
Structural Sentence Similarity Estimation for Short Texts

Weicheng Ma
Computer Science Department
City University of New York
365 5th Ave., New York, NY

wm724@nyu.edu

Torsten Suel
Computer Science Department
Tandon School of Engineering

New York University
6 MetroTech Center, Brooklyn, NY

torsten.suel@nyu.edu

Abstract

Sentence similarity is the basis of most text-related tasks.
In this paper, we define a new task of sentence similar-
ity estimation specifically for short while informal, social-
network styled sentences. The new type of sentence similar-
ity, which we call Structural Similarity, eliminates syntactic
or grammatical features such as dependency paths and Part-
of-Speech (POS) tagging which do not have enough repre-
sentativeness on short sentences. Structural Similarity does
not consider actual meanings of the sentences either but puts
more emphasis on the similarities of sentence structures, so as
to discover purpose- or emotion-level similarities. The idea is
based on the observation that people tend to use sentences
with similar structures to express similar feelings. Besides
the definition, we present a new feature set and a mechanism
to calculate the scores, and, for the needs of disambiguating
word senses we propose a variant of the Word2Vec model to
represent words. We prove the correctness and advancement
of our sentence similarity measurement by experiments.

Introduction

Proper estimation of sentence similarity is crucial to most
text-related applications. Question Answering Systems re-
quire sentence similarity to match question-question or
question-answer pairs(Wang and Ittycheriah 2015; Yan and
Tian 2015). Similarity scores between the original sentence
and that in the destination language manages the decision
at each step in Machine Translation tasks(Tu et al. 2015;
Xu et al. 2014). However the applications seldom follow
the same standard in defining the sentence similarities. For
example sentimental analysis tasks focus more on critical
words while question answering systems rely more on syn-
tactic features.

The difference in selections of sentence similarity mea-
surement is due to the distinction of their goals, so it is
hard to give a pervasive definition for all the text-related
tasks. Due to the fact that most sentences on social-networks
are short while highly informal in grammar and the use
of words, it does not seem to be a valid solution to ap-
ply either syntactic or semantic analysis directly on social-
network corpora. Some systems try to correct the grammars

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and words then treat them in the same way as grammati-
cally correct sentences. But the elimination of the special ex-
pressions (e.g., emoticons, specially ordered sentences, etc.)
and self-made words (e.g., Whaaaaat, sooooo, etc.) causes
a clear loss of emotional information. Other methods, es-
pecially neural network based systems like Convolutional
Neural Networks (CNNs)(He, Gimpel, and Lin 2015; Tu et
al. 2015; Zhang, Zhao, and LeCun 2015; Hu et al. 2014)
and Recurrent Neural Networks (RNNs)(Cho et al. 2014;
Hill et al. 2015; Chung et al. 2014) are successful in avoid-
ing building syntactic analysis pipelines, but the size and
number of sliding windows in CNNs, as well as the recur-
sion times in RNNs are strictly limited by the length of the
social-network styled sentences, thus affecting the accuracy
of sampling and parameter tuning. So new a new standard
of sentence similarity estimation is urgently needed for dis-
covering human emotions and feelings in short and informal
oral sentences.

Previous work has been done in solving the short sen-
tence similarity estimation problem(Metzler, Dumais, and
Meek 2007; Tang et al. 2012; Islam and Inkpen 2009;
Chen et al. 2012). (Xu et al. 2014) combined multiple fea-
tures including lexicon, POS tagging and topic information
in paraphrase detection task. Their work was evaluated on
a SemEval task. (Li et al. 2006) combined word sequence
features into a semantic analysis task and solved the clas-
sic “who bites who” problem (e.g., “The cat bites the dog”
vs. “The dog bites the cat”). Though most of these previ-
ous work claimed high performance in specific tasks, they
still concentrated more on the similarities of actual mean-
ings of the sentences so still performed like variations of the
standard Bag-of-Words methods. And since they still used
WordNet plus POS tagging to disambiguate words in the
sentences, their success could hardly be extended to social-
network corpora.

To overcome the disadvantages of former works on pur-
pose mining task over social-network corpora, we in this pa-
per present a new definition to sentence similarities specif-
ically for those short while casual sentences. We do not
emphasize sentiment analysis in our work but it is com-
pletely fine to combine our mechanism with other text anal-
ysis methods to tackle different problems. Also it is possible
that some applications such as sentiment analysis(Pang and
Lee 2008; Rosenthal et al. 2015) or event extraction(Ritter

Proceedings of the Twenty-Ninth International
Florida Artificial Intelligence Research Society Conference

232

et al. 2012; Zhou, Chen, and He 2015) prefer simpler feature
set, while the features we choose are for general purpose on
short sentence analysis tasks.

One problem of dropping syntactic parsing completely
lies in the word sense disambiguation task. To deal with this
problem, we propose a new vector representation of words,
which is a variation of the Word2Vec model. Different from
using single vector, we cluster candidate vectors and keep
multiple seed vectors when representing each word. In use,
for a certain word we combine the word vectors of every
other word in its context to form a new vector, calculate
cosine similarity between the new vector with each vector
representing the word, select the closest vector and return it
with the similarity.

In the next section we give formal definition of the task
on which our method is designed. We arrange feature selec-
tion and sentence similarity calculation metrics in Section 3.
In Section 4 we describe the language model we use to rep-
resent the words. We design experiments to test our system
and show the results in Section 5. We put the conclusion and
future plans at the end of this paper.

Task Definition

In this section we formally define the task of structural sen-
tence similarity estimation for short while grammatically in-
formal sentences specifically. Our sentence similarity does
not necessarily reveal similarities in meaning, but discovers
emotional feelings. Our original idea was based on the ob-
servation that people tend to use similar sentence structures
to express similar emotions. This definition can also work
with other methods such as semantic parsing or RNNs with
no negative effect to the results.

Applicable Corpora

Intended use of this definition of sentence similarity estima-
tion is on short and informal sentences which can not be
accurately parsed by grammar based syntactic parsers. Ex-
amples of such datasets include social-network posts such
as Twitter tweets, SMS texts and a portion of questions in
question answering systems.

Structural Sentence Similarity

The kind of sentence similarity we present here is different
from other measurements in the sense that it does not induce
sentences to grammar rules but tries to extract the skeletons
of both sentences. Another difference between structural
sentence similarity and semantic similarity is that the lexical
meanings of words do not govern but the contexts do. These
characteristics make structural sentence similarity less sensi-
tive to distinctions in actual meaning such as subject-object
differences. Instead minor difference in sentence skeletons,
for example reversely ordered subject-predicate pairs, may
result in big difference in similarity scores. Still using the
cat-mouse example, semantic sentence similarity estimation
systems would say that the sentence “A cat chases a mouse”
is more similar to the sentence “A mouse is chased by a cat”
than the sentence “A mouse chases a cat”. However, for the

same sentence (“A cat chases a mouse”), our structural sen-
tence similarity estimation method would prefer the latter if
the words “mouse” and “cat” appear frequently in similar
contexts.

Structural sentence similarity can be easily combined with
semantic analysis or sentimental analysis for some specific
tasks.

Essential Elements

Word Vector A good representation of words is critical
for a text analysis system. The use of vector representation
for words attracted much attention these days. The advan-
tages of applying vector representation of words is that the
vectors reveal context information, which is the core of our
task.

Famous word representation methods include the
Word2Vec model by Dr. Mikolov(Mikolov et al. 2014),
and the recently published SkipThought model(Kiros et al.
2015). We choose the SkipGram model since the documents
we research, the bodies of tweets, do not contain that many
sentences.

The main drawback of the Word2Vec model is that since
each word in SkipGram model has only one vector, it is hard
to differentiate different meanings of a word. Moreover, pre-
ceding and following contexts are not distinguished in the
Word2Vec model, which are important in determining the
borders of a phrase. So in our experiment we use a variated
version of Word2Vec to overcome these shortcomes.

Sentence Division Most of our former works still regard
sentences as a set of words, and sentence similarities as a
combination of word similarities. (Cho et al. 2014; Hill et al.
2015; Kiros et al. 2015) claimed that phrases should be put
more emphasis when analyzing text documents. To go one
step further, we do not regard phrases to be groups of words
that tend to appear together in a corpora. Instead, we think
of every sequence of words that expresses certain meaning
to be a phrase, thus defining the sentences to be sequences
of phrases. Moreover, according to our definition even the
division of the same sentence may not be the same when
compared with different sentences, since the corresponding
phrases in the other sentence may not be dividable.

To properly divide sentences, purely relying on word sim-
ilarity overlaps is not enough, with the risk that the whole
sentence being treated as one phrase. Thus we try to find a
good division by balancing the scores of features including
word-level similarities, phrase formation possibilities, word
adjacencies and sum distances, phrase length and existence
reward with entropy and reorder penalties. We will discuss
the features in detail in the next section.

Longest Similar Phrase Sequence (LSPS) On sentence-
level we require a one to one correspondence of phrases
when calculating the sentence similarity scores. We fill up
a correspondence matrix of two sentences by the score of
match for each pair of phrases, one from each sentence. Here
we set a threshold to eliminate scores that are too low in
case that sentence similarity is affected by irrelevant terms.
For a selected pair of phrases, each component blocks the
phrase following it from matching the phrases preceding the

233

�

� ��

�

��� ������� ����

��� ����
	��
��

	��
�� 	��
��

����������

���������

(a) Two words cor-
respond to a same
word

�

� �

�

�

�

��� ���� ��� ����

��� ������� ����
	��
�� 	��
��

	��
��	��
��

����������

���������

(b) Word correspon-
dence in order

�

� �

�

�

� ��� ����

��� ���� ��� ����

��� ����
	��
�� 	��
��

	��
��	��
��

����������

���������

(c) Word correspon-
dence out of order

Figure 1: Possible phrase boundaries

other component, so for each element M[a,b] in the ma-
trix M with r rows and c columns, we recursively pick the
one minimizing the sum values of matrices M[0:a,b+1:c]
and M[a+1:r,0:b], then set both matrices to be zero matri-
ces. It then quits the loop once the whole similarity matrix
becomes zero matrix. This operation helps preserve longer
correspondence chains and will not be bothered by identical
but ill-ordered sentence pairs.

Feature Selection and Calculation

Feature Design

In this part we introduce the features we choose to use in
more details. We divide the scoring of a match into two
levels, namely, phrase-level and sentence-level and we use
different sets of features on each level. On phrase-level we
evaluate the candidates in two distinct directions, one be-
ing the phrase formation probability and the other being the
phrase correspondence score. On sentence-level we consider
only score of matches and disorderedness. Moreover, we
give some tolerance to out-of-order words when evaluating
phrases but ignore ill-ordered phrases completely since the
order of sentence components decides the structure of the
sentence.

Phrase Boundary Match According to our definition of
phrases, the division of phrases should be specific to the
sentence pair. Based on empirical experiences, words with
similar contexts in one direction are likely to be the bound-
aries on the same side of two corresponding phrases. As
we assume vector representation of words, the boundaries
of a possible phrase can be represented by matching the
first word’s preceding words vector and vector of follow-
ing words for the last word in the first string to those of the
words at corresponding positions in the second string. As is
shown in Figure 1, there exists three types of phrase bound-
ary matching.

To evaluate the similarity of two boundary words, we take
the word vector on a single direction for each word and score
the matching by calculating cosine similarity using

pboundary =
pre • pre′

‖pre‖‖pre′‖ • post • post′

‖post‖‖post′‖ (1)

where pboundary represents the similarity of boundary
words on both sides for a pair of phrases, pre and post
denote the word vectors of the front and back boundaries
of the first string respectively while pre

′
and pre

′
are the

corresponding vectors in the second string.

Phrase Validation According to the definition of Skip-
Gram Model, when given the context it is possible to pre-
dict a missing word. We use this property to measure the
possibility that a word fits in a phrase with known bound-
aries. Take the sentence pair in Figure 2 as an example, if
without skipGram model prediction only “NYC restaurant”
will be matched to “Chicago theater”, which causes informa-
tion loss. This feature of SkipGram model is also the core of
WSD phase. Still using the example sentences in Figure 2,
the word fish in sentence 1 can only be of its noun meaning
considering its context.

Moreover, we give common phrases more credits by re-
warding existing word sequences in history. For example we
may prefer grouping the words “have been to” instead of “I
have” in Figure 2 since they appear together more usual in
the corpora.

Phrase Length When other conditions hold, we want the
phrases to be longer for lower sentence entropy and stronger
connections between phrases. So phrase lengths should be
positively related to phrase similarities. Like in Figure 2,
“have been to” will be grouped as one phrase instead of just
the first two words according to this rule. This is beneficial to
our task since if we exclude the word “to” from the phrase
it will have no match at all so unnecessarily lowering the
similarity score of the sentences.

Word Distance in Phrase From observation, the further
two words are apart in the sentence, the less likely they are
related. And the connection should get weakened with the
increase of distance, which agrees with our experimental re-
sults. For example in the sentence “A new store is about to
be built in York.”, the words “new” and “york” are not likely
to be bonded together, nor are other distant word pairs.

Also there is a special case in evaluating word distances,
which is adjacency. Words separated by 3 or 6 words may
not be that different in the possibility of forming a phrase,
but it is a big difference for adjacent words versus a one
word separated pair. For instance, we prefer “be built” to
“be in York” in the former sentence even though the latter is
longer.

Word Reorder Cost Sometimes ill-ordered correspon-
dences are too informative to be simply ignored. So instead
of removing all randomly ordered phrases, we apply penalty
to each reordering operation. Consider the case in Figure 3,
we prefer matching “Yesterday the concert” to “the concert
yesterday” rather than incorporating the word “great” since
the more reordering operations there are, the less likely the
words will form a phrase.

Phrase Entropy Though dynamic sentence division sys-
tem can divide sentences smarter, the accuracy may be
harmed by the trend to combine all the words in a sen-
tence into one phrase if only positive weights are given for
phrase formation. To tackle this problem we import entropy
on phrase-level to maintain the stability of phrases. For each
word wi in the phrase ph, the entropy H(ph) can be calcu-
lated by

H(ph) = −
∑

wi∈ph

p(wi|ph) log p(wi|ph) (2)

234

r(s1, s2) =

∏
ph∈s1,ph

′∈s2
sim(ph, ph

′
)×∑

p(ph)×∑
p(ph

′
)×∑

len(ph)×∑
len(ph

′
)×∑

adj(ph)×∑
adj(ph

′
)

[
∑s1.length

i=1 H(p1i) +
∑s2.length

i=1 H(p2i)]×
∑

dist(ph)×∑
dist(ph′)×∑

reorder(ph, ph′)
(7)

� ��������	�
����������	����

� ����������������������

��� ���� ���� ���	 ����

Figure 2: Word match example

� �������	�
��
�����	�	������

����������	�
��
��� ��	��	�

Figure 3: Word reorder example

where p(wi|ph) here denotes the validity of wi to be at po-
sition i in the phrase ph.

Sentence Entropy

For the same reason of incorporating entropy in phrasal anal-
ysis, on sentence-level we also introduce entropy to avoid
over-fusion of phrases. The calculation methods of sentence-
level entropy and phrase-level entropy share the same for-
mulation while the p(wi|ph) is changed to sim(phi, ph

′
j)

which is the similarity between each phrase ph in sen-
tence 1 and its corresponding phrase ph

′
in sentence 2. The

sentence-level entropy and phrase-level entropy are mutual
exclusive so there should always be an optimal division for
an arbitrary pair of sentences.

Calculation Mechanisms

Based on the features we described above, first we express
the similarity of a sentence pair(s1, s2) in the way of

r(s1, s2) =
p(s1, s2)

H(s1) +H(s2)
(3)

where r(s1, s2) is the similarity between sentences s1 and
s2. p(s1, s2) denotes the product score of corresponding
phrases in the two sentences while H(s1) and H(s2) are
the sentence entropies of s1 and s2, respectively.

Since we have already incorporated contextual features
in word vectors, here we ignore the dependencies between
phrases. Thus for each pair of phrases p1i in sentence 1 and
p2i in sentence2, we can expand the equation to be

r(s1, s2) =

∏p1
i∈s1,p

2
j∈s2 p(p1i , p

2
j)∑s1.length

i=1 H(p1i) +
∑s2.length

i=1 H(p2i)
(4)

in which p(p1i , p
2
i) represents the similarity score of a pair

of phrases p1i in sentence 1 and p2j in sentence 2.
When calculating phrase similarity scores we also take

into account the possibilities that the words fit well in
each string. We quantify this possibility using the language
model. Since each word in the SkipGram model is repre-
sented by a vector, which denotes the context of the word in
training set, we can safely say that a word fits for its con-
text in the evaluated phrase if and only if the word vector
of this word is close to the aggregated vector of all its con-
text words. So combining the boundary validity conditions
and word reorder costs, we write the function for calculating
phrase similarity scores (sequence numbers i and j removed)
as

p(p1, p2) = [sim−(begin1, begin2) + sim+(end1, end2)]

∗ [p(p1) + p(p2)]/[2 ∗ reorder(p1, p2)]
(5)

where p(p1, p2) is the similarity score while p(p1) and p(p2)
denote the possibility that the phrases p1 and p2 are valid.
The variables begin and end are the first and last words re-
spectively in each phrase while their subscripts reveal the
phrase the words belong to. For the functions, sim− cal-
culates word similarity considering only the preceding half
while sim+ acts the opposite. Reorder calculates the re-
ordering penalty costs for the phrases p1 and p2.

Taking the phrase-level features into consideration, we
further expand the validity of phrase to be

p(p)

=

∏n
i=1 p(wi|p)∗∑n−1

i=1 adj(wi, wi+1, w
′
i , w

′
i+1)∗len(p)

∑n
i=1 dist(wi, wi+1, w

′
i , w

′
i+1)

+exist(p)

(6)

where p being the phrase on which to calculate the score
and n being its size. p(w|p) calculates the degree that a word
w fits in the phrase using the similarity between the word
vector of w and the aggregated vector from all the words in
its context. The function len(p) plots the length of p onto
an increasing function (in our experiment, a square func-
tion), and exist(p) checks the history and normalizes the
frequency to scale [0,1] as rewards to existing phrases. Func-
tions adj and dist evaluates that given a pair of words in
phrase 1 and their corresponding pair of words in phrase 2,
whether both pairs are adjacent words in the original sen-
tence, and what the sum distances are, respectively.

235

After specifying all the terms needed to calculate the sen-
tence similarity, we expand Equation (1) to be Equation (7),
which is calculable since every element is observed in this
formulation.

Our system treats the sentence similarity problem using a
top-down method. The input sentence is first regarded as a
single phrase when the system starts. At each step a break-
point is added either to a phrase in sentence 1, or to a phrase
in sentence 2, or both. The added point(s) must have positive
effect to the similarity score of the two sentences. If no such
breakpoint exists, the system quits. Otherwise it updates the
score matrix as well as the sentence division then repeats the
action of adding breakpoints.

Word Representation

The Word2Vec model is a commonly used word representa-
tion model based on SkipGram model(Mikolov et al. 2013).
For each word appearing not too few times in the training
data, the Word2Vec model represents it as a vector. Though
Word2Vec styled word vectors can satisfy most of our needs
especially for the convenient word similarity calculation
metrics and the context based prediction mechanism, there
exists some drawbacks if we apply the Word2Vec model di-
rectly. First since the word vectors are one for each word,
different meanings of a word may be screwed up and hence
the accuracy of word similarity calculation will be influ-
enced. Also Word2Vec word vectors never apparently dis-
tinguish the preceding and following context, which makes
it hard to discover phrase borders. Due to these drawbacks
we designed a new language model in which every word is
represented by a set of vectors, each standing for one mean-
ing of the word. Also each vector is separated into two di-
rections, for the use of phrase boundary deciding.

Experiments and Results

In this section we design experiments to evaluate the validity
of our mechanism. Since it follows our definition to sentence
similarity, the results are highly emotion-directed. Given the
fact that there exists neither a public clean Twitter corpus
nor a test corpus tagged with emotions or feelings, it is hard
for us to test our system directly. Thus we divide the experi-
ments into two halves, namely a similarity ranking problem
and a sentiment analysis problem. The details and results of
these experiments are shown as follows.

Sentence Similarity Ranking Experiment

This experiment makes our system tag the similarity be-
tween each pair of sentence in a corpus and rank them. We
evaluate the ranking of each sentence to calculate the accu-
racy.

In the experiment we chose 100 sentences in total, manu-
ally divided them into 20 groups, each with 5 sentences, ac-
cording to relevancies. We compared the performance of our
system with those of N-Gram and CNNs methods. A sample
group of sentences is as shown in Figure 4, while we show
the scores the systems got in Table 1. Numbers in parenthe-
sis denote the value of N of the N-Gram these methods use.

�������������������������������������� !�����"����#���

�#���$����%�����&'���#�������(� �����%�� ������) ����#��

!���� �*������+�)��#��#��,�)������#����#��������)������(�

�%�� %���� !�'�������������� %� �-��-

�#�%*��#�����!����'��		�.����!� ��/&��������#��0#����

�'���������+� !� ������ ���#��+�&������1$21

�'%*��#����%� �������#��������� !��#���� � ���� ����� �

������

3��!� �����*� !��������4����������4���%#��!��������!����!�

!���� �*������+�)��#��#��,�)������#����#��������)������(�

�%�� %���� !�'�������������� %� �-��-

��������������������������������������� !�����"����#���

�#���$����%�����&'���#�������(� �����%�� ������) ����#��

3��!� �����*� !��������4����������4���%#��!��������!����!�

�'%*��#����%� �������#��������� !��#���� � ���� ����� �

������

�#�%*��#�����!����'��		�.����!� ��/&��������#��0#����

�'���������+� !� ������ ���#��+�&������1$21

	

�
�
�

�

�

�
�
�

	

�

	
�
�

�

�

�
	
�

�

�

�
�
	

�

Figure 4: Sentence Similarity Ranking Example

System Average Weighed

Bag-of-Words (5) 66.0% 47.8%
CNN (5) 70.0% 54.8%

Bag-of-Words (3) 68.0% 52.0%
CNN (3) 67.5% 52.8%
Structural 71.5% 65.2%

Structural+LSPS 78.0% 54.5%

Table 1: Performance on 20 groups of data (5/group)

Here the Structural method evaluates the similarity of
every pair of corresponding phrases in the sentence pair
while the Structural+LSPS method eliminates all ill-ordered
phrases. Moreover, by Average score we treat each sentence
as equal but for Weighted score we give the sentences with
lower average correct rate higher weights, so as to empha-
size the ability of treating more informal sentences.

From the results we observe that our system is too sen-
sitive to wrong divisions. This is to say, once we add an
improper breakpoint to either sentence, the mistake accu-
mulates at each further step and causes significant trouble
at the final reasoning phase. This problem gets better when
we provide the system with some prior knowledge like valid
phrases. But we still want to keep our mechanism from
adding too much human interaction. We will in our future
work try to eliminate the cold start problem.

Sentiment Analysis Experiment

In this experiment we evaluate our sentence similarity esti-
mation mechanism over a clustering-classification task. The
corpus we used was Sentiment 140, a tagged Twitter sen-
timent analysis corpus(Go, Bhayani, and Huang 2009). To
save training time we sampled 1000 tweets from the train-
ing set of Sentiment 140 to cluster using NLTK clusterer,
while we check the performance of the classifier on its test
set of size 500. We compare the results by our method with
those by pure N-Gram and N-Gram with POS tagging meth-
ods as baseline. Moreover we put the state-of-the-art results
(Stanford) here. The results are shown in Table 2.

Though with bias, from the sentence similarity ranking
experiment we can see that our structural sentence similarity
estimation mechanism works well at deciding the feelings
or purposes of tweet publishers. However for the weighted
score the structural similarity with LSPS dropped below the
original version. It should be due to the effect of random po-
sitioning of adverbials. This implies problem of our not giv-
ing any tolerance to ill-ordered phrases. In the future work
we will try to solve this problem by add sentence-level re-

236

System F-score

Structural 65.05%
Structural+POS 66.01 %

Stanford 69.02%

N-Gram 54.07%
N-Gram+POS 57.72%

Table 2: Sentiment Analysis Evaluation

ordering features. In the second experiment we tested our
system on a sentiment analysis corpus due to the lack of
tagged purpose mining corpora. The fact that syntactic pars-
ing did not provide much advancement in scores proved our
claim that syntactic parsing was not important in predict-
ing feelings or attitudes. Moreover, though our system did
not beat the state-of-the-art results by Stanford University,
the close scores showed us the possibility for unsupervised
or less supervised methods to beat supervised ones, towards
which direction we will keep researching.

Conclusion

In this paper, we presented a new definition of sentence sim-
ilarity estimation, which we call structural similarity. Using
this new type of sentence similarity we hope to tackle the
problem of purpose prediction on social-network corpora.
Also we proposed a calculation mechanism for structural
similarity. Our mechanism differs from the classical sen-
tence similarity estimation mechanisms in the sense that it
relies completely on contextual information, and that it is an
attempt to solve word sense disambiguation problem with-
out syntactic parsing or POS tagging. Though our system
did not beat the state-of-the-art system in sentiment analysis
problem, it showed the possibility of getting rid of grammat-
ical regulations in analysis of human emotions. We will try
to improve the performance of our system by refining our
formulations and by adjusting parameters, probably using
Recurrent Neural Network.

References

Chen, X.; Li, L.; Xu, G.; Yang, Z.; and Kitsuregawa, M.
2012. Recommending related microblogs: A comparison be-
tween topic and wordnet based approaches. In AAAI.
Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.;
Bougares, F.; Schwenk, H.; and Bengio, Y. 2014. Learning
phrase representations using rnn encoder-decoder for statistical
machine translation. arXiv preprint arXiv:1406.1078.
Chung, J.; Gulcehre, C.; Cho, K.; and Bengio, Y. 2014. Empir-
ical evaluation of gated recurrent neural networks on sequence
modeling. arXiv preprint arXiv:1412.3555.
Go, A.; Bhayani, R.; and Huang, L. 2009. Twitter sentiment
classification using distant supervision. CS224N Project Re-
port, Stanford 1:12.
He, H.; Gimpel, K.; and Lin, J. 2015. Multi-perspective sen-
tence similarity modeling with convolutional neural networks.
In Proceedings of the 2015 Conference on Empirical Methods
in Natural Language Processing, 1576–1586.
Hill, F.; Cho, K.; Korhonen, A.; and Bengio, Y. 2015. Learn-

ing to understand phrases by embedding the dictionary. arXiv
preprint arXiv:1504.00548.
Hu, B.; Lu, Z.; Li, H.; and Chen, Q. 2014. Convolutional neural
network architectures for matching natural language sentences.
In Advances in Neural Information Processing Systems, 2042–
2050.
Islam, A., and Inkpen, D. 2009. Semantic similarity of short
texts. Recent Advances in Natural Language Processing V
309:227–236.
Kiros, R.; Zhu, Y.; Salakhutdinov, R. R.; Zemel, R.; Urtasun,
R.; Torralba, A.; and Fidler, S. 2015. Skip-thought vectors.
In Advances in Neural Information Processing Systems, 3276–
3284.
Li, Y.; McLean, D.; Bandar, Z.; O’shea, J. D.; Crockett, K.; et al.
2006. Sentence similarity based on semantic nets and corpus
statistics. Knowledge and Data Engineering, IEEE Transac-
tions on 18(8):1138–1150.
Metzler, D.; Dumais, S.; and Meek, C. 2007. Similarity mea-
sures for short segments of text. Springer.
Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G. S.; and Dean,
J. 2013. Distributed representations of words and phrases and
their compositionality. In Advances in neural information pro-
cessing systems, 3111–3119.
Mikolov, T.; Chen, K.; Corrado, G.; and Dean, J. 2014.
word2vec.
Pang, B., and Lee, L. 2008. Opinion mining and sentiment
analysis. Foundations and trends in information retrieval 2(1-
2):1–135.
Ritter, A.; Etzioni, O.; Clark, S.; et al. 2012. Open domain
event extraction from twitter. In Proceedings of the 18th ACM
SIGKDD international conference on Knowledge discovery and
data mining, 1104–1112. ACM.
Rosenthal, S.; Nakov, P.; Kiritchenko, S.; Mohammad, S. M.;
Ritter, A.; and Stoyanov, V. 2015. Semeval-2015 task 10: Senti-
ment analysis in twitter. In Proceedings of the 9th International
Workshop on Semantic Evaluation, SemEval.
Tang, J.; Wang, X.; Gao, H.; Hu, X.; and Liu, H. 2012. Enrich-
ing short text representation in microblog for clustering. Fron-
tiers of Computer Science 6(1):88–101.
Tu, Z.; Hu, B.; Lu, Z.; and Li, H. 2015. Context-dependent
translation selection using convolutional neural network. arXiv
preprint arXiv:1503.02357.
Wang, Z., and Ittycheriah, A. 2015. Faq-based question an-
swering via word alignment. arXiv preprint arXiv:1507.02628.
Xu, W.; Ritter, A.; Callison-Burch, C.; Dolan, W. B.; and Ji, Y.
2014. Extracting lexically divergent paraphrases from twitter.
Transactions of the Association for Computational Linguistics
2:435–448.
Yan, S., and Tian, W. 2015. A kind of intelligent question-
answering system based on sentence similarity calculation
model. Journal of Chemical & Pharmaceutical Research 7(3).
Zhang, X.; Zhao, J.; and LeCun, Y. 2015. Character-level con-
volutional networks for text classification. In Advances in Neu-
ral Information Processing Systems, 649–657.
Zhou, D.; Chen, L.; and He, Y. 2015. An unsupervised frame-
work of exploring events on twitter: Filtering, extraction and
categorization. In Twenty-Ninth AAAI Conference on Artificial
Intelligence.

237

