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Abstract

Attacks on Recommender Systems (RS) tend to bias predic-
tions and corrupt datasets, which may cause user distrust in
the recommendations and dissatisfaction with the RS. At-
tacks on RSs are mounted by malicious users to “push” or
promote an item, “nuke” or disparage an item, or simply
to disrupt the recommendations; typically, attacks are moti-
vated by financial gains, by a desire to “game” the system,
or both. Although attack research indicates that item-based
recommenders are resistant to a wide variety of push and
nuke attacks, in previous work we have shown that push at-
tacks on item-based recommenders can be effective using a
multiple-target approach. In this paper, we explore nuke at-
tacks on item-based recommenders using a multiple-target
approach and variations on the Pearson Correlation calcula-
tion. We show that nuke attacks using a multiple-target ap-
proach can be configured to be effective against item-based
recommenders. To evaluate the effectiveness of these attacks,
we use new and existing robustness metrics and an experi-
mental design that includes a variety of attack models, attack
sizes, target item types, number of target items, and datasets.

1 Introduction

Online systems provide recommenders to help users de-
termine which products and services to purchase. How-
ever, these systems unintentionally provide fertile ground
for malicious users who, intent on gaming the system, take
the opportunity to promote items (“push”), disparage items
(“nuke”), or disrupt the recommender for financial gain or
pleasure. Over the years, attacks on RSs have been docu-
mented in the media and, most recently, reports of “fake
reviews” attacks on Amazon.com have been made pub-
lic:1 Amazon’s complaint is that “While small in number,
these reviews threaten to undermine the trust that customers,
and the vast majority of sellers and manufacturers, place
in Amazon, thereby tarnishing Amazon’s brand”. Fake re-
views on TripAdvisor, also previously reported in the me-
dia, have been used to explicitly disparage hotel accommo-
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1http://www.reuters.com/article/2015/04/10/us-
amazon-com-lawsuit-fake-reviews-
idUSKBN0N02LP20150410#qY7xxdzAfg0Y5P6s.97

dations causing undue harm to hotel operators.2

Previous work has shown that item-based collaborative
recommenders are more robust to push and nuke attacks
(Lam and Riedl 2004; Mobasher et al. 2007) compared to
user-based recommenders; that work used various attack
models consisting of user profiles composed of items with
average or randomly-selected ratings and also included sin-
gle target items for attack purposes. The “power item and
multiple-target” Power Item Attack (PIA-MT) model (Sem-
inario and Wilson 2014), showed that the item-based algo-
rithm is also vulnerable to push attacks. In this context,
power items are those that explicitly exert a degree of in-
fluence (positive or negative) over many other items during
item-based prediction calculations. Power items are selected
using heuristic methods such as InDegree (based on Social
Network Analysis concepts (Wasserman and Faust 1994))
and NumRatings (based on item popularity).

This study investigates the use of power items and
multiple-targets to mount nuke attacks against item-based
recommenders. Our main research question is, RQ1: Can
the Power Item Attack (PIA-MT) mount successful nuke at-
tacks (from the attacker’s viewpoint) against item-based rec-
ommenders? And our hypothesis is, H1: A small number
of attackers (< 5% of all users) can mount successful nuke
attacks (from the attacker’s viewpoint) against item-based
recommenders. Success will be measured using robustness
metrics outlined in Section 4.

2 Related Work

Attacks on RSs by providing false ratings have been called
“shilling attacks” (Lam and Riedl 2004), or “profile injec-
tion attacks” (Mobasher et al. 2007; O’Mahony, Hurley, and
Silvestre 2005). Since 2002, research in attacks on recom-
mender systems has been performed (O’Mahony, Hurley,
and Silvestre 2002) and a recent summary describes RS
attack models, attack detection, and algorithm robustness
(Burke, O’Mahony, and Hurley 2011). In (Wilson and Sem-
inario 2013), a novel Power User Attack (PUA) model was
defined to use a set of power user profiles with biased rat-
ings that influence the results presented to other users. The

2http://www.dailymail.co.uk/travel/article-
2059000/TripAdvisor-controversy-Reviews-website-launches-
complaints-hotlines.html
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Table 1: PIA-MT Attack User Profile Contents
IS , Selected Items IF , F iller IT , Target Items

Power Items: Multiple Targets:
ratings set with normal Empty ratings set to 1
dist around item mean for nuke attacks

PUA relies critically on the method of power user identifi-
cation/selection, so a novel use of degree centrality concepts
from Social Network Analysis (Wasserman and Faust 1994)
was also developed and evaluated for identifying influential
RS power users that can be used to generate synthetic users
for attack purposes (Wilson and Seminario 2014).

Previous work has shown that item-based collaborative
recommenders are more robust to push and nuke attacks
compared to user-based recommenders (Lam and Riedl
2004; Mobasher et al. 2007). E.g., Average and Reverse
Bandwagon attacks against item-based recommenders were
successful albeit to a much lesser degree compared to user-
based recommenders (Mobasher et al. 2007). In (Wilson and
Seminario 2014; Seminario and Wilson 2014), we showed
that effective push attacks using synthetic attackers em-
ulating power users can be mounted against user-based,
item-based, and SVD-based recommenders. Another study
showed that effective nuke attacks can be mounted against
user-based and SVD-based recommenders (Seminario and
Wilson 2015); that study also indicated that item-based rec-
ommenders remained robust to nuke attacks.

Therefore, the gap in this research is whether an attack
model can be configured to generate effective nuke attacks
against item-based algorithms. And this remains an open
question in RS attack research that we explore in this study.

3 Power Item Attack Background

In order to study RS attacks based on explicit measures
of influence, the Power User Attack (PUA) model uses a
set of power user profiles with biased ratings that influ-
ence the results presented to other users (Wilson and Sem-
inario 2013). To conduct attacks against item-based recom-
menders, the complementary notion of the Power Item At-
tack (PIA) containing “power items” (Seminario and Wil-
son 2014) was introduced, those items are most influential in
nearest-neighbor prediction calculations. The Multiple Tar-
get variant, known as PIA-MT, was also introduced to gener-
ate effective push attacks on item-based recommenders. The
PIA-MT is more effective than single-target PIA and attacks
multiple items simultaneously, although it can be more sus-
ceptible to detection. Power items are part of the attack user
profile (a row in the RS user-item matrix), as shown in Ta-
ble 1, and are used to associate with the target items also
present in the profile. The combination of power items and
target items present in one or more attack user profiles are
then used by the PIA-MT to correlate with other items in the
dataset in order to influence the prediction calculation.

Power Items: The PIA-MT relies critically on the method
of power item identification/selection. In this paper, power
items are selected in a manner analogous to power user se-
lection methods described in (Wilson and Seminario 2013)

and consist of the following heuristic approaches:
In-Degree Centrality (InDegree or ID): This method is
based on in-degree centrality where power items are those
that participate in the largest number of neighborhoods
(Wasserman and Faust 1994; Lathia, Hailes, and Capra
2008). In our implementation, for each item i compute sim-
ilarity with every other item j applying significance weight-
ing ncij/50, where ncij is the number of co-ratings and 50
was determined empirically by (Herlocker et al. 1999) to op-
timize RS accuracy. Next, discard all but the top-k neighbors
for each item i. Count the number of similarity scores for
each item j (# neighborhoods item j is in), and select the
top-k item j’s.
Number of Ratings (NumRatings or NR): This method is
based on (Herlocker et al. 2004) where “power user” refers
to users with the highest number of ratings. In an analogous
fashion, the top-k items (based on the total number of rat-
ings) were selected as the power items.
Random (Rand): This method selects power items
(IS , Selected Items in Table 1) randomly to obtain a di-
verse cross-section of item characteristics such as popu-
larity (highest number of ratings) and likability (highest
ratings). Although not an “influential” power item selec-
tion method per se, Rand is used primarily to compare
with results obtained from InDegree and NumRatings power
item selection methods. The PIA-MT Random model dif-
fers from the Random attack model (Lam and Riedl 2004;
Mobasher et al. 2007) in that power item ratings are set
around the item mean (rather than system mean), and the
presence of multiple (rather than single) targets.

Target Items: The PIA-MT also relies critically on the tar-
get items that are selected for inclusion in the attack user
profiles. In prior research (Lam and Riedl 2004; Mobasher
et al. 2007; Wilson and Seminario 2013), target items were
selected either randomly, because of their association with
IS , Selected Items, or to represent a diverse set of items
based on their popularity, likability, and entropy (ratings dis-
persion). Items with low popularity or “New” items have few
ratings and are usually easier to attack because their aver-
age rating can be easily manipulated by a group of attack-
ers. From previous research (Seminario and Wilson 2014),
it was shown that New target items are more vulnerable to
attack than New and Established targets. For this study, we
use target items that are challenging to attack in addition to
those that are selected randomly: Most Liked (ML) items
with the highest ratings; Most Popular (MP) items with the
most number of ratings; and Random (RND) a diverse set
of items selected randomly from the dataset.

The attack intent, in this case nuke, is applied to the mul-
tiple target items simultaneously at run time. To conduct the
attacks, synthetic attack user profiles (as in Table 1) were
generated that contained power items (InDegree, NumRat-
ings, or Random) and target items (ML, MP, or RND), as
described in (Seminario and Wilson 2014).

4 Evaluation Metrics
The main objective of a nuke attack in ratings-based sys-
tems is to remove target items from, or to prevent them from
showing up in, users’ top-N lists. To achieve this objective,
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the attacker must manipulate the computed predictions for
the target items so they are sufficiently reduced and, conse-
quently, those target items are moved off the top-N lists and
replaced by non-target items with higher prediction values.

To evaluate attacks on collaborative recommenders, ro-
bustness metrics were developed (Mobasher et al. 2007;
Burke, O’Mahony, and Hurley 2011) such as Hit Ratio
(HR) which measures the percentage of users with the tar-
get item in their top-N lists, Prediction Shift (PS) which
measures the change in prediction calculation from before
to after the attack, and Rank (R) which indicates the ordinal
location of the target item in the top-N list. Average values
for each of these metrics are calculated over all users and tar-
get items. After a successful nuke attack, we would expect
to see a low HR, a negative PS, and a high R assuming that
the target item had a higher HR and lower R before the at-
tack. For attacks using multiple targets in the attack user pro-
files, the Number of Target Items Per User (NTPU ) metric
was developed (Seminario and Wilson 2014) that measures
the average number of target items per user (over all target
items and users) and Normalized NTPU (NNTPU ) which
is the product of HR and NTPU and is used to compare
attack results. The NTPU and NNTPU metrics indicate
the extent to which a multiple-target attack has successfully
caused target items to appear in top-N lists; higher values
indicate presence of more target items in top-N lists.

In our experimentation we found that with nuke attacks,
and multiple-targets in particular, some of the above metrics
may not always provide a practical interpretation of the at-
tack results, i.e., when R is well beyond the top-N threshold
prior to the attack (see Table 3) and remains so afterwards,
does it really matter that there were small differences in PS
and R? Therefore, to better evaluate the attacks in this study,
we have developed two new metrics that focus on the key
objectives of the nuke attack:

Average HR Shift (HRS): Measures the change in HR
from before the attack to after the attack and is expressed as
a percentage. A positive HRS would indicate an increase in
HR occurred as a result of the attack. For successful nuke
attacks, we expect to see negative HRS.

Normalized NTPU Shift (NNS): Measures the change
in NNTPU from before the attack to after the attack and is
expressed as a number. A positive NNS would indicate an
increase in NNTPU occurred as a result of the attack. For
successful nuke attacks, we expect to see negative NNS.

5 Experimental Design

To address our research question and hypothesis, we con-
ducted two experiments using the PIA-MT attack model:
Experiment 1 (E1): Power Item Multiple-Target Nuke At-
tack, Positive Similarities only. Positive Pearson Correla-
tion similarity has been used widely in attack research, e.g.,
(Lam and Riedl 2004; Mobasher et al. 2007) to avoid poten-
tial prediction inconsistencies.3 Our experimentation found
that with this assumption, the PIA-MT was not successful

3Other researchers (Herlocker et al. 1999; Sarwar et al. 2001)
used similarities >= 0 to improve performance and accuracy.

against item-based recommenders; in fact, for some target
item types the results resembled effective push attacks.
Experiment 2 (E2): Power Item Multiple-Target Nuke At-
tack, Positive and Negative Similarities. To obtain more ac-
curate correlation between target items and other items, we
adjusted the item-based algorithm to include all similari-
ties (positive and negative) during the prediction calculation.
The results of this attack are much improved over E1 and in-
dicate that the use of full similarity correlation contributes
to the effectiveness of the attack. We also note that RS ac-
curacy (MAE) changed by small, albeit statistically signif-
icant amounts (p < 0.001), when moving to full correla-
tion similarities: MAE change was +0.022 for MovieLens4

ML100K5 and -0.008 for ML1M6 datasets.
Evaluation Metrics: Evaluations were performed using

the metrics7 described in § 4. The top-N list of recommenda-
tions for Hit Ratio calculations use N=40, based on analysis
in (Lam and Riedl 2004) that the median recommendation
search ends within the first 40 items displayed.

Datasets and Algorithms: We used MovieLens4

ML100K5 and ML1M6 datasets. The CF item-based
weighted (IBW) algorithm (Sarwar et al. 2001) uses Pear-
son Correlation similarity with a threshold of 0.0 (positive
correlation) and -1.0 (positive and negative correlation), and
significance weighting of n/50 where n is the number of
co-rated items (Herlocker et al. 1999). We used IBW from
Apache Mahout8 and added functionality to implement
similarity thresholding (0.0) and significance weighting
(n/50). Also, Mahout “centers” the data for Pearson, making
it mathematically equivalent to cosine similarity.

Power Item Selection: The InDegree (ID), NumRatings
(NR), and Random (Rand) methods described in § 3 were
used. The number of power items included in the attack user
profile varied for each dataset. For ML100K, we used 166
(10% of items in the dataset), 83 (5%), and 17 (1%) power
items. For ML1M, we used 184 (5% of items in the dataset),
37 (1%), and 4 (0.1%) power items.

Target Item Selection: Target items were selected as de-
scribed in § 3. We varied the number of target items used
for attacking each dataset. For ML100K, we used 50 (3% of
items in the dataset) and 10 (0.6%) target items. For ML1M,
we used 184 (5% of items in the dataset), 37 (1%), and 18
(0.5%) target items. Statistical characteristics of each target
set, i.e., average number of ratings, average rating (μ), stan-
dard deviation of rating (σ), and average rating entropy (S),
are given in Table 2.

Attack Parameter Selection: The Attack Intent is Nuke,
i.e., target item rating is set to min (= 1). The Attack Size
or number of synthetic attack user profiles in each attack
varied by dataset: 50 (5% of users in the dataset) and 10
(1%) attackers for ML100K, 60 (1% of users in the dataset)
and 6 (0.1%) for ML1M. Attack sizes, also expressed as
(#attackers

#users ∗ 100)%, were selected based on previous re-

4http://www.grouplens.org
5nominal 100,000 ratings, 1,682 movies, and 943 users.
6nominal 1,000,209 ratings, 3,883 movies, 6,040 users.
7Note: Mean Reciprocal Rank may be explored in future work.
8http://mahout.apache.org
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Table 2: Target Item Ratings Statistics

Target type & # Avg# μ σ S

ML100K-ML-10T 1.6 5.000 0.000 0.000
ML100K-ML-50T 130.6 4.471 0.610 1.109
ML100K-MP-10T 486.3 3.753 1.019 1.935
ML100K-MP-50T 356.8 3.864 0.972 1.860
ML100K-RND-10T 104.5 3.257 0.900 1.721
ML100K-RND-50T 73.8 3.133 1.003 1.770

ML1M-ML-18T 37.1 4.885 0.177 0.330
ML1M-ML-37T 501.6 4.687 0.429 0.796
ML1M-ML-184T 614.0 4.364 0.755 1.413
ML1M-MP-18T 2508.8 4.224 0.877 1.632
ML1M-MP-37T 2228.4 4.150 0.889 1.678
ML1M-MP-184T 1420.0 3.907 0.943 1.816
ML1M-RND-18T 204.5 3.182 0.903 1.717
ML1M-RND-37T 248.1 3.236 0.953 1.800
ML1M-RND-184T 226.0 3.171 0.969 1.846

search (Mobasher et al. 2007; Burke, O’Mahony, and Hurley
2011), where a 5%-10% attack size was shown to be effec-
tive. Attack profiles were generated as described in § 3.

Test Variations: We used 2 datasets, 2 item similarity
threshold values, 3 power item selection methods, 6 power
item sizes, 3 target item types, and 5 attack sizes.

6 Results and Discussion

E1: Power Item Multiple-Target Nuke Attack, Positive
Similarities only. To conduct this experiment, we first select
target items according to one of 3 criteria (Most Liked, Most
Popular, Random), select power items using one of 3 meth-
ods (InDegree, NumRatings, Random), generate synthetic
attack user profiles using power items and target items, ap-
pend the synthetic profiles to each of two datasets (ML100K,
ML1M) and begin the attack process. To mount each attack,
we iterate through each user and request recommendations
until all target items have been recommended (if possible);
when a target item is presented as a recommendation, we
make note of the “hit” if it is presented within the top-N
recommendations, and store away prediction and rank or-
der information. When all users have been processed, we
compute NTPU , NNTPU , NNS, HR, HRS, PS, and
R. This process is repeated for each variation described in
§ 5. Baseline target item values (before the attack) for key
metrics in each dataset configuration are shown in Table 3.
Successful nuke attacks will have negative HRS and NNS.

Results shown in Figure 1 indicate a Hit Ratio Shift that
is mostly non-negative, i.e, the attacks have not resulted in
significantly reducing the number of target items in users’
top-N lists. For Most Liked (ML) target items, the number
of target items in the top-N lists increased or remained the
same; for Most Popular (MP) targets (not shown), there is
no change to an already low number of target items (see Ta-
ble 3). And for Random (RND) targets we see mixed results:
a slightly negative HRS for attacks with the most number
of targets (184) and positive HRS for the other cases. The
results in Figure 2 confirm that the attacks were not success-

Table 3: Baseline Target Item Metrics Before Attack

Avg

Target type & # HR R Rating NNTPU

Experiment 1

ML1M-ML-18T 49.2% 902 3.943 0.648
ML1M-ML-37T 76.4% 1125 3.867 1.412
ML1M-ML-184T 92.5% 1181 3.834 2.598
ML1M-MP-18T 0.0% 1675 3.741 0.000
ML1M-MP-37T 0.3% 1661 3.746 0.003
ML1M-MP-184T 1.8% 1756 3.733 0.024
ML1M-RND-18T 8.7% 1736 3.718 0.088
ML1M-RND-37T 20.1% 1704 3.728 0.215
ML1M-RND-184T 73.7% 1720 3.725 1.183
Experiment 2

ML1M-ML-18T 17.4% 1178 3.873 0.182
ML1M-ML-37T 46.0% 1216 3.863 0.575
ML1M-ML-184T 87.9% 1223 3.867 2.365
ML1M-MP-18T 0.5% 1617 3.756 0.006
ML1M-MP-37T 2.0% 1599 3.767 0.022
ML1M-MP-184T 12.3% 1671 3.749 0.207
ML1M-RND-18T 13.4% 1721 3.685 0.143
ML1M-RND-37T 15.9% 1700 3.695 0.171
ML1M-RND-184T 86.5% 1717 3.685 1.829

ful (from the attacker’s viewpoint) with across-the-board in-
creases in the number of target items per user for ML and
RND targets; NNS for MP items was very close to zero for
all variations. For ML100K (not shown), we also observed
across-the-board increases in HRS and NNS, indicating
ineffective nuke attacks.

Overall, the E1 results did not indicate effective nuke at-
tacks, i.e., there was little or no decline in the number of
target items in users’ top-N lists. In many cases, results are
more similar to push rather than nuke attacks9, i.e., positive
HRS and NNS. Several factors contribute to this, such as
strength of the attack (i.e., attack size, number and influence
of attack profile items), number and characteristics of tar-
gets, and Pearson Correlation similarity (i.e, positive-only
vs. positive and negative). Results in Figure 1 indicate that
relatively weak attacks (fewer number of targets) are unable
to impact the high Hit Ratio of target items before the at-
tack (Table 3). In addition, ratings distribution of low ratings
in the dataset (about 6% 1’s and 11% 2’s in both ML100K
and ML1M) can have a significant impacts on predictions
(Burke, O’Mahony, and Hurley 2011). Since IBW predic-
tions are based on items in the user profile that are similar to
the target item(s), there are fewer opportunities for user pro-
file items to correlate highly with 1-rated target items and is
further exacerbated by using positive-only Pearson correla-
tions. Hypothesis H1 cannot be accepted for E1 (ML100K,
ML1M) since no attack configuration achieved significant
negative HRS and NNS results.

E2: Power Item Multiple-Target Nuke Attack, Positive
and Negative Similarities: The E2 experiment was con-
ducted using the same process as E1. The only change

9Positive Prediction Shift for nuke attacks has also been ob-
served before (Mobasher et al. 2007; Seminario and Wilson 2015).
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Figure 1: E1 – Average Hit Ratio Shift using ML1M with
Positive Pearson Correlation Similarity

Figure 2: E1 – Normalized NTPU Shift using ML1M with
Positive Pearson Correlation Similarity

was to use the full range of Pearson similarities, both pos-
itive and negative. The objective was to exploit the nega-
tive correlations between power items (typically rated above
average) and target items (ratings set to 1 for nuking).
Results in Figures 3 and 4 indicate that the attacks with
the highest number of target items (184) were quite effec-
tive in removing target items from top-N lists and reduc-
ing the number of target items per user for all target item

Figure 3: E2 – Average Hit Ratio Shift using ML1M with
Positive and Negative Pearson Correlation Similarity

Figure 4: E2 – Normalized NTPU Shift using ML1M with
Positive and Negative Pearson Correlation Similarity

and power item types. We also observed that, for ML1M,
the boundary between effective and non-effective multiple-
target nuke attacks lies between 37 and 184 targets (1%
to 5% of all items), and 6 and 60 users (0.1% to 1% of
all users). Although not tested here, it appears that effec-
tive attacks could be mounted with < 5% of all items (as
targets) thus avoiding detection. An interesting result to
note is that HRS and NNS display a phenomenon simi-
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lar to that observed in previous work (Mobasher et al. 2007;
Seminario and Wilson 2014), i.e., as the number of power
items decreases (from 184 to 37 to 4 in Figures 3 and 4),
the attack effectiveness increases. This occurs for all three
power item selection methods at the level of 184 targets and
may be caused by including too many item ratings that could
make the profile dissimilar to a given user (Mobasher et al.
2007).

For ML targets, NNS was reduced significantly for all
target item levels compared with E1 results. The HRS for
the highest target item size (184) was also significantly im-
proved from E1. For MP targets (not shown), there was a
significant reduction in the HRS and NNS metrics albeit
from a small number of hits. For RND targets, the improve-
ment in the HRS and NNS metrics was also significant.
For ML100K (not shown), we observed significant reduc-
tions (14%) in HRS and NNS metrics for MP and RND
target items for 50 target item attacks; for ML targets, there
were significant increases in HRS and NNS indicating in-
effective attacks. The use of positive and negative correla-
tions for prediction calculations contributed significantly to
attack effectiveness in E2. However, as found in E1, results
for middle and low end target item sizes (37 and 18) still
indicate characteristics of push rather than nuke attacks and
will be analyzed in future work.

We recognize the fact that attackers are unable to set simi-
larity parameters in publicly-available recommenders, how-
ever, we note for system operators that this particular attack
indicates a vulnerability in the item-based algorithm that
can result in either push or nuke impacts. From an attacker’s
perspective, a low-cost10 and effective attack is the goal. Al-
though attackers may find it difficult, albeit not impossible,
to specify ID power items, finding NR power items as well
as ML and MP target items should be simple using publicly-
available data. We also note for system operators that a low
cost/knowledge PIA-MT attack with Rand power items and
RND targets can result in attacks as effective as those using
InDegree and NumRatings power items. Our hypothesis H1
is accepted for E2 (partially for ML100K, fully for ML1M)
since all attack configurations (InDegree, NumRatings, Ran-
dom) were able to achieve significant reductions in HRS
and NNS results using a small number of attackers.

7 Conclusion

This paper evaluated power item nuke attacks against item-
based collaborative recommenders using new and existing
robustness metrics. System operators should note that the
use of positive and negative Pearson Correlation similarity
can enable an attacker’s ability to mount effective PIA-MT
nuke attacks against an item-based recommender. Results
also indicate that weaker nuke attacks have similar robust-
ness characteristics as effective push attacks, i.e., the num-
ber of target items appearing in users’ top-N lists increase
after attack. Our future work in this area will be to model
how the weak multiple-target nuke attacks on item-based
recommenders morph into push attacks, and to further in-
vestigate the effectiveness of the Rand/RND PIA-MT attack

10Cost of generating attack user profiles and mounting the attack.

compared to the InDegree and NumRatings variants.
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