
Using L-Systems to Generate Fault Trees for Benchmarking and Testing

Jeff Hanes
Applied Research Associates, Inc.

Niceville, FL
jhanes@ara.com

R. Paul Wiegand
Institute for Simulation & Training

University of Central Florida
wiegand@ist.ucf.edu

Abstract

We present the use of Lindenmayer systems to generate fault
trees for testing and benchmarking purposes. Our method
produces benchmarks that are reproducible, capable of pro-
ducing fault trees similar properties to real-world designs, and
scalable while maintaining predictable structural properties.
Our approach will be extremely useful for testing and analyz-
ing different kinds of solvers for fault tree analysis tasks at
different scales and under different conditions.

Introduction

This paper demonstrates the utility of using Lindenmayer
systems (L-systems) (Lindenmayer 1968) to generate fault
trees (FTs) that emulate engineering designs and can be used
to test and benchmark different methods of solving FTs at
varying degrees of scale.

Fault tree analysis (FTA) is a form of deductive failure
analysis for determining how and where complex engineer-
ing designs might fail (Clifton 1999). Real world FTs are
created top-down, based on a system design, codifying how
components in that system depend on one another. A well-
described FT can reveal weaknesses in a design before it
goes to production or help find ways to improve existing in-
frastructure. There are a variety of methods for analyzing
FTs to find such faults, and many real-world engineering in-
stitutions rely on FTA to reveal system problems and also
design more robust systems, including Bell Labs (Clifton
1999), NASA (Stamatelatos et al. 2002), the Nuclear Reg-
ulatory Commission (Vesely et al. 1981), and the U.S. De-
partment of Defense (Deitz et al. 2009). FTs constructed to
address real-world designs are becoming increasingly larger
and more complex, sometimes with thousands of compo-
nents. Effective algorithms for FTA that demonstrate effi-
ciency as systems scale are critical to many modern engi-
neering projects.

Unfortunately, most published research about FT solvers
either rely on very small systems — FTs with fewer than 50
components — or are applied to FTs that are not provided
because they are proprietary. Further, it is currently difficult
to describe large FTs in a compact and reproducible way.

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The FTA community needs tools to provide compact repre-
sentations of FTs for testing and benchmarking new algo-
rithms such that generated trees are reproducible, have sim-
ilar properties to real world FTs, and can be scaled in size.

L-systems are a formal grammar that have compact rep-
resentations and use re-writing rules to recursively gener-
ate tree-like structures. The very purpose of these tools is to
“grow” a tree that maintains certain properties as it scales,
making them suitable as benchmark problem generation
tools for FTA.

In this paper, we demonstrate the application of L-systems
to the generation of FTs for benchmarking and testing of
FTA solvers. The generation tool allows users to encode cer-
tain key structural properties that relate to properties in real-
world systems, and we show that generated FTs maintain
these key structural properties even as the system gets larger.
This facilitates performance comparison of FTA methods at
varying scales and also provides a means by which bench-
mark problems can be compactly represented and commu-
nicated for the greater community.

Background

Testing & Benchmarking of Fault Trees

Reliability literature describes many algorithms to improve
the efficiency and value of solutions to FTs (Clifton 1999;
Rauzy 2001). However, these are usually demonstrated by
showing their operation on small problems that would not
stretch the capabilities of any existing methods or software.
Examples found in the literature generally do not exceed
50 components; however, real world problems often con-
tain hundreds or thousands of components (Gauthier, Leduc,
and Rauzy 2007). Thus, the problems shown in the literature
do not provide researchers with sufficient information to as-
certain whether any such methods are useful on a full scale
problem.

Clearly, there is a need to generate test sets in a reliable
way that can be shown to stress existing methods and moti-
vate the creation of new methods. These test sets can also be
used to test the effectiveness of emerging methods.

Realistic problems that exceed a thousand components
cause significant difficulties for commonly used methods
of solving FTs. Traditional FT solvers are typically exact
methods while the task itself is NP-Hard (Ball 1986). Small

Proceedings of the Twenty-Ninth International
Florida Artificial Intelligence Research Society Conference

173

problems and solutions for small problem sets are currently
the standard for presenting FTA research. There are few re-
searchers besides those mentioned above who discuss meth-
ods to solve larger problems. Researchers rarely publish
large and complex FTs for at least two very good reasons:

1. A legible illustration of a FT containing 30 or so compo-
nents will fill a normal 8.5 by 11 page. Thus, a real world
problem with hundreds of components can take tens of
pages to show legibly.

2. Sometimes access to the information is restricted by the
sponsor of the work. This can happen when large devel-
opment firms do not wish to release design details of their
systems. In addition, the military uses FTs to analyze sys-
tem vulnerabilities (Deitz et al. 2009).

This is unfortunate because the research highlights the
need to develop methods to handle large FTs, but there are
no sample FTs for the research community to use to develop
more efficient FTA methods. Researchers who do not have
access to these large systems through their sponsors are left
with little on which to work.

It is necessary to have a means to generate realistic sys-
tems that can be used to show the operation of a new FTA
method but do not reveal proprietary information. Such a
tool would be a great help to researchers who need to pub-
lish the methodologies developed in their research, but for
various reasons cannot show the problems that actually in-
spired the research. It is also important to provide a means to
compactly display the required information for generating a
FT without multi-page illustrations.

Any method developed to create test FTs needs to be: 1)
reproducible, 2) capable of producing FTs similar to real
world FTs, and 3) scalable in measurable ways from small
problems to large problems. Indeed, scalability is crucial for
this purpose, since there must be some way to show the im-
pact of the size of the FT without confounding it with the
complexity of the tree. In other words, one would like to
hold characteristics of the FT constant for various sizes.

It is, of course, possible to randomly generate FTs, but
this approach would have difficulties. First, it would be diffi-
cult to reproduce, unless one published the random seed and
the exact pseudorandom generation algorithm used to cre-
ate the sequence of numbers. In addition, the rules driving
the pseudorandom algorithm would need to be carefully de-
scribed so that others could try the same approach. Further-
more, the stochastic nature of the random algorithm would
not necessarily be able to generate solutions that maintain
their properties as they increase in size.

Thus, the researcher using random generation would be
reduced to trial and error to find a solution that matched the
problem he was really trying to solve while requiring sig-
nificant effort to guarantee that other researchers are able
to reproduce the work. It would not really address the chal-
lenge of communicating large FTs, since the author would
still need to show the actual system generated by the ran-
dom algorithm to show that the work was valid — thus, it
would end up defeating the utility of creating a generator to
compactly define sample FT systems.

Lindenmayer Systems

Biologist Aristid Lindenmayer devised a mathematical ap-
proach to generate structures that maintain certain properties
at different scales, such as seen in many natural structures
like plants and algae (Lindenmayer 1968). These systems
transitioned into the computer science community in the
mid-80’s (Smith 1984) and have become an important tool
in computer graphics, artificial life, and biology (Rozenberg
and Salomaa 1992). L-systems are particularly well-suited
for generating topologies that have modular sub-structures
(Frijters and Lindenmayer 1976), which makes them ideal
candidates for generating engineered designs.

An L-system is a formal, context-free grammar contain-
ing three elements: G = (V, ω, P), where V is the alphabet
of symbols that can be replaced, ω is the starting string of
symbols from V , and P are production rules that define how
symbols are replaced. A production rule is a mapping from
one string of symbols to another. A system is iterated some
number of times, and in each iteration the existing symbols
in the string are matched to the left-hand-side of the produc-
tion rules and a new string is produced by replacing matched
substrings with the right-hand-side of the matching produc-
tion rules. The reader is referred to Rozenberg (Rozenberg
and Salomaa 1992) for technical details.

A very popular use of L-systems is to generate plant-like
computer graphics images; however, L-systems have also
been used in a variety of engineering applications. For ex-
ample, within the machine learning community, L-systems
have been used as generative encoding schemes for evolu-
tionary computation based learning methods for neural net-
work structures (Lima de Campos, Limão de Oliveira, and
Roisenberg 2015). Within the natural language processing
community, they have been used to model text sequences
(Liou et al. 2013).

Moreover, L-systems have also been used successfully
by engineers to construct benchmark problems for other
fields. For example Martin et al. (Martin et al. 2010) used
functional L-systems within automated scenario generation
tools to build up scenarios in simulations and games used
for training. Additionally, Ahammed et al. (Ahammed and
Moscato 2011) use L-systems to design challenging trav-
eling salesman problem (TSP) instances for benchmarking
TSP solvers. They are able to demonstrate that increasingly
more challenging TSP instances could be produced while
maintaining salient properties of existing, known problems
at varying scales.

Generating & Measuring Fault Tree

Benchmarks

Assuming that it is possible to produce FTs using this tech-
nique, there remains the question of whether they are useful
for testing solution methods and software. For that to be the
case, they should retain similar features to the smaller FTs
seen in the literature. These features should not change sig-
nificantly as they grow larger through more iterations.

To ascertain whether they are similar, it is necessary to
define metrics for FTs that can be calculated for large or

174

small trees. For the current research, several metrics were
calculated to determine which were the most useful.

Graph theory provides the notion of degree; for a tree, it
is possible to measure the ”out degree” for each operator
node, that is, the number of edges connected to nodes below
it. Calculating the average of the out degree for all operator
nodes can give an idea of the ”leafiness” of the tree. That is,
how much it branches as the generator iterates.

Also, in some cases, systems and components are re-used
in portions of the tree. In the real world applications, this can
describe something like an automobile’s electrical power
system that is used by the engine, the onboard radio and sev-
eral other systems in a car. Thus, the average in-degree and
out-degree for all nodes (or their distribution) can be useful
to describe the structure of a fault tree.

Another useful metric is the proportion of different kinds
of operator nodes in the tree. For traditional FTs, there are
three types of nodes: OR, AND and K-of-N. These refer to
the number of constituent nodes that need to be damaged to
render the system described by the node ineffective. AND
means that all nodes must be killed, OR means that only one
needs to be killed and K-of-N means that any combination
of K out of the N links will kill the system. One way to
express this information is to show the percentage of nodes
containing each type of operator in the tree. This distribution
of the number of possible kill conditions is a useful metric.

These metrics can be adapted for use with any of the ex-
tensions created for FTA developed over the past two or
three decades. In particular, Dynamic fault trees (Dugan,
Bavuso, and Boyd 1992) can be described with minor
changes.

The metrics described above provide some initial means
to determine whether generated trees are ”similar” to those
found in the literature — at least “similar” enough to be use-
ful for exercising research methods for solving FTs. One
more metric is applied, which is somewhat more compli-
cated to describe.

Number of Minimal Cut Sets

The best means to measure the complexity of a FT is to com-
pute the number of possible minimal cut sets (MCS) for that
tree.

Traditional methods for qualitatively solving FTs use the
rules of Boolean logic to enumerate all of the possible MCS
that defeat the tree. While these methods will produce a
complete set of answers, it can be computationally expen-
sive for large trees and will not always be able to generate a
complete set of solutions in a useful time, nor to store all of
the possible combinations produced. However, it is still use-
ful to know how many possible solutions exist, even if they
are not enumerated.

We developed a method to compute this number directly
without solving the system. In its current form, it will cor-
rectly calculate the number of possible MCS for trees that
do not reuse systems or components. That is, it works for
acyclic trees. As explained above, many FTs are cyclic in
the graph theoretic sense; that is, they repeat the use of some
systems or components. This method will not work for such
systems.

The number of MCS is calculated by propagating the
counts of component combinations through the gates of the
FT. The calculation is different for each type of operator that
defines a node in the tree.

If a node has N elements, each with a number of MCS M1

through MN , then the total number of MCS for each type of
node is:

MOR =
N∑

n=1

Mn

MAND =
N∏

n=1

Mn

MKofN = f(k, 1)

Where f() is a recursive function applied to
(M1, ...,MN) as follows:

f(k, i) = Mi · f((k − 1), (i+ 1)) + f(k, (i+ 1))

The first argument, k, indicates the number of elements to
be chosen; the second, i, indicates the element with which to
begin. This function is applied recursively to progressively
smaller problems until it arrives at one of two cases. If k =
1, this indicates 1 of (N − i) elements, which is equivalent
to the OR formula. If k = (N − i), this indicates (N − i) of
(N − i) elements, which calls for the AND formula.

The number of MCS is calculated by executing a depth
first traverse of the tree. Since every leaf node has exactly
1 MCS, the computation of MCS for the bottom nodes is
trivial. The values for each node are propagated up to pro-
gressively higher level nodes until the top node is reached.

The accuracy of this formula was verified by comparison
with the count of MCS obtained from xfta 1 and was proven
accurate on systems with up to several million MCS.

Sample Fault Trees from the Literature

An exploration of FTA literature produced a small set of
FTs used as examples for various forms of methodology
development. The FTs selected for this research are listed
here along with a code used to refer to them later in this
paper.

Song09: (Song, Shi, and Li 2009)
Lacey11: (Lacey 2011)

Sui11: (Sui and Pan 2011)
Shah12: (Shahriar, Sadiq, and Tesfamariam 2012)

Although this is far from an exhaustive sample of FTs
used in the literature, it does show the types of problems
used to illustrate FTA algorithms and methods.

The metrics calculated for these FTs are shown in Table 1.
An examination of these metrics reveals some interesting
features.

Several systems were found that contain only OR gates.
By the laws of boolean algebra, these are the logical equiv-
alent of flat system with a single OR gate of which all com-
ponents are children. Thus, they can be defeated by killing

1xfta can be downloaded for free from www.open-psa.org

175

any single component and the number of MCS is exactly
equal to the number of components. From an analysis point
of view, these are not interesting and were not used in this
research.

The FTs gleaned from articles in academic journals tend
to be simple not only in number of components, but also
in types of operators. None of the FTs cited use the K-of-
N operator. Overall, only one FT was found that uses this
operator, and it is only used once. Therefore, it was decided
to omit this operator from the initial research. They will be
addressed in later work.

Finally, only two of the systems have an average in-degree
higher than 1.0. An average in-degree of 1.0 indicates that no
systems or components are repeated. This is a practice quite
common; for example when a power generation system is
used by several electrical subsystems.

After discussing the interpreter for L-systems, the Results
section will show how these properties can be replicated and
then extrapolated using L-systems.

Adapting L-Systems to Generate Fault Trees

To show how L-systems were adapted to generate FTs, con-
sider the following grammar. It has been altered from a nor-
mal L-system by adding an operator as the first element of
each production rule. In practical terms, when the interpreter
executes a rule, it will add the indicated operator to the node
and create a number of child nodes below it equal to the
number of letters that follow.

Example 1 L-System Fault Tree Example
start: A

A: (OR) CBB
B: (AND) ACC
C: (T)

Executing the interpreter on the grammar above produces
the follow results for two iterations:

Iteration 0: A
Iteration 1: (OR) CBB
Iteration 2: (OR) {(T)} {(AND) ACC}

{(AND) ACC}
This grammar produces no leaf nodes until the interpreter

reaches the final iteration; consequently, all components will
be at the bottom level of the tree. Experience and FT litera-
ture shows that most FTs have leaf nodes at many levels of
the tree. Therefore, an operator was created to generate leaf
nodes through out the system. The operator looks like this:
(T) with no letters following.

When the interpreter reaches the number of iterations de-
fined by the user, it will convert all of the leaf nodes into
components. This is easier to understand by visualizing the
process as illustrated in Figure 1 for the same grammar
shown in Example 1.

The algorithm for interpreting the L-system grammar is
straightforward. It comprises a file parser, a tree library and
a file writer. The resulting FTs were stored in the Open PSA
Model Exchange format 2. This provides a means to analyze

2see www.open-psa.org

Figure 1: Fault tree generated using simple L-system gram-
mar in Example 1.

them using algorithms developed by the larger reliability re-
search community.

One more ability was required to emulate real world FTs:
repeating systems from other parts of the tree. The sample
systems in (Sui and Pan 2011) and (Shahriar, Sadiq, and
Tesfamariam 2012) show this behavior. Adding this capa-
bility required a two-fold change to the grammar. First, a
”*” before a letter indicates that a system/component may
be reused. Second, an (RS) operator indicates that the oper-
ator should be replaced with a reused system, while an (RC)
indicates the operator should be replaced with a reused com-
ponent. It is possible for a system to be reused more than
once – this is a deliberate design choice since real world
systems can exhibit this structure. It is important for the im-
plemention to check to prevent cycles in the tree; otherwise
the resulting tree can contain infinite recursion.

Results

To establish the ability of L-systems to match desired met-
rics, a series of examples was created that match the charac-
teristics of the sample FTs. The characteristics of the refer-
ence systems were matched using a trial and error process of
defining an initial grammar, executing the parser, checking
the metrics to see how close they matched, then adjusting
the grammar until the desired behavior was achieved.

The grammars defined using this approach are shown in
the examples below and the resulting metrics are shown in
Table 1. The reference FTs and their metrics are shown in
the same table to facilitate comparison.

Example 2 L-System to match Song09
start: A C: (AND) FE

A: (OR) BE E: (OR) AF
B: (OR) FCF F: (T)

Example 3 L-System to match Lacey11
start: A

A: (OR) BE E: (OR) CZ
B: (AND) ACE F: (AND) BF
C: (OR) FE Z: (T)

Example 4 L-System to match Sui11
start: A

A: (OR) *BCD E: (OR) ZZ
B: (OR) ACE F: (AND) RE
C: (AND) *DRE R: (RS)
D: (OR) CDZ Z: (T)

176

Table 1: Metrics for Matching Fault Trees – each reference
FT is shown with its matching L-system FT. ”i” is number
of L-system iterations and ”c” is number of components.

source i c MCS OR AND out in
Song09 - 8 7 0.83 0.17 2.17 1
Ex. 2 3 7 6 0.80 0.20 2.20 1

Lacey11 - 17 15 0.71 0.29 2.14 1
Ex. 3 4 17 31 0.71 0.29 2.14 1
Sui11 - 20 24 0.75 0.25 2.83 1.03
Ex. 4 3 20 17 0.73 0.27 2.82 1.03

Shah12 - 42 92 0.70 0.30 2.83 1.15
Ex. 5 5 40 68 0.70 0.30 2.81 1.15

Example 5 L-System to match Shah12
start: A

A: (OR) BCD F: (AND) RE
B: (OR) *ACZZ G: (OR) RD
C: (AND) *DER H: (AND) ACE
D: (OR) FRZ R: (RS)
E: (OR) GZZ Z: (T)

Although the metrics are not always exact matches for
those calculated for the reference systems, they are close and
provide useful surrogates for the FTs cited.

To show how L-system FTs scale with further iterations,
Example 3 was selected to be grown further. The resulting
size and metrics are shown in Table 2. A system with no sys-
tem reuse was selected because it is possible to calculate the
number of MCS analytically. Given the dramatic increase in
the number of MCS for the larger FTs, it is not possible,
even on very large HPCs, to evaluate all of these cut sets in
a useful time.

It should be noted that this system matches the metrics
well at a depth of 4, but the metrics asymptotically approach
other values at greater depths. The researcher can target a
size at which to match the metrics, but any given grammar
will not match the metrics for all sizes.

Observing the rapid growth in the number of MCS in
comparison with the number of components demonstrates
why some methods could encounter performance issues for
large problems. Another factor worth noting is that the other
metrics converge to within a percent after 5 to 7 iterations.
This shows that the method is stable and maintains consis-

Table 2: Metrics for Fault Trees derived from Example 3 for
10 iterations. In-degree is 1.0 for all iterations.

depth # comps # MCS OR AND out-degree
2 5 3 0.67 0.33 2.33
3 9 11 0.86 0.14 2.14
4 17 31 0.71 0.29 2.14
5 31 181 0.65 0.35 2.15
6 59 1873 0.60 0.40 2.16
7 113 5.20e+5 0.58 0.42 2.18
8 217 1.58e+10 0.58 0.42 2.17
9 417 1.40e+18 0.58 0.42 2.18

10 799 4.11e+31 0.58 0.42 2.18

tent characteristics as the systems grow larger.
One more set of computations serves to illustrate the need

for examples of this size. The FTs shown in Table 2 were
solved qualitatively using xfta, mentioned earlier. The time
to evaluate the solutions and the number of MCS enumerated
were recorded. In this case, the computations were stopped
after the time to compute the MCS passed 60 seconds. While
this is not much time, the size of files produced was between
.3 and .6GB – the computations were cut short to preserve
disk space as much as time. The results are shown in Table 3.

Table 3: Time to compute and number of MCS found in t
seconds for generated fault trees showing p, the proportion
of possible results found

i c MCS MCS found t p
5 31 181 181 <1 1
6 59 1873 1873 1 1
7 113 520235 520235 18 1
8 217 1.58e+10 2074513 70 0.00013
9 417 1.40e+018 3136138 142 2.2e-12

10 799 4.11e+031 1925378 114 4.7e-26

The interesting thing to note in Table 3 is the last col-
umn, which shows the proportion of MCS found compared
to the computed number of possible MCS. Up to more than
one hundred components, xfta has no trouble evaluating all
possible solutions. This is almost three times the largest FT
found in the literature. However, as the FTs grow larger, the
proportion of solutions found compared to all possible solu-
tions becomes miniscule. At 800 components, the total pro-
portion of solutions found is miniscule, even though they
take up .3 GB of disk space.

It is true that for many applications, a subset of the small-
est MCS is enough to solve the problem at hand. However,
for other applications the solutions must be compared with
other criteria. In these cases, for large FTs, it is virtually
guaranteed that there will be useful solutions in the vast
space of unexplored options. This clearly shows the impor-
tance of large test sets for exploring new methods for solving
FTs that stress existing methodologies.

Discussion

The results above show that L-systems can be used to create
FTs that emulate specific metrics and to grow very large FTs
that show characteristics similar to benchmark smaller sys-
tems. The approach described in this paper meets the desired
behavior defined in the introduction. That is to say it is:
• reproducible – Once a grammar interpretation algorithm

is defined, any given grammar will produce the same re-
sult, which guarantees that other researchers can repro-
duce the same FT and verify methodology innovations.

• capable of producing FTs similar to real world FTs – Ta-
ble 1 shows that L-systems can be defined that produce
FTs that closely match metrics for FT systems defined in
academic sources or elsewhere.

• scalable in measurable ways from small problems to large
problems – Table 2 shows that the grammar in Example 3

177

scales to much larger systems while demonstrating met-
rics similar to those seen in the smaller systems. These
metrics are seen to converge after only a few iterations.

Ideally, the metrics would be invariant as the systems
grow larger; instead, most of them asymptotically approach
a static value in 3 to 6 iterations. This is still useful for the in-
tended purpose, since researchers can target specific metrics
at desired system sizes.

An additional benefit is that the compact representation
can readily be used in academic articles, since it can fully
describe a FT generated from L-systems in just a few lines,
even if it has hundreds of components.

Future Work

The work described in this paper shows that it is possible
to use L-Systems to develop FTs that match metrics for ex-
ample systems. The method used to generate new systems
is manual and somewhat tedious; an important extension for
this work will be to develop a generalized algorithm for cre-
ating such systems. Another viable approach to matching
desired FTs would be to apply genetic algorithms or other
progressive refinement techniques to create L-system gram-
mars that match the reference systems. This has the potential
to provide very good matches for specific FT metrics at re-
quired sizes.

In addition, more refined metrics may help better moni-
tor the characteristics of generated FTs. On the other hand,
this would also increase the difficulty of matching the de-
sired behaviors using a trial and error method as applied in
this research. This argues more heavily for an automated ap-
proach for creating matching FTs.

The motivation for this research was to provide test cases
for approaches to solving large FTs constrained by physical
proximity. These solution methods will be explored in future
papers.

References

Ahammed, F., and Moscato, P. 2011. Evolving l-systems
as an intelligent design approach to find classes of difficult-
to-solve traveling salesman problem instances. In Proceed-
ings of the 2011 International Conference on Applications of
Evolutionary Computation - Volume Part I, 1–11. Springer.
Ball, M. 1986. Computational complexity of network reli-
ability analysis: An overview. IEEE Transactions on Relia-
bility R-35(3).
Clifton, E. 1999. Fault tree analysis – a history. In Proceings
of the 17th International System Safety Conference.
Deitz, P.; Reed Jr., H.; Klopcic, J.; and Walbert, J. 2009.
Fundamentals of Ground Combat System Ballistic Vulnera-
bility/Lethality. Progress in Astronautics and Aeronautics.
Reston, VA: AIAA.
Dugan, J.; Bavuso, S.; and Boyd, M. 1992. Dynamic
fault-tree models for fault-tolerant computer systems. IEEE
Transactions on Reliability 41(3).
Frijters, D., and Lindenmayer, A. 1976. Automata, lan-
guages, development. North-Holland Pub. Co. chapter De-

velopmental descriptions of branching patterns with paracla-
dial relationships, 57–73.
Gauthier, J.; Leduc, X.; and Rauzy, A. 2007. Assessment of
large automatically generated fault trees by means of binary
decision diagrams. Journal of Risk and Reliability, Profes-
sional Engineering Publishing 221.
Lacey, P. 2011. An application of fault tree analysis to
the identification and management of risks in government
funded human service delivery. In Proceedings of the 2nd
International Conference on Public Policy and Social Sci-
ences held in Kuching.
Lima de Campos, L.; Limão de Oliveira, R.; and Roisen-
berg, M. 2015. Evolving artificial neural networks through l-
system and evolutionary computation. In Proceedings of the
2015 International Joint Conference on Neural Networks.
Lindenmayer, A. 1968. Mathematical models for cellular
interaction in development. Journal of Theoretical Biology
18:280–315.
Liou, C.-Y.; D.-R., L.; Sinak, A.; and Huang, B.-S. 2013.
Syntactic senstive complexity for symbol-free sequence. In
Proceedings of the 2013 International Conference on Intel-
ligence Science and Big Data Engineering, 14–21. Springer.
Martin, G. A.; Hughes, C. E.; Schatz, S.; and Nicholson, D.
2010. The use of functional l-systems for scenario gener-
ation in serious games. In Proceedings of the 2010 Work-
shop on Procedural Content Generation in Games, 6:1–6:5.
ACM.
Rauzy, A. 2001. Mathematical foundation of minimal cut-
sets. IEEE Transactions on Reliability 50(4).
Rozenberg, G., and Salomaa, A., eds. 1992. Lindenmayer
Systems: Impacts on Theoretical Computer Science, Com-
puter Graphics, and Developmental Biology. Springer.
Shahriar, A.; Sadiq, R.; and Tesfamariam, S. 2012. Risk
analysis for oil & gas pipelines: A sustainability assessment
approach using fuzzy based bow-tie analysis. Journal of
Loss Prevention in the Process Industries 25(3):505 – 523.
Smith, A. 1984. Plants, factals, and formal languages. In
Procedings of the 1984 Conference on Computer Graphics
(SIGGRAPH), 1–10. ACM Press.
Song, W.; Shi, H.; and Li, Q. 2009. Application of fault
tree knowledge in reasoning of safety risk assessment expert
system in petrochemical industry. In Knowledge Engineer-
ing and Software Engineering, 2009. KESE ’09. Pacific-Asia
Conference on, 167–170.
Stamatelatos, M.; Vesely, W.; Dugan, J.; Fragola, J.; Minar-
ick, J.; and Railsback, J. 2002. Fault Tree Handbook with
Aerospace Applications. Washington, DC: NASA Office of
Safety and Mission Assurance.
Sui, Y., and Pan, X. 2011. Reliability assessment of ur-
ban anti-disasters system based on fuzzy fault tree analy-
sis. In Emergency Management and Management Sciences
(ICEMMS), 2011 2nd IEEE International Conference on,
159–162.
Vesely, W.; Goldberg, F.; Roberts, N.; and Haasl, D. 1981.
Fault tree handbook, NUREG-0492. Nuclear Regulatory
Commission.

178

