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Abstract 
In some cybersecurity applications, it is useful to differenti-
ate between human-readable text and garbled text (e.g., en-
coded or encrypted text). Automated methods are necessary 
for performing this task on large volumes of data. Which 
method is best is an open question that depends on the spe-
cific problem context. In this paper, we explore this open 
question via empirical tests of many automated categoriza-
tion methods for differentiating human-readable versus gar-
bled text under a variety of conditions (e.g., different class 
priors, different problem contexts, concept drift, etc.). The 
results indicate that the best approaches tend to be either 
variants of naïve Bayes or classifiers that use low-
dimensional, structural features. The results also indicate 
that concept drift is one of the most problematic issues when 
classifying garbled text. 

 Introduction   
In a variety of cyberattacks, attackers will use automatical-
ly generated text that is not human-readable in places 
where human-interpretable and/or human-generated text is 
typically expected. We will use the term “garbled” to refer 
to text that is encoded, encrypted, or otherwise not easily 
interpreted by a human. For example, an analyst may have 
no notion of what the garbled text “gzmxltp” means but 
would be able to understand the text “Mozilla 5.0.” At-
tackers often use garbled text to conceal command and 
control (C&C) communications. In past attacks, they have 
obfuscated C&C communications from an infected host 
using XOR encryption and variants of base-64 encoding 
and have placed these commands in HTTP request fields 
such as the User-Agent. To further mask communications, 
an attacker may also combine an encrypted or encoded 
message with a conventional User-Agent string. In both of 
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these cases, a human can easily distinguish between the 
garbled text and the typical human-readable text. However, 
the number of texts that must be examined for cybersecuri-
ty monitoring is too large for manual processing. An auto-
mated method for distinguishing between human-readable  
text and garbled text is therefore necessary to handle ex-
tremely large volumes of data. 
In this paper, we compare several machine learning ap-
proaches for distinguishing human-readable text from gar-
bled text. Additionally, since our goal is to identify garbled 
text, we take the convention of referring to this text as the 
positive class and human-readable text as the negative 
class. 
 We use two different cybersecurity problem contexts to 
evaluate the machine learning methods. The first corre-
sponds to known methods for C&C communication in 
HTTP header information. The second corresponds to em-
bedding garbled text into tweets. 
 For each problem, we consider two types of garbled ob-
servations. Each type comprises the positive class in a sep-
arate set of experiments. The first type of garbled observa-
tion consists of completely garbled text, while the second 
type of observation is a mixture of garbled text and human-
readable text. We find that these ways of generating the 
positive class lead to quite different performances from the 
classifiers. 

Related Work 
The problem of differentiating human-readable text from 
garbled text can be studied as one of two types of categori-
zation problems, one based on the content of the text, and 
the other on its structure. In the content categorization 
problem, �-grams extracted from the words make up the 
feature set. On the other hand, in the structural categoriza-
tion problem, the structural properties of the text, such as 
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number of spaces in the text or the length of the shortest 
word, comprise the features.  
 Using �-gram features, the categorization problem we 
pose would be approached as a content-based text catego-
rization problem. In the text categorization community, 
some researchers have shown support vector machines to 
be robust text classifiers that are less susceptible to over-
fitting, and others have had substantial success using sim-
ple multinomial naïve Bayes to differentiate spam from 
normal text (Sebastiani 2002; Joachims 1998). Of particu-
lar interest to us is the work of Freeman (2013), who uses a 
high-dimensional text categorization approach for differen-
tiating between usernames created by humans and those 
generated by spammers in a social network. In this case, 
the feature set consists of �-grams of letters of the first and 
last names of the usernames, and the most successful clas-
sifier is a variant of multinomial naive Bayes. Freeman 
found that �-grams that did not appear in the training set 
but did appear in the test set were more likely to be gener-
ated by spammers. To take the missing test �-grams into 
account, he modifies multinomial naïve Bayes—a tech-
nique we will use in our experiments. 
 In contrast to high-dimensional classifiers that use the 
actual text as features, Kartaltepe et al. (2010) use J48, 
Weka’s implementation of the C4.5 decision tree, with a 
low-dimensional set of features based on the structure of 
the text to distinguish between human-readable text and 
garbled text, of which Nazario (2009) found examples on 
Twitter. The tweets Nazario uncovered were completely 
encoded text, and in decoding them, Nazario found bit.ly1 
links. There is strong evidence that this behavior is the 
result of C&C activity. Kartaltepe et al. recreated the be-
havior of this C&C activity and then trained a decision tree 
to detect it. They found that J48 performs very well when 
the negative class consists of human-readable tweets and 
the positive class consists of completely garbled text. 
However, they report performance degradation when ob-
servations from the positive class are a mixture of human-
readable text and garbled text. 
 In this paper, we test the approaches used by Freeman 
and Kartaltepe against other competing classifiers (support 
vector machines and logistic regression).  

Features and Tested Classifiers 
In this section, we describe the feature sets and classifiers 
used in our experimentation. Table 1 summarizes all of 
these classifiers and the feature sets used by each. 

                                                
1 bit.ly is a service that maps urls to shorter urls so they can be 
used in social media that has length requirements. 
 

Feature Extraction 
We generate two types of features—high-dimensional �-
gram features and low-dimensional structural features. 

To generate �-grams for a given string observation �, we 
extract all possible consecutive substrings of length � from 
�. We experimented with several different values for � but 
found, as did Freeman, that �-grams result in good perfor-
mance without too much overfitting. 

For the structural features of each observation s, we rec-
ord the length of the longest substring within s, the length 
of the shortest string within s, and the number of spaces in 
s. In this case, substrings are divided by punctuation or 
whitespace. 

Classifiers Using �-gram Features 
We use a total of five classifiers with �-gram-based fea-
tures. The first and second, MNB-LS and MNB-LS-test, 
are the standard multinomial naïve Bayes classifiers 
wherein the only difference between them is that Laplace 
smoothing is calculated based on both the training and test 
sets in the latter classifier, but based only on the training 
set of the former classifier. The smoothing across all fea-
tures (training and test) for MNB-LS-test means we do not 
throw away features in the test set that were not present in 
the training set. In practice, the choice between MNB-LS 
and MNB-LS-test is dependent on whether the test set is 
available when training the classifier, which would never 
be the case in a real-time environment. The comparison 
allows us to assess the extent to which changes in attack 
characteristics over time might affect classifier perfor-
mance. The third classifier is a support vector machine 
(SVM) with a linear kernel, for which we use a validation 
set to tune the trade-off between empirical error and mar-
gin. Both MNB-LS and SVM are standard baselines in text 
classification that tend to perform well on standard text 
categorization problems. 

The fourth and fifth classifiers that we test using �-
gram-based features are modifications of multinomial na-
ïve Bayes used in Freeman (2013), which give weight to 
features in the test set that are not present in the training 
set. Freeman’s motivation in making these modifications is 
the idea that a previously unseen �-gram in the test data is 
most likely to be in the positive class, so it is important to 
encode this idea in a feature. 

Multinomial naïve Bayes with recursive missing � -gram 
Probability Estimation, referred to herein as MNB-R, is the 
method Freeman used most successfully to detect fake user 
names in social networks. To implement MNB-R, we gen-
erate a probability for a missing �-gram by replacing it 
with the recursive product of the conditional probabilities 
of its constituent �� � �	-grams.  

We call the second method used by Freeman multinomi-
al naïve Bayes with missing n-gram feature estimation 
from a validation set (MNB-V). This method uses a valida-
tion set to estimate a probability for every missing �-gram 
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in the test set. To implement this estimate, we add a new 
feature to the trained classifier, called the “missing fea-
ture”. We generate the missing feature by splitting the val-
idation set into two sets and then counting, by class, the 
number of times �-grams appear in the complement of the 
intersection of the sets. We assign this count to the “miss-
ing feature”. 

Classifiers Using Structural Features 
We empirically test both the J48 decision tree and logistic 
regression (LogReg) when trained on low-dimensional 
structural features. 

Classifiers Using a Combination of n-gram and 
Structural Features 
In preliminary experimentation, we found that only one 
method using both �-grams and structural features per-
formed well. The approach is a logistic regression classifi-
er where features are selected using forward selection and 
information gain. In practice, we found that using the top 
five features resulted in good performance. We refer to this 
classifier as filtered logistic regression (F-LogReg). 

Experimental Set-Up 
We use the same general method to construct test, training, 
and validation data sets for the User-Agent (HTTP head-
ers) and Twitter (tweets) use cases. The test, training, and 
validation sets consist of observations from two classes. 
Human-readable text belongs to the negative class, and 

data that we generate based on knowledge of the use cases 
are in the positive class. 

User-Agent Data 
For the negative class, we extract the User-Agent field of 
HTTP headers from a sample of HTTP traffic in 2015. The 
entire data set consists of 46,689 unique normal User-
Agents. Here, we assume that the set of collected User-
Agents does not contain any garbled text. 

We generate four sets of positive observations for four 
separate experiments. In the first data set, which we will 
call the Completely Garbled Set, the positive class consists 
of strings to which we have applied XOR encryption and 
base-64 encoding. 

The observations in the remaining three garbled data sets 
consist of a legitimate User-Agent concatenated with an 
XOR-encrypted, base-64-encoded string. The variation in 
these data sets reflects the idea that defenders may gather 
training and test sets at different time points, and between 
these time points attackers may change the set of User-
Agents to which they concatenate garbled text. Attackers 
could do any of the following between the time the defend-
ers collect the training set and the time they collect the test 
set: 

1. Mixed User-Agent, Same Set: Keep the same User-
Agents when concatenating garbled text 

2. Mixed User-Agent, Half-Same Set: Replace some of 
the User-Agents with new User-Agents 

3. Mixed User-Agent, Different Sets: Replace all of the 
User-Agents with new User-Agents 

Classifier Name Input Feature Types 

Full Abbreviated Textual Structural 

Multinomial Naïve Bayes with Laplace Smoothing MNB-LS �  

Multinomial Naïve Bayes with Laplace Smoothing over 
the Test Set 

MNB-LS-test �  

Multinomial naïve Bayes with recursive missing 
-gram 
Probability Estimation 

MNB-R �  

Multinomial naïve Bayes with missing 
-gram feature 
estimation from validation set 

MNB-V �  

Support Vector Machine SVM �  

J48 J48  � 

Logistic Regression LogReg  � 

Filtered Logistic Regression F-LogReg � � 

Table 1: Classifier Names, Abbreviated Names, and the Types of Features Used by Each 
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We generate data in the positive class corresponding to the 
situations listed above by changing how we draw User-
Agents for observations in the training and test sets. Let 
�������� be the set of User-Agents from which we draw 
User-Agents for the positive class in the training set, and 
similarly let ����� be the set of User-Agents from which we 
draw User-Agents for the positive class in the test set. In 
User-Agent, Same Set, attackers do not change their User-
Agents, so �������� � �����. In the Mixed User-Agent, 
Half-Same Set, attackers replace some of the User-Agents 
with new ones, so we draw User-Agents from 
����� � ������������������� !��"���������  
�����������������# 
����������������$%� � � &' �!� ( � �)*+,
,
-. 
where the first and second sets are both half the size of 
��������. In Mixed User-Agent, Different Sets, attackers 
start using a completely new set of User-Agents, so we 
draw User-Agents from ����� such that �������� / ����� �

0. 
Generation of these different datasets is motivated by the 

idea that the set of User-Agents is continuously changing, 
evidenced as follows: We built a whitelist detector based 
on the database of User-Agents from user-agent.org, which 
was updated most recently in 2011, and we found that 
thousands of legitimate User-Agents on our network were 
not listed on user-agent.org. The three data-generation 
methods for mixed human-readable and garbled text ad-
dress this idea of drift between the training and test sets.  

For each of these four positive classes of data set, we 
generate 46,689 unique observations, which is equal to the 
number of observations we collected from actual HTTP 
requests. 

Twitter Data 
For Twitter data, the entire negative class consists of a sub-
set of 40,000 tweets sampled from 1.5 million tweets 
scraped from Twitter. 

As in the User-Agent scenario, we generate two types of 
positive observations for tweets. For the first set, we gen-
erate Completely Garbled strings. For the second set, we 
generate positive observations that are a mixture of natural 
language and garbled text by sampling without replace-
ment from a set of actual tweets and concatenating them 
with garbled strings while maintaining the 140-character 
limit of tweets. We call this set of positive examples 
Tweets Combined with Garbled Text. In contrast to the 
User-Agent scenario, we make each human-readable por-
tion of the positive observations unique by sampling with-
out replacement from the entire set of tweets.  

Construction of Test, Training, and Validation 
To construct non-overlapping training and test sets for our 
experiment, we draw samples without replacement such 

that the combined size of training and test sets is 20,000 
observations. We vary the ratio of positive and negative 
observations in our experiments. To construct the valida-
tion set, we perform stratified random sampling of 10% of 
the training set. 

Empirical Execution and Metrics  
We executed ten runs of the experiments using each da-
taset. To quantify performance, we use F1-measure, which 
is a standard metric used in various machine learning 
communities (including the text mining community). We 
also calculated the variance but do not report it in the re-
sults tables because it was small in all cases (generally less 
than 10-2).  

Results and Discussion 

We present the results of our experiments in Tables 2, 3, 
and 4. To reduce clutter, we mostly present results for the 
case where 40% of the data corresponds to the positive 
class; as we will show in a later subsection, we found these 
results to be the most representative set of results. 

 Table 2 shows the F1-measure for the simplest formula-
tion of the classification problem, where the positive class 
is Completely Garbled text and the negative class is hu-
man-readable text. Table 3 shows results for the case 
where the positive class is a mixture of human-readable 
tweets and garbled text. Table 4 shows effects of concept 
drift and will be discussed in a later section. 

In general, most variants of naïve Bayes and approaches 
that use structural features (J48 and LogReg) perform the 
best. Neither SVMs, F-LogReg, nor MNB-LS perform 
particularly well overall. We believe that this is due to the 
presence of �-gram features that occur in the test set but 
not the training set, a hypothesis we examine in more depth 
in the next subsection. Note that this problem of features 
present in the test set but not the training set cannot occur 
for classifiers that use only structural features. Thus, we 
believe the classifiers that use only structural features (J48 
and LogReg) to be more robust than the classifiers that use 
�-gram features. 

Analysis of the Effect of Differences between 
Training Set/Test Set Features 
In this subsection, we explore the effect of �-gram features 
that are present in the test set but not in the training set.  

In an operational setting, the detector may be applied to 
test sets that are not available during training. In this situa-
tion, it is not possible to apply Laplace smoothing across 
both the training and test sets (as does MNB-LS-test). In 
addition, in a properly encrypted string, the distribution of 
characters is close to uniform. If there are �1 characters in 
our alphabet, the probability of encountering a string of 
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length �2 is ��2
34	56. For example, there are �789 possible 

strings of length 10 comprising the standard lower- and 
upper-case English alphanumeric characters. This implies 
that the probability of an encrypted, encoded �-gram 
appearing in both the training and test sets is extremely 
unlikely.  

The variants of naïve Bayes used by Freeman (i.e., 
MNB-V and MNB-R) both account for features in the test 
set that do not appear in the training set, thus avoiding 
many of the problems that arise due to the low probability 
of �-grams appearing in both the test and training sets. 

However, approaches such as SVMs, F-LogReg, and 
MNB-LS are all susceptible to this issue. 

For example, this low probability of a garbled string is 
problematic in MNB-LS because if the �-grams in a test 
observation are all missing from the training set, the model 
will classify the observation based primarily on the priors 
(i.e., the more dominant class in the training set). We can 
demonstrate this empirically by specifically creating train-
ing and test sets with varying percentages of observations 
in the positive class. 
 

 

Dataset MNB-LS-test MNB-LS MNB-V MNB-R J48 LogReg F-LogReg SVM 

User-Agent 0.994 0.381 0.984 0.998 0.963 0.986 0.571 0.418 

Twitter 0.999 0.373 0.994 1.000 0.981 0.978 0.414 0.987 
 

Table 2: F1-measure of Normal versus Completely Garbled Text 
 

Dataset MNB-LS-test MNB-LS MNB-V MNB-R J48 LogReg F-LogReg SVM 

Twitter 0.012 0.011 0.628 0.949 0.951 0.951 0.599 0.238 
 

Table 3: F1-measure of Tweets and Tweets Combined with Garbled Text 
 

Dataset MNB-LS-test MNB-LS MNB-V MNB-R J48 LogReg F-LogReg SVM 

Same Set 0.989 0.970 0.978 0.993 0.971 0.898 0.571 0.965 

Half-Same Set 0.558 0.517 0.598 0.683 0.397 0.398 0.571 0.500 

Different Sets 0.172 0.105 0.168 0.222 0.095 0.139 0.571 0.062 
 

Table 4: F1-measure of Normal and Mixed Garbled Text for User-Agents 
 

% Positive Class in Training Set MNB-LS-test MNB-LS 

0.1 0.904 0.103 

0.2 0.972 0.224 

0.3 0.988 0.310 

0.4 0.994 0.381 

0.5 0.997 0.996 

0.6 0.998 0.998 

0.7 0.999 0.998 

0.8 0.999 0.999 

0.9 0.224 0.999 
 

Table 5: Effect of Class Prior on Two Variants of Naïve Bayes 
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Let:   

• R be the set we are currently constructing (where 
R can be the training or test set) 

• N be the total number of observations in the set 
• :� be the number of observations drawn from the 

normal data without replacement 
• :; be the number of observations drawn from the 

entire set of positive observations without re-
placement 

Draw floor(<� = :�) observations from the entire set of 
negative observations, and draw ceiling(<; = :�) observa-
tions from the entire set of positive observations. 

As shown in Table 5 (where we compare the perfor-
mance of MNB-LS versus MNB-LS-test for differentiating 
User-Agents from completely garbled text in datasets with 
different positive class priors), when the proportion of the 
positive class is low, the trained MNB-LS classifier will 
classify instances with missing features as normal, result-
ing in poor F1-measure. Once the majority class prior cor-
responds to the positive class, the MNB-LS classifier will 
classify instances where all �-gram features are missing 
from the training set as positive, resulting in high F1-
measure. 

Thus, approaches that do not account for �-grams that 
occur in the test set but not in the training set will tend to 
underperform compared to approaches that avoid this prob-
lem. 

Analysis of the Effects of Concept Drift 
In the experiments where we vary the sets from which test 
User-Agents are generated (Table 4), we see the effect of 
concept drift on classifier performance. If we use the same 
set of User-Agents to generate observations in the positive 
class (i.e., “Same Set” row of Table 4) then the F1-measure 
is quite high. Here, the classifier picks up on the features of 
human-readable portions of the observations in the positive 
class in the training set and uses these to classify most of 
the observations in the test set correctly. Note that even 
MNB-LS does well in the “Same Set” situation. However, 
as the sets of User-Agents used to generate observations in 
the positive class drift from one another (i.e., “Half-Same 
Set” and “Different Set” rows of Table 4), the performance 
of all classifiers degrades or remains consistently poor. 
This indicates that concept drift is a particularly difficult 
problem for the classifiers in our experiments when detect-
ing garbled text. 

Conclusion 
We have evaluated how well various classifiers differenti-
ate between human-readable text and garbled text. In gen-
eral, a variant of multinomial naïve Bayes using high-
dimensional �-gram features tends to perform the best, 
although classifiers using low-dimensional structural fea-

tures are also quite competitive. We examined classifier 
performance under a variety of conditions including differ-
ing class priors, different types of garbled text, and concept 
drift. The most difficult problem in terms of performance 
appears to be concept drift. In the presence of concept drift, 
none of the tested approaches performs particularly well. 
In contrast, either a variant of multinomial naïve Bayes or 
a classifier using low-dimensional structural features was 
able to perform well in the presence of differing class pri-
ors and different types of garbled text.   
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