Linear Pattern This dataset has two his-
togram variables. One histogram variable has four bins and
other has five bins. A linear pattern was injected among
some of the bins of these histograms. The first injected
pattern in the first histogram is V 11 + V 12 < 0.8. Sim-
ilarly the second injected pattern in the second histogram
is V 21 + V 22 + V 23 < 0.8 where V ij represent bin j of
histogram variable i. An indicator variable was assigned to
each histogram that is set TRUE if condition as specified in
the pattern is satisfied. Observations are assigned as positive
class if indicator variables for both histograms are TRUE. In
order to blur the boundary region, 25 percent of the points,
(V 11, V 12) in first variable and (V 21, V 22, V 23) in second
variable, that are closest to their respective injected bound-
ary patterns, were selected, and for 10 percent of them, their
indicator variable was flipped. Again the class label for each
observation is re-evaluated. This dataset has 1912 observa-
tions out of which 440 are positive examples and 1472 are
negative examples after noise injection.

Histogram with Nonlinear Pattern The second synthetic
dataset has one histogram variable with 4 bins. A non lin-
ear pattern was injected in this histogram as (V1 − 0.3)2 +
(V2 − 0.3)2 < 0.32 which is a circle with radius 0.3 cen-
tered at (0.3, 0.3) in 2D space of first and second bin. Any
points (V1, V2) inside the circle was assigned the positive
class while others were assigned the negative class. The
boundary region was blurred by using similar technique of
noise injection. This dataset has 1912 observations out of
which 624 are positive examples while 1288 are negative
examples after noise injection.

The new improved histogram tree was trained on these
two synthetic datasets. The results of the experiments are
shown in Table 1 and Table 2. The columns of each table,
respectively show the parameters: number of split points,
range of window size, average number of nodes in tree
model, average training time relative to standard approach,
average accuracy and average value of Area Under ROC
over five folds.

Real-world dataset

Two datasets from real world that have histogram as at-
tributes were used for the experiment.

Table 2: Synthetic Data: Nonlinear pattern
Histogram Approach with sliding window

Split pts. Win. Nodes Time Acc. AUC
1 1-4 94.2 0.97 85.25 0.935
5 1-4 77.8 1.05 85.61 0.939
7 1-4 75.8 1.24 86.24 0.938
Histogram Approach without sliding window
1 — 83.4 2.19 84.83 0.925
5 — 63.4 1.23 85.40 0.923
7 — 57.8 0.95 84.62 0.927

Bins Treated Individually (Standard Tree Algorithm)
— — 110.6 1 84.83 0.934

Table 3: Real Data: Operational Dataset
Histogram Approach with sliding window

Split pts. Win. Nodes Time Acc. AUC
1 1-4 43.4 1.58 94.81 0.830
3 1-4 49.4 2.43 94.61 0.828
5 1-4 51 5.44 94.86 0.840
Histogram Approach without sliding window
1 — 36.6 3.82 94.56 0.721

Bins Treated Individually (Standard Tree Algorithm)
— — 57.8 1 94.80 0.837

Operational data of heavy trucks Each observation in
this dataset is a snapshot of operational profile of a truck.
Experiment was conducted to classify trucks with faulty
NOx sensor from those with functional ones (healthy). Each
snapshot consists of six histogram variables, four of them
have 10 bins, one has 20 bins and the sixth one has 132 bins.
This dataset has 5884 trucks out of which 272 have faulty
NOx sensor while 5612 are healthy. The dataset has no miss-
ing values. The results of the experiment are presented in
Table 3. Previous implementation of histogram tree was not
able to train on this dataset when parameter number of split
points was set to 3 and 5.

Corel Image Dataset This dataset consist of 1000 images
of ten different categories such as human, buildings, bus, an-
imals etc. Each category has 100 images2. Each picture is
represented as two histogram variables each with 512 bins.
The experiment is set up as binary classification to classify
first category from all the remaining categories. So, 100
observations of first category are considered to be positive
cases while all the remaining 900 observations are consid-
ered to be negative cases. The results of the experiments are
reported in table 4. Earlier implementation of histogram tree
could not be trained on this dataset, as it cannot cope with
the size of the dataset / histogram.

Discussion

Results of experiments on synthetic data shows that treating
bins as histogram was better when there was dependencies

2http://users.dsic.upv.es/∼rparedes/english/research/rise/
MiPRCV-WP6-RF/

434

Table 4: Real Data: Corel Image Dataset
Histogram Approach with sliding window

Split pts. Win. Nodes Time Acc. AUC
1 1-4 9.4 3.08 94.0 0.885
3 1-4 9.8 8.14 94.5 0.888
5 1-4 9 20.04 94.3 0.888

Bins Treated Individually (Standard Tree Algorithm)
— — 10.6 1 93.9 0.889

among bins. In both synthetic experiments, histogram ap-
proach had better accuracy and AUC measures compared to
standard decision tree approach and earlier implementation
of histogram tree. However, growing the histogram trees
were slightly slower, around 2.2 times slower than standard
approach in worst case. Linear patterns were learned better
compared to non linear patterns as shown in Table 1 and 2.
The size of the trained tree for the histogram approaches
were smaller in general compared to the standard approach.
In general, the size of tree dropped as the number of split
points increased whereas accuracy and AUC increased.

However, the results of experiments on real world data
did not show a clear gain by using histogram approaches. In
Table 4 for corel dataset, histogram approach was better than
standard approach by narrow margin in terms of accuracy
where as AUC was almost equivalent. In case of operational
dataset as shown in Table 3, histogram approach was almost
equivalent to standard approach.

In all the experiments, window size varied from 1 to 4.
When window size was 1, each bin was individually evalu-
ated for splitting the node just as in standard decision tree
algorithm. This would ensure that performance of the pro-
posed approach in general is at least as good as standard
decision tree algorithm. Any gain obtained by using multi-
ple bins simultaneously would then be additional informa-
tion. One of the reasons why the results of experiments on
real world data did not show any considerable gain could
be because of algorithm’s limitation to capture only linear
pattern. This was hinted by comparing AUC values in the
results of synthetic experiment for data set with linear and
nonlinear pattern. So, in the future, focus could be on im-
plementing methods to capture non linear patterns as well.
Simpler splits in terms of number of bins, are always pre-
ferred in case of tie during the split. Ties, in cases of equal
number of bins, are however, not addressed at the moment
but is something that could be addressed in the future.

Concluding Remarks

The histogram tree classifier learns from histogram variables
in addition to standard numeric and categorical variables. It
exploits dependencies among bins of histogram by treating
them together (simultaneously) during node splitting pro-
cess. However, high computational complexity has been one
major drawback of the method, specially when histogram
variables have large number of bins. So, in this paper an
approximation method was introduced such that only small
chunk of bins are used simultaneously at a time during the
node splitting phase. The size of the chunk can be varied as

a parameter. Some of the real world datasets in the experi-
ments conducted had histogram variables of length 132 and
some even of length 512. It was practically impossible to
the train the histogram tree on these big histograms with the
earlier implementation. However, with the current imple-
mentation this is not a problem anymore. The results from
both synthetic and real-world datasets suggest that gains in
terms of predictive performance and AUC, and a reduction
of the number of nodes might be obtained with slight in-
creased learning time compared to using a standard decision
tree.

In the future a comprehensive study of comparing the per-
formance of the proposed method against existing multivari-
ate split methods such as Linear Discriminant Trees (John
1995; Loh and Vanichsetakul 1988), and Perceptron Trees
(Utgoff and Brodley 1990; Sethi and Yoo) are planned. Ap-
proaches for non-linear split conditions shall also be exam-
ined.

Acknowledgment

This work has been funded by Scania CV AB and the Vin-
nova program for Strategic Vehicle Research and Innovation
(FFI)-Transport Efficiency.

References

Breiman, L.; Friedman, J.; Olshen, R.; and Stone, C.
1984. Classification and Regression Trees. Monterey, CA:
Wadsworth and Brooks.
Gurung, R.; Lindgren, T.; and Boström, H. 2015. Learning
decision trees from histogram data. In In Proceedings of the
11th International Conference on Data Mining, 139–145.
John, G. H. 1995. Robust linear discriminant trees. In Fifth
Intl Workshop on Artificial Intelligence and Statistics. 285–
291.
Loh, W.-Y., and Vanichsetakul, N. 1988. Tree-structured
classification via generalized discriminant analysis. Journal
of the American Statistical Association 83:715–725.
Quinlan, J. R. 1986. Induction of decision trees. MACH.
LEARN 1:81–106.
Sethi, I., and Yoo, J. Design of multicategory multifeature
split decision trees using perceptron learning. In Pattern
Recognition, volume 27. 939–947.
Utgoff, P. E., and Brodley, C. E. 1990. An incremental
method for finding multivariate splits for decision trees. In
In Proceedings of the Seventh International Conference on
Machine Learning, 58–65. Morgan Kaufmann.

435

