
Go-Ahead: Improving Prior Knowledge Heuristics by Using
Information Retrieved from Play Out Simulations

Gabriel Machado Santos
Computer Science Department

Federal University of Uberlandia - UFU
Uberlandia, Brazil

gabrielmsantos@gmail.com

Rita Maria Silva Julia
Computer Science Department

Federal University of Uberlandia - UFU
Uberlandia, Brazil

ritasilvajulia@gmail.com

Abstract

The proposal behind this paper is the introduction of a new
agent denominated Go-Ahead: this is an automatic Go player
that uses a new technique in order to improve the accuracy of
the pre estimated values of the moves that are candidates to be
introduced into the classical Monte Carlo tree search (MCTS)
algorithm which is used by many of the current top agents for
Go. Go-Ahead is built upon the framework of one of these
agents: the well known open source automatic player Fuego,
in which these pre estimated values are obtained by means
of a heuristic called prior knowledge. Go-Ahead copes with
the task of refining the calculations of these values through a
new technique that performs a balanced combination between
the prior knowledge heuristic and some relevant information
retrieved from the numerous play out simulation phases that
are repeatedly executed throughout the Monte Carlo search.
With such a strategy, Go-Ahead provides the contribution of
enhancing the MCTS process of choosing appropriate moves.
Further, this new approach attenuates the supervision level
inherent to this process due to the following fact: it allows
for the lessening of the impact of the prior knowledge heuris-
tics through strengthening the impact of play out information.
The results obtained in tournaments against Fuego confirm
the benefits and the contributions provided by this approach.

Introduction

This paper presents an agent player for the game of Go
named Go-Ahead. The main motivation here lies in the fact
that the technical and theoretical complexity inherent to the
task of building well performing agents for Go is very simi-
lar to that required in the construction of agents that are able
to deal with several important everyday problems of real life
(Russell and Norvig 1995). Therefore, the complexity of the
game is not derived from the quantity of rules but rather from
the diversity of game situations provided by the extremely
large state space and branching factor, as shown in Table 1.

Fuego is built upon an open source framework with the
same name. It is also widely used to support the develop-
ment of many automatic players for Go (Enzenberger et al.
2010), including the agent proposed in this paper. The search
for the best move in the Fuego player is performed by means
of the Monte Carlo Tree Search (MCTS) algorithm (Chaslot

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Table 1: Average branching factor and space state.
Board Game Average branching factor Log(space state)
Connect Four 4 13

Draughts (checkers) 2.8 18
Backgammon 250 20

Chess 35 50
Go (19x19) 250 172

2010). Each game simulation is designated as an episode and
it is divided into four distinct phases: selection, expansion,
play out and back propagation.

The contribution of the agent Go-Ahead consists of cre-
ating an algorithm capable of extracting useful information
related to the nodes (moves) from the play out phase, and
to use such information in order to increase the accuracy of
the pre estimated values of the nodes that are candidate to be
inserted into the search tree during the expansion phase.

This information refers to two main parameters: the sim-
ulation frequency of each move in the play out phase and
the reinforcements (defeat or victory) that are obtained at
the end of these play outs. This information will be progres-
sively stored in a hash table while the simulation process
goes on. By performing a balanced combination between the
values retrieved from this hash table and the prior knowl-
edge values used by Fuego, Go-Ahead provides two dis-
tinct contributions: first, it increases the value accuracy of
the nodes which are candidates to be inserted into the search
tree during the expansion phase, which enables the agent to
enhance the process of choosing appropriate moves. Second,
the balancing in the combination of these values (obtained
by means of an adjustable parameter) represents an interest-
ing alternative to attenuate the supervised character of the
calculations of the node evaluations in Fuego, since it al-
lows for a reduction in the impact of the prior knowledge
heuristic by strengthening the impact of the knowledge (in-
formation) retrieved from the search process. The auspicious
results obtained by Go Ahead in tournaments against Fuego
proves that the approach proposed in this paper represents
an appropriate strategy for attenuating the supervision and
for improving the performance in agents for Go.

This paper is organized as follows: section “Theoretical
Foundations” presents the core concepts for the understand-
ing of this paper. Section “Go-Ahead” describes the tech-

Proceedings of the Twenty-Ninth International
Florida Artificial Intelligence Research Society Conference

350

niques used in the Go-Ahead player. Section “Experiments
and Results” shows the experimental results obtained. Fi-
nally, the final considerations and future work planning are
presented in “Conclusions and Future Work”.

Theoretical Foundations

For purpose of objectivity, the theoretical foundations and
the techniques concerning the present work are presented
according to the way in which the MCTS based agents for
Go make use of them.

The Game of Go

Go is a territorial game whose board is usually set up with
19 vertical and 19 horizontal lines. It can be thought of as a
piece of land to be shared between the two players (corre-
sponding to the black and the white stones). The game starts
with an empty board and the players take turns to place the
stones on an empty intersection.

The main objective of the player is to conquer the largest
territory possible by surrounding the maximum area of the
board with its corresponding stones. The following concepts
are inherent to Go: a group is a connected set of stones and
the term liberty refers to an empty intersection adjacent to
a group. In terms of actions, a group must be captured (re-
moved from the board) whenever it has lost all its liberties.

Monte Carlo Tree Search

The MCTS algorithm performs the search for the best move
by means of a game tree built through MC simulations. This
process is guided by two distinct policies, named tree pol-
icy (or πin−tree) and play out policy (or πsimulation). Each
tree node represents a move. Its structure is comprised of at
least two pieces of information: a) The move value vi: rep-
resents the average evaluation value obtained by the node in
the games that have been simulated; b) the number ni: indi-
cates the number of simulations in which the node has been
involved. A board state represents the exact configuration of
the board game at a specific moment.

The search tree is built through an iterative process in
which an arbitrary number N of games is simulated. Each
game simulation is named here as an episode and corre-
sponds to a complete path on the search tree defined from
the root (current state) up to the leaf (endgame state). Each
episode consists of four distinct phases: a) The selection;
b) The expansion; c) The play out simulation; and d) The
back propagation.

The selection phase consists of following down, from the
root node of the search tree, the path that is defined by a
tree policy πin−tree which always selects as next node that
which has the the best value. This process continues, recur-
sively, up to the current leaf of the search tree, in which a
new leaf node, defined by the prior knowledge heuristics,
will be inserted. The insertion of a new leaf node defines
the expansion phase. From this point on, in the play out
phase, the path of the game simulation is defined by a set
of rules, called πsimulation policy, up to an endgame state.
After that, a reinforcement representing victory, defeat or
draw is passed to the search algorithm, which uses it to

update the nodes involved in the selection and expansion
phases of the current episode (called MCTS updating pro-
cess). This updating process corresponds to the back prop-
agation phase. As soon as the N episode iterations are con-
cluded, the MCTS algorithm is able to point out the best
move to be executed from the current board configuration.

AMAF: An Alternative to the Standard MCTS
Updating Process

As shown in the previous section, in the MCTS Updating
Process, at the end of each episode, the updating value of a
certain move is computed so as not to be affected by other
moves on the board or in subsequent turns. Noticeably, the
All Move As First (AMAF) (Gelly and Silver 2011) updat-
ing technique considers the general value of a move regard-
less of when it is played. The all moves as first value Q̃(s, a)
is the mean outcome of all simulations in which action a is
selected at any turn after s is found, as shown in 1.

Q̃(s, a)← 1/N(s, a)×
N(s)∑
i=1

Ĩi(s, a)zi (1)

In the update rule 1, N(s) is the total number of visits to
the game state s regardless of the previous actions that have
been simulated; and N(s, a) is the total number of simula-
tions in which move a has been chosen from state s, Ĩi(s, a)
is an indicator function returning 1 if the state s has been
found at any step t of the ith episode, and action a was se-
lected at any step u ≥ t, or 0 otherwise; zi is the outcome
of the ith episode. It is important to note that both, Black
and White moves, are regarded to be distinct actions, even if
they are played at the same intersection.

Tree Policies

This section presents the main πin−tree policies that are
used in the current MCTS based agents for Go.

UCT The UCT, proposed in 2006, is a method to define
the path in the selection phase. Basically, it corresponds to
a particular application of the Upper Confidence Bounds
(UCB) technique (Auer, Cesa-Bianchi, and Fischer 2002) to
tree structures, that is, it combines the UCB strategy along
with a search tree algorithm. The main idea behind this strat-
egy is to use the UCB method in each step of the selection,
always choosing the node which maximizes the following
expression 2:

Q(s, a) + c

√
lnN(s)

N(s, a)
(2)

where the Q(s, a) value represents the average number of
victories that have been obtained in the game simulations
by taking the action a from the game state s, in which the
game state is just a representation of the game at a specific
moment; c is an exploration constant and the meaning of
N(s) and N(s, a) has already been presented in the update
rule 1.

The main advantage of this strategy is the balance be-
tween the exploration (a tendency to explore new regions of

351

the search tree) and exploitation (a tendency to keep explor-
ing favorable regions of the search tree) during the search
process.

RAVE The RAVE algorithm modifies the MCTS approach
by introducing the AMAF heuristic, which increases the
knowledge extracted from a play out at the cost of including
knowledge that may be biased or less relevant (Brügmann
1993). By combining the MCTS algorithm with the AMAF
heuristic, RAVE allows the information to be shared be-
tween the sub trees of the search tree during the process.
The RAVE strategy can be represented by the update rules 3
and 4:

m(st, ax)← m(st, ax) + 1 (3)

Q̃(st, ax)← Q̃(st, ax)+1/m(st, ax)[Rt−Q̃(st, ax)] (4)

where Q̃(s, a) is the AMAF value of an action a ∈ A(s);
A(s) represents the set of legal moves available in the state
s; st is the state s selected at time t of a i-th episode; ax
is the action a ∈ A(st) selected at time x of the same i-
th episode, with x ≥ t; m(s, a) represents the number of
times that action a was selected in any subsequent state to s;
and, finally, Rt is the outcome returned at the end of the last
simulated play out.

Go-Ahead

This section presents the system Go-Ahead: an agent for Go
that enhances the performance and attenuates the supervised
character of the remarkable automatic player Fuego by using
statistical information (Wasserman 2004) retrieved from the
numerous play out phases of the current MC search. More
specifically, in the pre expansion phase of Go-Ahead, this
information, which is stored in a hash table, will be com-
bined with the prior knowledge heuristic in order to increase
the accuracy of the move estimation and to provide more
autonomy to the agent (since it attenuates the impact of this
heuristic).

Search Architecture

The Dynamic Estimator Module (DEM) copes with the fol-
lowing tasks: to update the hash table values to the extent
that the play outs are simulated; and to calculate the move
evaluations by combining these values with the prior knowl-
edge heuristic in the pre expansion phase. These dynamics
can be resumed as follows:

1. After the selection phase, all candidate moves (children
of the last selected node) are assigned with the pre esti-
mated value calculated by the DEM;

2. The candidate move with maximum value will be added
to the search tree as a new leaf (expansion phase);

3. The play out simulation phase is fired off from the new
leaf inserted at the last expansion phase;

4. As soon as each play out phase is concluded, the set com-
posed of the moves that have been simulated in this play

out, as well as the reinforcement obtained (victory or de-
feat), are passed as new information to the DEM. This
module uses this information to update the values corre-
sponding to these moves in the hash table.

5. The back propagation phase is triggered, so as to update
the values of the tree nodes;

6. The whole of the search process is triggered again (lim-
ited to the number N of episodes that were previously
established for each search process).

The Dynamic Estimator Module

This section presents the DEM in greater detail.

DEM node structure The DEM is basically composed of
a hash table that stores nodes containing useful information
about play out simulated moves. Each node within the DEM
is composed of three variables: the move number, which is
an integer representing the hash key corresponding to the
move itself. It corresponds to the position occupied by a
stone on the board game. It is calculated through a function
Position(x, y) that returns a unique value for each (x, y)
coordinate. For example, the coordinate (5, 5) (line 5 and
column 5) is represented by the integer 105, the coordinate
(10, 3) (line 10 and column 3) is represented by the inte-
ger 203 and so on; move counter, which is an integer that
indicates how many times this move has been simulated in
the current game; and finally, a move value that is a dou-
ble representing the rate of victories accumulated at the play
outs of the current game in which this move was simulated.

Updating the Hash Table nodes At the end of each play
out phase, the set S composed of the moves that have been
simulated in this phase and the resulting reinforcement (R)
are passed to the DEM. This module then proceeds in the
following way: it firstly updates (recalculates) the data re-
lated to the elements of S that are present in the hash table;
next, the DEM calculates the data related to the elements of
S that are not present in the hash table and insert these into
it. Both calculations (used to update or to include a new da-
tum in the hash table) are performed according to the rules
5 (which updates/includes the datum move value M(a) of a
move a) and 6 (which updates/includes move counter C(a)

of this particular move a).

M(a) ←
(M(a) × C(a)) +R

C(a) + 1
(5)

C(a) ← C(a) + 1 (6)

Combining Prior Knowledge with the DEM Estimation
In the classical MCTS algorithm, each node that is a candi-
date to be inserted into the MC tree in the expansion phase
is assigned with a prior knowledge value (Gelly et al. 2006).
As this value is obtained through some heuristic knowledge
and through a set of empirically computed data, it presents a
static characteristic, a fact that makes it not very accurate. In
order to deal with this shortcoming, the approach presented
in this paper tries to refine the calculations of these nodes in
the following way: it combines the prior knowledge heuris-
tic with the dynamic information retrieved from the history

352

of the play out move simulations performed by the MCTS
algorithm (stored in the hash table), as shown in the esti-
mation rule 7. By using this procedure, besides improving
the process of choosing an appropriate move by means of
a more accurate node evaluation, Go-Ahead also provides a
bit more autonomy to the MCTS based agents, since it uses
the hash table information to attenuate the impact caused by
the use of the prior knowledge heuristics.

MPE(a) ← (γ × PK(a)) + ((1− γ)×M(a)) (7)
In the estimation rule 7: MPE(a) is the current pre estima-

tion value calculated by Go-Ahead for a node a that is candi-
date to be inserted into the MC tree in the expansion phase;
PK(a) is the prior knowledge value associated to this move
a; M(a) is the hash table value for move a; γ is a constant
that weights the prior knowledge and the hash table values
of a.

Experiments and Results
This section presents all the test scenarios performed in or-
der to evaluate the performance of the agent Go-Ahead in
tournaments against the version 1.1 of Fuego.

In these tournaments, the value adopted for the weighting
constant γ in rule 7 is equal to 0.8, since Go-Ahead, playing
with such configuration in empirical tests, obtained the most
enhanced performance. It means that Go-Ahead plays with
an autonomy level of about 20% superiority over that of its
opponent Fuego. In future works, the authors intent to inves-
tigate if any benefit can result from varying this constant in
different stages of the game.

For completeness purposes, in the evaluative tournaments
Go-Ahead plays either as black player, or as white player.
The tests are executed within scenarios I , II and III , in-
volving 8000, 16000 and 64000 episodes, respectively. The
performance of the agent is estimated in terms of its victory
rate in the tournaments. The processor used is an Intel Core
2 Quad 2.4 GHz with 8GB of RAM. The games are executed
in two distinct board configurations: 9x9 and 19x19. The re-
sults for scenarios I , II and III are shown in table 2. Each
line of the table represents a tournament composed of 500
games.

Table 2 shows that the victory rates obtained by Go-ahead
playing against Fuego in 9x9 game board in scenarios I , II ,
III were 62%, 56% and 59%, respectively. On the other
hand, its victory rates in 19x19 game board, in the same sce-
narios, were 58%, 54% and 52%, respectively.

These results confirm that the approach adopted in Go-
Ahead, besides allowing for a greater autonomy of the agent,
really improves its performance, even in the very hard situ-
ations represented by 19 X 19 game board configurations.

Although the search runtime has been increased by 9%
in the process, the authors consider that this shortcoming
is satisfactorily compensated by the gains that the approach
brought to the automatic player.

Conclusions and Future Work
This paper presented Go-Ahead, an agent for Go that uses
information retrieved from the play out simulations to in-

Table 2: Win Rate of Go-Ahead x Fuego in Test Scenario I ,
II and III

Board Size Test Scenario Win Rate of Go-Ahead

9x9 I 62%
19x19 I 58%
9x9 II 56%

19x19 II 54%
9x9 III 59%

19x19 III 52%

crease the accuracy of the prior knowledge heuristics used
by Fuego.

Evaluative tournaments involving Go-Ahead and Fuego
confirmed that this strategy, besides providing more auton-
omy to the MCTS based automatic players, make them able
to perform a more accurate move estimation - a factor that
increases their performance in matches.

In Fuego, whenever there is a set of candidate nodes to
be inserted into the search tree (in the expansion phase) that
presents the same prior knowledge value, the agent makes
the choice in a random way. In a distinct way, Go-Ahead, in
the same situation, is able to choose the move that, consider-
ing the history of the previous simulations, presents a higher
level of quality.

It is also interesting to point out that, in the evaluative
tournaments, both players sometimes naively executed some
so called bad moves, like playing on the first line when not
required. In this sense, in future works the authors intend to
investigate appropriate heuristics to cope with these flaws.
Furthermore, The authors intent to investigate if any benefit
can result from updating the prior knowledge with new data
for future rounds.

References

Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002. Finite-
time analysis of the multiarmed bandit problem. Machine
learning 47(2-3):235–256.
Brügmann, B. 1993. Monte-Carlo Go. Technical report,
Citeseer.
Chaslot, G. 2010. Monte-Carlo tree search. Ph.D. Disserta-
tion, PhD thesis, Maastricht University.
Enzenberger, M.; Muller, M.; Arneson, B.; and Segal, R.
2010. Fuegoan open-source framework for board games
and Go engine based on Monte-Carlo tree search. Computa-
tional Intelligence and AI in Games, IEEE Transactions on
2(4):259–270.
Gelly, S., and Silver, D. 2011. Monte-Carlo tree search
and rapid action value estimation in computer Go. Artificial
Intelligence 175(11):1856–1875.
Gelly, S.; Wang, Y.; Munos, R.; and Teytaud, O. 2006. Mod-
ification of UCT with Patterns in Monte-Carlo Go.
Russell, S., and Norvig, P. 1995. Artificial intelligence: A
new approach.
Wasserman, L. 2004. All of statistics: a concise course in
statistical inference. Springer.

353

