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Abstract

This paper presents meaning-based machine learning
(MBML), the use of semantic input into machine learning
systems in order to gain meaningful output. The semantic
input comes from the ontological semantics theory of natural
language processing. Machine learning enables the finding of
patterns within this semantic data. Applications for MBML in
the area of information assurance include phishing detection,
stylometry, and other problems examined in prior ontological
semantics research.

Introduction

This paper outlines a research program called meaning-
based machine learning (MBML). MBML combines the
meaningful input provided by ontological semantics with the
pattern searching abilities of established machine learning.

First, the paper explains the novelty of MBML and estab-
lishes how it interconnects with different fields.

Second, the end-to-end data flow of an MBML system is
described. Special attention is paid to leveraged established
formalisms from ontological semantics.

Finally, there is a discussion of how this general MBML
approach is applicable to problems of information assur-
ance. The problems of phishing detection and stylometry
are addressed in-depth.

Machine Learning

Machine learning (ML), particularly statistical ML, has ma-
tured and grown in popularity over the past decade for nat-
ural language processing (NLP) applications. Some, but not
necessarily all, of the most popular ML approaches center
around statistical techniques (Russell and Norving 2003).
Performance of these statistical methods improve with larger
amounts of well-annotated data.

Different ML approaches attempt delve below surface
language features such as word frequency and syntactic
structure into semantic meaning with varying levels of suc-
cess. Whether or not statistical approaches can identify se-
mantic information remains an open question that is outside
the scope of this paper. Instead, the MBML approach de-
scribed in detail later on will start from the position of using
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semantically meaningful data derived from an ontological
semantics system. It is the position of the authors that only
by beginning with semantic data as the input will the output
resemble anything approaching what humans understand to
be semantically meaningful.

It is always worth noting that the sense in which the afore-
mentioned statistical ML systems use the word ”semantics”
differs from the ”semantics” of ontological semantics. In the
former sense ”semantics” describes a structure that is suffi-
ciently complex to example the observed data while in the
latter sense ”semantics” describes the philosophical, linguis-
tic, and cognitive models of meaning.

Ontological Semantics Technology

Ontological Semantics Technology (OST) is a recent branch
of the field of ontological semantics (Taylor 2010). On-
tological semantics got its start with the Mikrokosmos
project (Onyshkevich and Nirenburg 1995) before it was for-
malized in the text of the same name (Nirenburg and Raskin
2004).

At its core, ontological semantics is a frame-based sys-
tem (Sowa 2000) where language-dependent lexicons define
syntactic behavior and extend the semantic concepts stored
in the language-independent ontology. The development
of these resources (the lexicons, other language-specific
knowledge repositories or tools, the ontology, and other
language-independent knowledge repositories or tools) is
named acquisition; its practitioners are acquirers (Nirenburg
and Raskin 2004).

The process of acquisition involves the careful descrip-
tion of linguistic-semantic behaviors and distinctions, as ob-
served or theorized in human use of language, via the OST
framework. The two basic resources, the lexicon and the on-
tology, are the two we will discuss in depth here because the
details of their specification and intended use most impact
the array of features we wish to introduce. Other elements
in the ecology of OST are described elsewhere.

The ontology is a large, dense graph of nodes, called con-
cepts, connected by relations. A concept represents a separa-
ble, cohesive meaning unit, such as automobile, travel, rice,
or freedom. Relations provide relative information for con-
cepts; they have a domain (originating concept), and range
(target concept, literal, or scalar) by which additional in-
formation is encoded. The strength of an ontology is in
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its dense connections between concepts: the use of a au-
tomobile for a human in an instance of travel is modeled by
appropriately-restricted (loose enough to make semantic dis-
tinctions where actual text does, but tight enough to reduce
sense-making where actual text would not) relations (where
human is the AGENT of travel), along which some very ba-
sic reasoning can be performed. The methods and directions
of such reasoning become application-specific (for instance,
in detecting and flagging possible instances of insider threat)
but OST assumes a reusable kernel of these, that we also as-
sume here to be in any OST implementation regardless of
application.

The lexicon provides the first mapping from word (or
other separable part of a text or utterance) to concept, re-
lation, attribute, or graph of these. A lexicon entry gives, for
each sense of a word, the base lexeme, morphological rules,
syntactic and grammar rules and representation, and seman-
tic representation. This semantic representation specifies the
ontological concepts, relations, or literals that express the
meaning of the lexeme. In text processing, each word (or
phrasal set of words, in the case of common multiple-word
expressions with non-compositional semantics) is queried in
the lexicon, which gives one or several sets of morphologi-
cal, syntactic, and semantic dependencies to be resolved in
assembling the semantic map of the text’s meaning. (Some
special cases may be handled instead by other lookup-type
elements of OST; for example, proper names are stored in
a separate resource, the onomasticon, and have some other
considerations for how they show up in the map.)

OST processes a text into TMRs, text meaning represen-
tations. A TMR constitutes a modified subgraph of the on-
tology, encoding information that has been explicitly or im-
plicitly called out in the text. The granularity is application-
determined: some applications may find that a one-to-one
sentence-to-TMR transformation is all that is needed or can
be done with what is available, and some may operate on a
whole text and produce one large and complicated TMR. It
is this graph of concepts, relations, and literals that we use
as the input for MBML.

Information Assurance and Security

Information assurance and security (IAS) are ripe fields for
NLP applications as noted by Raskin et al.(Raskin et al.
2002). Natural language remains an unsolved problem for
computational approaches.

Semantically meaningful results in NLP can offer new in-
sight into text-heavy domains such as social network analy-
sis, business intelligence, and social engineering detection.
As in (Raskin et al. 2002), we use our Section III to explore
a few problem areas in information assurance and security
in which we have noted a need

What is Meaning-Based Machine Learning?

MBML bridges disciplines. It begins in the realm of onto-
logical semantics and uses techniques popularized by ma-
chine learning (ML) to find patterns in meaningful data. For
an MBML system that relies on OST the meaning is repre-
sented in the TMRs. ML techniques examining these mean-

ingful TMRs will in turn derive meaningful results from the
TMRs.

The kinds of patterns in TMRs varies. Different linguis-
tic phenomena aren’t necessarily represented solely in the
text itself. Novelty of information and referencing informa-
tion across documents assume a certain level of background
knowledge. It is in areas such as these that ML algorithms,
operating on the TMR structures generated by OST, that ML
might add new layers of meaning by building on the existing
meaning described by OST.

Data Flow

MBML advocates the use of meaning representations as a
source of features for machine learning with text; this sec-
tion explores how TMRs may be used.

As a meaning representation, a TMR is a graph of
meaning entities (concepts) connected by meaningful edges
(properties). These graphs can be decomposed into sub-
graphs for the creation of feature vectors in a number of
ways; the following list is not exhaustive, but rather is a
foundation from which to build.

Concept or Relation Names

A family of features can be defined over the occurrences of
concept or relation names, the analogue to word vectors in
text processing. For instance, a frequency analysis of con-
cept and relation names may differentiate texts with differ-
ent topics. A text might also be characterized by relative
frequencies of related or contrasting concepts (does a text
refer, more often than another text, to the event concept cov-
ering the act of eating rather than that covering drinking?) or
relations (does a text call out, more often than another text,
the AGENT relation of events rather than LOCATIONs?).

To distinguish between particular instances of a concept in
the TMRs as written here (e.g.: a text refers to two separate
cars), the concept-names have numbers appended in order to
create unique identifiers. By ”concept name” we mean the
name of the concept; in the TMRs that appear here, this is
the portion of the node name that precedes the hyphen.

Concept Families

The hierarchical nature of some ontological relations (more
on this in point 3 in the next subsection) reflects a scale of
generality and specificity that can be treated as a slider in
detail level. Sets of features can be defined in terms of the
topmost (least specific) concept that should be considered,
or in the maximum depth of specificity. The analysis may
be closed down to families of concepts that inherit from a
certain concept (e.g.: consider all of the children of vehicle,
which includes aircraft, yacht, and honda-civic) or closed
up from a certain level of children (e.g.: consider concepts
no more specific than automobile so as not to differentiate
between honda-civic and dodge-dart, or consider children
only above a depth of n from the root).

Relation Families

OST distinguishes between several types of relations. One
major source of distinction is in argument count and type;
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another is in the nature of the relationship that the relation
encodes.

Range Families A relation with a concept range is a prop-
erty; properties connect two (or more) concepts. A relation
with a literal range is an attribute; an attribute is a detail of
the concept that does not concern other concepts. If a rela-
tion is expressed in a TMR, a value in its range is selected;
we call it the filler. OST also considers different facets for
relation ranges – one is SEM, which provides selectional re-
strictions on the filler – but we will consider only VALUE,
the facet that expresses what the actual filler is for the TMR,
for our discussion of OST and ML, as it is the most common
facet in use in TMRs (p. 199, (Nirenburg and Raskin 2004)).

Argument-Count Families To date, the properties de-
fined in OST have all been two-place, but some meaning-
ful relationships between concepts may be better expressed
as n-ary relations of a higher n. At the level of notation, this
distinction may not be functionally useful: any n-ary relation
may be expressed as a set of binary relations; however, the
decision to acquire, and represent meaning with, any non-
binary relation is indicative of a distinction that should also
be taken note of in any processing of a TMR. The exact rep-
resentation of these TMRs will affect the creation of features
based in property names, but only as much as any other evo-
lution or tweak in the language used to write TMRs. The in-
clusion of non-binary relations as a separate feature or fam-
ily of features may be useful when those relations are, for
example, indicative of some other level of complexity or de-
tail in the text being processed.

Meaning/Function Families A subset of properties,
called taxonomic, comprise the usual backbone of on-
tologies: the parent-child/superclass-subclass relationships.
Taxonomic properties serve mostly to provide hierarchical
structure in the ontology, providing family trees for reason-
ing along inheritance or mereological lines, but they may ap-
pear in TMRs if evoked in the source text. For example, an
introductory text giving background information on a topic
might reasonably be expected to contain some sentences like
x is a type of y or x comprises y, z, etc..

Another subset of properties represents thematic roles,
such as subject, agent, and beneficiary. These can be con-
sidered shorthand for syntactic structures ? training on this
subset of properties may reveal more about the surface char-
acteristics of a text. The appearance of a thematic role prop-
erty in a TMR may reflect a lack of detail required to further
disambiguate the text; for instance, the relation of one con-
cept to another with only the AGENT property might elide a
more expressive, precise relationship. There are several rea-
sons that a relatively imprecise property could appear that
do not have much to do with the source text: if the static
resources do not capture any more precise relationship be-
tween two entities, then there is an acquisition gap; if the
ability to represent the relationship is there, there may be
a fault in processing or a lack of information in the source
text that would otherwise enable the processing to push the
specificity of the TMR to that level.

Denormalization

The next, more complex, unit of meaning of a TMR is a
〈concept, relation, filler〉 triple: the combination of two con-
cepts (or a concept and a literal) and the way in which they
are related. Any TMR can be specified as a list of such
triples. Denormalizing the static knowledge structures into
OST isn’t an entirely novel concept in and of itself. Ear-
lier work used denormalized structure triples in storing the
structures in a database (Taylor and Raskin 2011). This idea
harkens back to the triple stores favored by Resource De-
scription Framework (RDF) featured as a part of the seman-
tic web (World Wide Web Consortium 2015). This paper
differs from the previous work in the function the tuples
serve. Instead of being a mechanism for storing complex
data structures, the tuples are used as discrete machine learn-
ing features.

As mentioned before, with consideration of the full range
of facet types, these triples are actually quads (variations in
〈concept, relation, facet, filler〉); however, we focus here on
TMRs with VALUE facets, so quads are reduced to triples.
The below example shows a sentence, a TMR for that sen-
tence, and some example triples derived from the TMR.
Note that though there is a single head fact in buy-1, the
denormalization produces two triples.

Let’s demonstrate using a very simple sentence as an ex-
ample:

(1) “John buys a blue car.”

The five words of Example 1 generate the proposition tree
described via s-expression in Figure 1 below:

(BUY−13
(AGENT (VALUE (HUMAN−117

(HAS−NAME (VALUE (GIVEN−NAME−4) ) )
) ) )
(THEME (VALUE (CAR−312

(HAS−COLOR (VALUE (BLUE ) ) )
) ) )

)

Figure 1: An example proposition.

The nested properties described by the s-expression in
Figure 1 hide some of the knowledge gained from parsing
the example sentence. These proposition trees are a parsi-
monious way of representing the knowledge produced. But
in ontological semantics relation properties have inverses
such that the root of one relation becomes the filler of the
inverse relation and vice versa. Equation 1 below succinctly
expresses that logic. What this means for translating propo-
sition trees into tuples is that not only do the tuples that are
explicitly described in the proposition tree require handling,
but so do any inverse relations.

(∀p ∈ R)(∃q ∈ R)(Inverse(p, q) ⇐⇒ Inverse(q, p))
(1)
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Feng et al. (Feng, Banerjee, and Choi 2012) employ a sim-
ilar technique in how they decompose syntactic parse trees
into discrete features. Since propositions and TMRs present
similar structures to those trees we adapt their approach to
generate our features.

The final result is a set of seven triples describing all
knowledge gained from parsing the five-word example sen-
tence. In the ontology used for this example, the HAS-
COLOR property is an attribute, not a relation, therefore it
doesn’t have an inverse property.

1. 〈BUY-13, AGENT, HUMAN-117〉
2. 〈HUMAN-117, AGENT-OF, BUY-13〉
3. 〈HUMAN-117, HAS-NAME, GIVEN-NAME-4〉
4. 〈GIVEN-NAME-4, IS-NAME-OF, HUMAN-117〉
5. 〈BUY-13, THEME, CAR-312〉
6. 〈CAR-312, THEME-OF, BUY-13〉
7. 〈CAR-312, HAS-COLOR, BLUE〉

Triples as proposed above provide a way of learning based
on purely semantic structures, but with more expressive po-
tential than the property-names set of features. The triple as
a minimal meaningful subgraph is analogous to a trigram.

Subgraphs and [sub]TMRs

Features may be derived from the structures of the graphs
obtained as well as from the structures of the TMR as a
whole: connectedness, depth, and other measures of com-
plexity may be useful in characterizing texts via the charac-
teristics of their TMRs, and the same is true for subgraphs
of those TMRs, however they are obtained.

One may decompose a TMR graph into subgraphs con-
nected only by a particular relation. The process outlined
in (Taylor and Raskin 2011) is proposed for ontology verifi-
cation, but has utility in sectioning large TMRs for analysis
of chains and components. This is similar to denormalizing
the whole TMR, as proposed in the immediately previous
subsection, and focusing only on triples with a particular re-
lation.

Likewise, the number, complexity, and nature of TMR
branches for instances of a particular concept may be of in-
terest. Finally, particular subgraphs may be sources of char-
acteristics for TMRs: the number, frequency, or context in
which a particular fact, event, or object is referred to (or
implicitly called out, or obliquely represented) may be of
interest as a feature.

Surface-to-Structure Mapping

As a text is processed in OST, its range of potential mean-
ings is narrowed – from a purely combinatorial analysis, the
number of possible meanings is exponential in the number
of words, and the process of attempting to fit these together
with the selectional restrictions imposed upon them through
information in the lexeme entries and the ontology knocks
a large number of these out of consideration. As such, the
mapping from surface form to deep structure would be of
interest as either a feature or a hypothesis. Such a fea-
ture would appear as a duple, where the first position is the

string representation of the root of the lexeme and the sec-
ond place is the concept that it maps to. To continue with the
example sentence from before we give the duples “bought”
⇒ <“buy”, purchase> and “car” ⇒ <“car”, automobile>.
These duples offer a second type of feature that can help an
algorithm learn about the significance of the mappings from
surface structure to those of deep meaning structures.

Applications

In keeping with the prior work of Raskin et al. (Raskin et
al. 2002), we examine problems in IAS to see how MBML
might provide solutions. Increasing reliance on computer
system for critical infrastructure, commerce, and gover-
nance means that IAS is more important now than ever.

Phishing Detection

Phishing detection presents unique opportunities for NLP
applications. The content of the phishing email is critical
to the success of the phishing attack. A successful phishing
email convinces the recipient to complete the attack on the
behalf of the attacker. An NLP-based approach to detecting
phishing emails could prove more generalizable and robust
than prior approaches that are based on meta-data features
of the phishing emails.

Phishing detection approaches that depend on meta-data
extracted from the email are brittle. These features could in-
clude MIME headers, details about the URLs used in the
message, or the domain of the email sender. Identifying
these kinds of features is technologically simpler because it
can be done regular expressions or other, easily computed
techniques. The downside is that these features are very
quickly changed by the attacker. An attacker sending phish-
ing emails can utilize a distributed botnet with a different IP
address and headers in every few messages.

What attackers cannot rapidly change for large number of
targets is the content of the phishing email. An attacker will
spend time crafting the message to make it effective for a
wide range of readers and then use it in a concerted phish-
ing campaign that sees the message sent out to hundreds or
thousands of recipients. A generalized technique of identi-
fying phishing emails based on the content of the message
could render ineffective entire campaigns instead of single
messages.

Preliminary results of experiments utilizing the MBML
methods described in this paper are favorable. In comparing
binary classifier machine learning algorithm performance
between text strings and TMR triples, the MBML approach
performed at least as well if not better in every scenario (Falk
2016).

Stylometry and Authorship Attribution

The field of stylometry attempts to quantify and measure
an author’s writing style, in support of making, evaluating,
and/or supporting claims of authorship. Recent acceleration
in the advancement of the field reflects an increasing im-
pulse, and lagging capability, to automate and scale author
recognition. A highly useful metric is word choice: the au-
thor’s selection of a particular way to express an idea, in the
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Table 1: The different types of features allowed.
Single Triple

Unlexicalized Lexicalized Unlexicalized Lexicalized
Concept 〈HUMAN〉 〈CAR, “automobile”〉 〈CAR, HAS-COLOR, BLUE〉 〈BUY, AGENT, HUMAN, “buy”〉
Fact 〈CAR-1〉 〈HUMAN-1, “Joe”〉 〈CAR-1, THEME-OF, BUY-1〉 〈WAR-1, AGENT, NATION-1, “WW2”〉

face of a range of available ways, is deemed a reliable and
measurable way to characterize the author. The feature foot-
print of this intuition has been pursued in word vectors at
large and in the definition of synonym sets, but with some
level of semantic analysis comes a way to expand the lens
from individual words (and ideas that are expressible in in-
dividual words) to much larger windows. The translation of
a natural language text into a language-independent interlin-
gua (here, TMRs) renders the variability of expressions into
a restricted range – there are many ways to talk about John’s
purchase of a car, but the TMR should always contain the
event purchase and the object automobile. The way that the
author chooses to represent that event in the text is poten-
tially unique or recognizable, so the mapping from surface
to deep structure would be useful for characterization.

In general, the addition of semantic information as a do-
main from which to draw features allows for more space in
which to capture the variability and similarity of authors.
Other hallmarks of TMRs could also be understood as hall-
marks of authors, or TMR information, considered in con-
junction with other sources of information, could paint a
more expressive picture of an author’s idiosyncrasies in writ-
ing.

Generalizing

Any data is potentially expressible in the language of the
TMR; though OST was conceived for the understanding of
natural language, any of its reasoning modules may oper-
ate on data of any kind that has been translated into TMRs.
Any machine learning task that deals with or requires some
meaningful data could be done with that data translated into
TMRs and analyzed in the directions laid out in section II
here. The translation of both text and non-text data into the
same interlingua for reasoning and analysis that is agnos-
tic of the origin and original form of that data is a tempt-
ing possible state of affairs in any application, though there
are easy analogues in summarization (the transformation of
many TMRs, perhaps from network traffic, into natural lan-
guage digests for human consumption) and in stylometry/at-
tribution (that same network traffic, analyzed for the finger-
prints of network attacks and attackers).

Conclusion

This paper outlined MBML as a novel way of combining
ontological semantics with machine learning. The machine
learning algorithms find patterns in the meaningful input
data. A proposed end-to-end data flow described how the
OST input becomes ML output. A successful MBML sys-
tem would perform superior to ML approaches that rely only
on shallow surface or syntactic features. The benefits of an

MBML system extend to several areas of information as-
surance including, but not necessarily limited to, phishing
detection and stylometry.

References

Falk, C. 2016. Identifying phishing emails by their meaning.
Feng, S.; Banerjee, R.; and Choi, Y. 2012. Syntactic sty-
lometry for deception detection. In Proceedings of the 50th
Annual Meeting of the Association for Computational Lin-
guistics: Short Papers, volume 2, 171–175.
Nirenburg, S., and Raskin, V. 2004. Ontological Semantics.
MIT Press.
Onyshkevich, B., and Nirenburg, S. 1995. A lexicon for
knowledge-based mt. 10:5–57.
Raskin, V.; Nirenburg, S.; Atallah, M. J.; Hempelmann,
C. F.; and Trizenberg, K. E. 2002. Why nlp should move
into ias. In Proceedings of the 2002 COLING workshop,
volume 13, 1–7.
Russell, S. J., and Norving, P. 2003. Artificial Intelligence:
A Modern Approach. Pearson Education, 2nd edition.
Sowa, J. 2000. Knowledge Representation: Logical, Philo-
sophical and Computational Foundations. Brooks/Cole.
Taylor, J., and Raskin, V. 2011. Graph decomposition and
its use for ontology verification and semantic representation.
In Intelligent Linguistic Technologies Workshop at Interna-
tional Conference on Artificial Intelligence.
Taylor, J. 2010. Computational semantic detection of infor-
mation overlap in text. In Proceedings of Cognitive Science
Conference.
World Wide Web Consortium. 2015. Rdf 1.1 concepts and
abstract syntax.

263


