
A Scalable Unsupervised Deep Multimodal Learning System

Mohammed Shameer Iqbal and Daniel L. Silver
Jodrey School of Computer Science

Acadia University
Wolfville, Nova Scotia, Canada B4P 2R6

111271i@acadiau.ca, danny.silver@acadiau.ca

Abstract

We present an unsupervised multimodal learning system that
scales linearly in the number of modalities. The system uses
a generative Deep Belief Network for each modality channel
and an associative network layer that relates all modalities
to each other. The system is trained so as to reconstruct the
output at all missing channels given input on one or more
channels. The system uses a derivation of the back-fitting al-
gorithm to fine-tuning just those weights leading to the as-
sociative layer from each channel. This allows the system to
generate an appropriate representation at the associative layer
and to scale linearly with the number of modalities. An ex-
periment learning the numeric digits 0 through 9 from four
sensory channels - audio, visual, motor and classification -
demonstrates that the generative system can accurately recon-
struct any channel from as few as one other channel.

Introduction

Humans receive several types of sensory data through dif-
ferent channels or modalities and are able to associate one
modality with another. This fusion of sensory information
channels allow us to learn concepts from a variety of features
and to recognize objects even when information from one or
more channels is missing. There are two significant chal-
lenges that must be faced when creating a machine learn-
ing system that can associate multiple modalities: (1) over-
coming the differences in signal complexity of the channels,
and (2) scaling the system up in terms of training time and
memory with respect to the number of channels. We propose
a generative Deep Learning Architecture (DLA) approach
composed of Deep Belief Network (DBN) channels and an
associative memory layer that is used to associate the chan-
nels. The weights of each channel to associative memory
layer are fine-tuned using a back-fitting algorithm which al-
lows the system to equalize the impact of the various chan-
nel signals and to scale linearly in the number of channels.
Given the task of recognizing numeric digits 0 through 9 and
the sensory channels audio, visual, motor and classification,
we demonstrate that this generative system can accurately
reconstruct any channel from as few as one other channel.

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Background
The multimodal approach has been adopted by several deep
learning researchers such as (Srivastava and Salakhutdi-
nov 2012) and (Ngiam et al. 2011). Recently, development
of multimodal systems that use images and text have be-
come very active (Socher et al. 2014) (Karpathy and Fei-
Fei 2015) (Kiros, Salakhutdinov, and Zemel 2014). How-
ever, these systems tend to associate only two modalities
(such as shown in Figure 3). This allows the methods to
fine-tune the internal representations and associate one layer
with the other using techniques such as back-propagation.
Unfortunately, such supervised techniques do not scale well
to three or more modalities, because fine-tuning is needed
for all possible input to output modality combinations. This
problem is specifically recognized in (Ngiam et al. 2011).
The authors propose a fine-tuning solution that converts the
multimodal DLA into a deep autoencoder that has two input
modalities (audio, video) and two matching output modal-
ities (audio, video). The network is trained on a series of
examples that contains either one or the other modalities or
both modalities as inputs. This allows the fine-tuned model
to generate appropriate reconstructions for both modalities
when only one is provided or both are provided. Unfortu-
nately, this solution has a scaling problem because the deep
autoencoder is twice the size of the original multimodal
DLA, and the number of training examples will grow ex-
ponentially with the number of modalities in order train on
all combinations of input modalities.

A second problem that we have encountered when us-
ing strictly unsupervised learning methods for multimodal
leaning is that one channel will dominate over the others
in terms of developing the associative memory portion of
the network. A channel that has a simple, noise free signal
per class will provide the dominate signal to the associa-
tive layer. When this occurs, it is difficult for the network to
properly generate the correct features at the associative layer
when input is provided on one or more of the other channels.

We seek to overcome these two problems by using a varia-
tion of a back-fitting algorithm originally developed by Hin-
ton et al. (Hinton et al. 1995).

Theory and Approach
We propose a multimodal deep learning neural network ar-
chitecture that consists of multiple channels connected to

Proceedings of the Twenty-Ninth International
Florida Artificial Intelligence Research Society Conference

50

a shared associative memory layer in the same manner as
(Ngiam et al. 2011). Figure 1 shows an example of such
a network. Training of the weights in this network is com-
pletely unsupervised.

Each sensory channel or modality is a generative Deep
Belief Network (DBN) composed of stacked Restricted
Boltzman Machine (RBM) layers whose weights are trained
using the contrastive divergence algorithm (Hinton 2007).
Each DBN channel learns multiple levels of abstraction of
its input layer and is generative in nature. The number of
hidden layers in a channel varies according to the complex-
ity of the sensory data for that channel, as deeper architec-
tures are necessary to learn higher order, non-linear transfor-
mations (Bengio 2009).

The top level features of each DBN is combined as in-
put to another RBM layer called the associative memory.
The associative memory layer connects the features of one
channel with all others, allowing it to reconstruct the values
at the visible nodes of a channel, if they are missing. We
say the system learns to know a concept based on its ability
to reconstruct any modality from one or more of the other
modalities. For example, the system comes to know the con-
cept “cat” because of is ability to create the image of a cat,
given the sound and feel of a cat.

Consider a four channel DLA that contains four modali-
ties: image, audio, motor and classification as shown in Fig-
ure 1. The image channel learns handwritten images (28 x
28 pixels) of the digits 0–9. The image channel contains two
hidden RBM layers with 700 and 300 neurons respectively.
The audio channel learns representation of the spoken digits
0–9. Similar to the image channel, the audio channel con-
tains two RBM layers with 700 and 400 neurons, respec-
tively. The motor channel learns a vector of 7 coordinates
(14 values) that could control a robot arm to draw the digits
in 2-D space. The motor channel has one hidden RBM layer
with 100 neurons. The classification channel has 10 visible
neurons where each acts as the class indicator for one of
the digits. No hidden layers are needed. It is important to
note that the classification channel is not required for the
development of an accurate multimodal DLA using just the
remaining channels. Rather, we have included the classifica-
tion channel to see more directly the state of the representa-
tion in the associative layer of the system. The experimenta-
tion section will discuss this further.

Each generative channel is trained individually using its
corresponding unsupervised examples. Once the individual
channels are trained, the features generated by the top level
RBM of each channel are used to train the associative mem-
ory with the goal of being able to reconstruct all channels
given input on any one channel. This is not trivial. If improp-
erly trained, the associative memory can become dependent
on dominant features that are present in some channel A.
This results in a system that does a poor job of reconstruct-
ing missing channels without the features from channel A.

To prevent the associative memory from becoming depen-
dent on dominate features, the weights connecting the indi-
vidual channels and the associative memory need to be fine-
tuned. Typically, in a multimodal DBN of two channels, the
back-propagation algorithm is used to fine-tune the weights

Figure 1: A four-channel multimodal DLA.

of an equivalent deep autoencoder (Ngiam et al. 2011). The
error is backward propagated through the weights from the
output of one channel to the input of another (or both chan-
nels) and the weights adjust along the way. However, for
three or more channels, this would have to be done for every
possible input to output channel combination of the system.
The possible number of configurations or examples grows
exponentially (2n − 2), with respect to the number of chan-
nels n. This is not a practical solution for even n = 4. It
would mean building 14 separate models each with the same
number of weights and fine-tuning each using a separate set
of training examples. This would lengthen training times.

Fine-tuning using Back-Fitting

Our objective is to develop a multimodal Deep Learning
Architecture (DLA) that can handle missing channels and
linearly in the number of modalities. The solution lies in a
contrastive version of the wake-sleep algorithm which fine-
tunes RBM weights in a fast and greedy fashion (Hinton,
Osindero, and Teh 2006; Hinton et al. 1995). This back-
fitting algorithm can be applied to weights between any two
RBM layers. Figure 2 shows the back-fitting algorithm ap-
plied to the weights between RBM layer v and RBM layer h.
The input is presented at the v layer to produce activations
at the h layer, using the RBM weights. These activations are
saved and referred to as h. The bidirectional weights from
the RBM training are split into two unidirectional weights.
The weights going up are called recognition weights, wr,
and the ones going down are called generative weights, wg .
The recognition weights wr are highlighted by a solid red
arrow and generative weights wg are highlighted by a dot-
ted blue arrow in Figure 2. The back-fitting approach has
two steps: bottom-up (bu) and top-down (td). The bottom-
up step uses the recognition weights while the top-down
step uses the generative weights. The input features of the
visible nodes presented at RBM layer v in the bottom-up
step are used to stochastically activate the hidden nodes in
layer h. These node activations in the top-down step are
used to reconstruct the original input features using gener-
ative weights. The bottom-up and the top-down steps are
alternated until the error between the reconstructed nodes
and original input features is minimized. Each recognition

51

Figure 2: Applying back-fitting between two RBM layers

weight wij is updated using the equation,

Δwij = ε(< vihj >
bu − < vihj >td) (1)

where ε is the learning rate, < vihj >bu is the fraction of
times visible node i and hidden node j are on together during
the bottom-up step, and < vihj >td is the fraction of times
the reconstruction of the visible node i and the saved acti-
vation of the hidden node j are on together during the top-
down step. The generative weights wg remain unaltered. The
recognition weight update shown in Equation 1, is similar
to the weight update equation in the contrastive divergence
algorithm used by the RBM algorithm. However, there are
two differences: (1) two set of weights, one for each direc-
tion, are used in back-fitting as opposed to one set of RBM
weights for both directions in the contrastive divergence al-
gorithm, and (2) < vihj >td is calculated during top-down
pass in back-fitting, while < vihj >td is calculated during
the reconstruction pass in contrastive divergence. The alter-
nating steps of bottom-up and top-down are continued until
the reconstruction error,

e =

m∑

l=1

x∑

i=1

(vbuli − vtdli) (2)

is minimized to a desired level; where m is the number of
examples and x is the number of input nodes in v. In this
way, the back-fitting algorithm remains an unsupervised ap-
proach. To apply back-fitting to a multimodal DLA of n
channels requires a few additions to the above procedure.
These are described in the following section.

Iterative Back-Fitting for a Multi-Channel DLA

At the end of RBM training, the associative memory has
learned a representation that can reconstruct all channels
given input features from all channels. The representation
does poorly at generating the features needed if input is pro-
vided on only one channel. To fine-tune the weights of the
DLA we use an iterative version of the back-fitting algorithm
described above. Algorithm 1 develops a representation in
the associative memory layer that can generate the features
needed for all channels when input is present on as few as
one channel. The algorithm requires that every training ex-
ample has a value for each modality. Once back-fitting has
completed, testing can be done with values missing for one
or more channels.

To describe the algorithm, consider a two-channel DLA
(n=2) where each channel has two RBM layers, as shown in

Algorithm 1 Back-fitting for a multi-channel DLA
Input: n ← number of channels, k ← [1, n]

m ← number of examples, l ← [1,m]
Input features vkl for the top RBM layer of the each channel k
and each example l
Bi-directional RBM weights connecting associative memory
and each channel
φ, the required minimum value for the reconstruction error, e,
over all channels

Output: Recognition weights wr and generative weights wg for
each channel k
e, the reconstruction error over all channels

1: for l ← [1,m] do
2: for k ← [1, n] do

3: Present input vkl
4: end for
5: Produce and save the associative memory node activations

hhh for each example l using RBM weights
6: end for
7: for k ← [1, n] do
8: Split bi-directional RBM weights into two unidirectional

weights
9: wk

r ← weights going to associative memory
10: wk

g ← weights coming from associative memory
11: end for
12: while e ≥ φ do
13: e ← 0
14: for k ← [1, n] do
15: for l ← [1,m] do

16: Present input vkl
17: vyl ← 0, where y �= k

18: Produce activations h using wk
r

19: Update wk
r using Equation (1) which uses the saved

values of hhh
20: end for
21: Compute ek for vk using Equation (2)
22: e ← e+ ek

23: end for
24: end while

Figure 3. The algorithm begins after RBM training has com-
pleted, including RBM training of the associative memory
layer. For each example, the values of layer, v1 and v2, are
presented at the top of RBM channels 1 and 2 to produce
activations, h, at the associative memory layer (lines 1-6).
These h values are saved for each example (line 5). Then,
the RBM weights connecting the top RBM layers and the
associative memory are split into recognition weights, wk

r ,
and generative weights, wk

g (lines 7-11).
Fine-tuning of the weights begins on line 12 and repeats

until the reconstruction error e for all channels is reduced
to a value less than φ. For each example l, the input, v1, is
presented to the associative network from RBM channel 1
while the input to the associative layer from RBM channel
2, is set to 0 (lines 16-17). The combined inputs are used
to produce activation, h, at the associative layer, using the
recognition weights of channel 1, as shown in Figure 3. The
recognition weights of channel 1, w1

r , are then updated us-
ing the Equation 1 which serves to reduce the reconstruction
error for channel 1 by taking into consideration the differ-

52

Figure 3: Applying back-fitting to a two-channel DLA

ence between each saved h and h. This is repeated for every
training example. The error for channel 1 is computed and
added to e (lines 21-22). Coming back to the top of the for
while loop (line 12), an input example, v2, is presented to the
associative network from RBM channel 2 and the input (v1)
at RBM channel 1 is set to 0. The combined inputs are used
to produce activation, h, at the associative layer, using the
recognition weights of channel 2. The recognition weights
of channel 2, w2

r , are then updated. This is repeated for ev-
ery training example. The error for channel 2 is computed
and added to e.

The variation of the back-fitting algorithm described in
Algorithm 1 grows linearly with the number of channels.
After back-fitting has been successfully applied to a multi-
channel DLA, an input from one channel can produce fea-
tures at the associative layer that will reconstruct the remain-
ing channels with minimal error.

This technique provides two benefits to our multimodal
learning system: (1) The error associated with generative
weights of one channel is factored into the recognition
weights of other channels. Therefore, by updating the recog-
nition weights of one channel the reconstruction of other
channels are improved. (2) As the algorithm is linear in the
number of channels, the system will scale up nicely in terms
of time, unlike the supervised back-propagation approach
that scales exponentially. The back-fitting process yields n
sets of recognition weights and n sets of generative weights.
These weights can be used to produce all the 2n−2 possible
configurations of channel inputs to outputs. This is a sub-
stantialsavings in terms of space and structural complexity
as compared to the back-propagation solution. These ben-
efits make the unsupervised back-fitting algorithm a more
practical solution for fine-tuning a multimodal DLA over a
supervised approach.

Experimentation

Objective

The objective of the following experiment is to develop a
multimodal DLA and to test its ability to reconstruct all
channels given any one channel.

Figure 4: Template digits for the motor channel and an ex-
ample of noisy training images created from these templates.

Method

We use a dataset of images and audio recordings collected
from 20 male students. Each student was asked to write and
speak the digits 0 through 9 ten times. This yielded 100 im-
ages and 100 audio signals per person and 2000 images and
2000 audio recordings overall. Specifically, the dataset con-
tains 200 images and 200 audio recordings of each of the
digits 0 through 9. Each image is re-sized to 28-by-28 pixels
and the each audio recording is converted into a Short-Time
Fourier Transform (STFT) signal (Allen and Rabiner 1977).
These images and STFT signals are used as input for image
and audio channels respectively. The classification channel
is straightforward. It indicates the probability of the class of
the input image or audio signal being 0, 1, 2, 3, 4, 5, 6, 7,
8 or 9. As shown in the top portion of Figure 4, for the mo-
tor channel we designed a template for each digit encoded
as a sequence of seven Cartesian coordinates. A robotic arm
would follow this sequence vector of motor coordinates to
draw a digit in a 2-D space. To create a training example,
a small amount of random noise is added to each (x,y) co-
ordinate of a digit’s template to form a new vector. A noisy
training example of each digit is shown in Figure 4.

The RBM layers of the individual channels are of the sizes
shown in Figure 1. Each layer is trained using a learning rate
of 0.1 for all channels except the audio channel. The STFT
signal of the audio channel is represented using real val-
ues which requires a smaller learning rate of 0.01 (Hinton
2012). Once the individual channels are trained, the asso-
ciative memory layer is trained using the features from the
top RBM layers of each channel. A 10-fold cross validation
approach is taken to build and test the system. Each time
we train the system with data from 18 users (1800 exam-
ples) and test it with data from the remaining 2 users (200
examples). A portion of the training data (2 users or 200
examples) is used as a validation set to prevent the system
from over-fitting. The typical training time for a single cross-
validation run was 37.5 hours using two i7 CPU cores.

When the system is tested on an example, input values
are presented at the visible layer of each channel and used to
activate the hidden RBM layers. Ultimately, the input from
each channel produces activation at the top associative layer,
which in turn can be used to reconstruct the associated vis-
ible neurons of the other three channels. This procedure is
repeated for all four input channels. The performance re-
sults are calculated for each reconstructed channel based on
the desired output at its visible neurons. The classification
channel is evaluated based on how accurately it matches the
target class for each example. The reconstructed images are
evaluated using an image classifier. The image classifier is

53

a DBN developed by Hinton et al. (Hinton and Salakhut-
dinov 2006) which is retrained on our image dataset to a
test set accuracy of 99%. The audio in our system is repre-
sented STFT signal, which is an irreversible transformation
for actually producing sound. However, as with the image
channel, the reconstructed STFT signal can be tested using
an independent classifier developed using a random forest
algorithm trained to a test set accuracy of 93%. The recon-
struction of the motor channel vector is compared with the
template of the target digit for each example. The average
distance between each coordinate in the reconstructed vec-
tor and its corresponding coordinate in the target template is
used as the error metric. Based on an experiment with hu-
man subjects we determined that a reconstruction error less
than 2.2 on the motor channel means that the digit has been
correctly drawn for proper classification.

Results

The results are averaged over the 10-fold cross-validation
runs. The results are organized by reconstructed channel
to more easily compare the performance of the multimodal
DLA as a function of the input channel used.

Reconstruction of the Classification Channel. Table 1
shows the percent error in reconstructing each classification
channel by presenting input at the other three channels. Input
on the image channel reconstructed the classification chan-
nel with an average error of 4.1% and the audio channel re-
constructed the with an average error of 14%. We observed
a positive correlation between length of the utterance and
the error. The digits such as “6” and “8” had a shorter ut-
terance period compared to “4” and “5”, hence the lower
reconstruction error. We believe this effect could be miti-
gated by choosing a different length of STFT representa-
tion or using a more complex encoding technique such as
MFCC (Moselhy and Abdelnaiem 2013). The motor chan-
nel reconstructed the classification channel with no error.
The motor input signal is quite simple when compared to
the audio and image inputs; hence, it is able to send a clear
and concise reconstruction signal to the system.

Input 0 1 2 3 4 5 6 7 8 9 Overall
Image 3 6 4 8 4 2 4 0 8 2 4.1
Audio 12 26 10 19 16 15 1 14 3 24 14
Motor 0 0 0 0 0 0 0 0 0 0 0

Table 1: Percent error in reconstructing the classification
channel from each of the other channels.

Reconstruction of the Image Channel. Table 2 shows the
percent error in classification of the reconstructed images by
presenting class, audio and motor as input. The class chan-
nel and motor channel reconstructed images with no error,
whereas the audio channel produced the image channel with
an average error of 19%. This is due to the difference in the
complexity of the signals from the various input channels.
The audio channel signal is much more complex compared
to the class and motor channels. Figure 5 shows examples of
reconstructed images giving input on various channels.

Input 0 1 2 3 4 5 6 7 8 9 Overall
Class 0 0 0 0 0 0 0 0 0 0 0
Audio 26 16 14 10 33 24 2 21 16 24 19
Motor 0 0 0 0 0 0 0 0 0 0 0

Table 2: Percent error in reconstructing the image channel
from each of the other channels.

Figure 5: Examples of reconstructed images given each of
the other channels.

It is important to note that an additional experiment in-
volving a system with only an image and audio channel has
shown that the image channel can be reconstructed with an
error of 17% when given the audio channel. Therefore, the
success of reconstructing a matching image given an audio
signal remains high and independent of the classification and
motor channels being present. For further details please see
(Iqbal 2015).

Reconstruction of the Audio Channel. Table 3 shows the
percent error in reconstructing the audio channel STFT sig-
nal given each of the other channels. Again, the classification
channel reconstructed the audio channel with no error. The
motor channel produced 11% error while the image channel
produced 19% error. We remain uncertain why input on the
motor channel for the digit 5 did so poorly.

Input 0 1 2 3 4 5 6 7 8 9 Overall
Class 0 0 0 0 0 0 0 0 0 0 0
Image 20 20 5 25 40 10 5 20 5 35 19
Motor 0 0 0 0 20 90 0 0 0 0 11

Table 3: Percent error in reconstructing the Audio channel
from each of the other channels.

Reconstruction of the Motor Channel. Table 4 and Fig-
ure 6 show the percent error in reconstructing the motor
channel given the other three channels. Examples of the re-
constructed motor vectors are shown in Figure 7. The audio
channel input resulted in the highest average reconstruction
error of 1.92, well under the the acceptable error of 2.2. The
class channel and the image channel had lower average er-
rors of 1.43 and 1.63, respectively.

54

Input 0 1 2 3 4 5 6 7 8 9 Overall
Class 0.91 2.05 1.33 1.90 1.40 1.56 1.2 1.64 1.00 1.32 1.43
Image 1.01 2.16 1.55 2.06 1.87 1.69 1.29 1.69 1.64 1.33 1.63
Audio 1.93 2.52 1.84 2.26 2.48 1.84 1.28 2.07 1.39 1.58 1.92

Table 4: Error in reconstructing the motor channel from each
of the other channels.

Figure 6: Error in reconstructing the motor channel from
each of the other channels.

Conclusions

The results from the experimentation have shown that our
unsupervised deep multimodal system is able to overcome
the two challenges posed in the introduction of this paper.
The iterative back-fitting algorithm that we employ is able to
associate channels of varying signal complexity while miti-
gating the dependence of associative memory on the domi-
nant channels. The approach also scales linearly in the num-
ber of DBN channels, because the only added computation
for a new channel is updating the recognition weights be-
tween that channel and the associative memory. This means
that the back-fitting iterations will grow linearly with each
new channel. For further details please see (Iqbal 2015).

The results of the experimentation confirm that our unsu-
pervised deep multimodal system is able to accurately re-
construct one channel given input on any other channel. The
reconstruction accuracy does vary based upon the complex-
ity of the input signal for a channel. Channels with less com-
plex signals, such as classification and motor channels, pro-
duced more accurate class features in the shared associative
memory and these features can then more accurately recon-
struct the outputs for all other channels. Channels with more
complex signals such as image and audio often produce less
accurate features in the shared associative memory and these
lead to greater reconstruction errors at the visible neurons of
the other channels.

In this research, our training examples contain values for
all modalities. In reality, such examples are scarce. For in-
stance, consider the process of learning the modal inputs of
the concept “cat”. At first we might see a cat and hear it
meow but not get to touch or smell the cat. We learn the
visual features and sound features of the cat and associate
these two modalities. At a later point in time, we get to touch
and see a cat but the cat makes no sound. Now we can asso-
ciate the touch of a cat with its most recent image and poten-

Figure 7: Examples of reconstructed motor vectors given
each of the other channels.

tially the prior visual and audio features. In future work we
plan to enhance the multimodal DLA system to learn using
examples that have modalities that are absent.

References
Allen, J. B., and Rabiner, L. R. 1977. A unified approach to
short-time fourier analysis and synthesis. Proceedings of the IEEE
65(11):1558–1564.
Bengio, Y. 2009. Learning deep architectures for AI. Foundations
and Trends in Machine Learning 2(1):1–127. Also published as a
book. Now Publishers, 2009.
Hinton, G. E., and Salakhutdinov, R. R. 2006. Reducing the dimen-
sionality of data with neural networks. Science 313(5786):504–
507.
Hinton, G. E.; Dayan, P.; Frey, B. J.; and Neal, R. M. 1995. The
“wake-sleep” algorithm for unsupervised neural networks. Science
268(5214):1158–1161.
Hinton, G. E.; Osindero, S.; and Teh, Y.-W. 2006. A fast learning
algorithm for deep belief nets. Neural computation 18(7):1527–
1554.
Hinton, G. E. 2007. Learning multiple layers of representation.
Trends in cognitive sciences 11(10):428–434.
Hinton, G. E. 2012. A practical guide to training restricted Boltz-
mann machines. In Neural Networks: Tricks of the Trade. Springer.
599–619.
Iqbal, M. S. 2015. Mulit-modal learning using an unsupervised
deep learning architecture. Master’s thesis, Acadia University,
Canada.
Karpathy, A., and Fei-Fei, L. 2015. Deep visual-semantic align-
ments for generating image descriptions. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR).
Kiros, R.; Salakhutdinov, R.; and Zemel, R. 2014. Multimodal
neural language models. In Proceedings of the 31st International
Conference on Machine Learning (ICML-14), 595–603.
Moselhy, A. M., and Abdelnaiem, A. A. 2013. Lpc and mfcc
performance evaluation with artificial neural network for spoken
language identification. signal processing 10:11.
Ngiam, J.; Khosla, A.; Kim, M.; Nam, J.; Lee, H.; and Ng, A. Y.
2011. Multimodal deep learning. In Proceedings of the 28th inter-
national conference on machine learning (ICML-11), 689–696.
Socher, R.; Karpathy, A.; Le, Q. V.; Manning, C. D.; and Ng, A. Y.
2014. Grounded compositional semantics for finding and describ-
ing images with sentences. Transactions of the Association for
Computational Linguistics 2:207–218.
Srivastava, N., and Salakhutdinov, R. R. 2012. Multimodal learn-
ing with deep Boltzmann machines. In Advances in neural infor-
mation processing systems, 2222–2230.

55

