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Abstract

Continuous streaming Electrocardiogram (ECG) data in
the Intensive Care Unit (ICU) is highly susceptible to
noise artifacts and signal corruption. Currently, the pub-
licized algorithms for QRS detection do not account for
unreliable lead information; waveform detection is typ-
ically contingent upon information from a single lead;
and uncertainty metrics are not provided regarding the
detection accuracy. We propose a cross-correlation fu-
sion method for multi-component ECG templates us-
ing Dempster-Shafer (DS) Theory. Our experiments us-
ing clinical data were compared to benchmark non-
syntactic detection algorithms where the detection ac-
curacy was comparable at high signal-to-noise ratio
(SNR). However, the fusion approach demonstrated a
superior increase in accuracy when the SNR degraded.
Addressing these downfalls for the detection of QRS
complexes and other waveforms has potential to im-
prove patient risk prediction in the ICU.

Introduction

Intensive Care Units (ICUs) have started looking toward the
future with real-time data predictive models to aid physi-
cians at the bedside. These algorithms are intended to de-
tect latent physiological indicators that provide information
to the physician about the patient’s trajectory and immi-
nent risk (Costa, Peng, and Goldberger 2008). The most
commonly used information for determining a patient’s tra-
jectory is the analysis of electrocardiogram (ECG) signals.
Methods such as Heart Rate Variability (HRV) and Heart
Rate Complexity (HRC) have been demonstrated to be pre-
dictive of numerous types of physiological ailments such as
myocardial infarction, mortality, autonomic responses, and
hypoglycemia, (Javorka et al. 2002; Khandoker, Jelinek, and
Palaniswami 2009). The measurement of HRV and HRC
rely on calculating the time delay between heart beats; this
term is clinically known as the R-R intervals. In order to
calculate R-R intervals, it is critical to detect the QRS com-
plexes within the ECG signal, which corresponds to the de-
polarization of the ventricles in the heart. Thus, predicting
potential complications for a patient using HRV and HRC is
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dependent on accurate and precise detection of QRS com-
plexes in the ECG signal.

Prior Work. Standard benchmarking methodologies uti-
lized for QRS detection are cross-correlation and non-
syntactic algorithms (T. Last and Owens 2004; Nugent et al.
1999). These approaches are well developed, easy to imple-
ment, and have been around for decades. Cross-Correlation
examines how well the shape of the waveform coincides
with a particular template (Thompkins 2000). The basic idea
is that these approaches acquire a template and pass the tem-
plate through the signal searching for a set threshold in the
correlation coefficient in order to assume a match (Krasteva
and Jekova 2007). Non-syntactic algorithms manipulate the
signal to form peaks at the locations of the QRS complexes
and attenuate the other waveforms in the signal. A threshold
is set for the height of the peaks to determine which peaks
indicate a QRS complex; however, when noise is introduced
in the signal, this threshold fails to provide information on
the quality or context of the prediction. These methods raise
three interesting questions: 1) How can we determine the
quality of the QRS complex prediction, 2) what can be done
if the ECG lead or multiple leads are corrupted or inconsis-
tent in their predictions, 3) can an algorithm address these
questions using little or no prior knowledge?

Challenges. The current discussed QRS detection
paradigms pose a challenging problem because the real-
time data from the ICU faces corruption and a multitude
of noise artifacts. These problematic conditions are at-
tributed to missing data, physical activities, muscle artifacts,
electromagnetic interference and baseline wandering
(Ganeshapillai and Guttag 2012). This noise is typically
combated by attempting to manually or dynamically choose
which lead (source) has the best signal-to-noise ratio (SNR),
but this practice still detects QRS complexes from only a
single source of information (Krasteva and Jekova 2007;
Kothalkar and Manjusha 2014; Pan and Tompkins 1985). In
order for this work to be practical, real-time implementation
of these models is necessary. Thus, the approach must
account for ingesting data that is continually streaming
regardless of the quality and reliability of the information.

Insights. There are a number of factors that can contribute
to the corruption of an ECG lead. However, a majority of



these QRS detection algorithms require a supervised ap-
proach to account for their parameters (thresholds, window-
ing lengths, filtering). Furthermore, these algorithms con-
tinue to analyze information from only a single lead for QRS
detection. Dempster-Shafer (DS) Theory is an approach that
allows us to quantify uncertainty and fuse data to then re-
fine uncertainty from imperfect data from multiple sources
(such as conflicting source information or sources reporting
similar information) (Sentz and Ferson 2002). DS Theory
offers combination rules that fuse multiple evidence sources
into a single set of hypotheses. Fusing sources captures con-
textual considerations, such as conflicts between sources,
corrupt information, uncertainty, source reliability, and ac-
curacy (Sentz and Ferson 2002). Recent work has devel-
oped a method for quantifying uncertainty in a set of cor-
relation coefficients using a DS framework (Napoli, Barnes,
and Premaratne 2015). We propose building upon this cross-
correlation method to address the three questions posed in
the Prior Work section.

The proposed DS theory-based approach for template
matching addresses the issues of multiple templates and am-
biguity. Using this methodology, we are able to capture dif-
ferent levels of ambiguity that occur when sources report
either the same or conflicting information. If one ECG lead
indicates QRS detection while another lead conflicts with
that prediction, the uncertainty in the model should increase.
Likewise, if there is no conflict (both sources report similar
findings), then the uncertainty should decrease. Therefore,
we sought a DS approach with the ability to use all available
ECG leads, appropriately deal with corruption, conflict, and
uncertainty, and use little to no prior knowledge.

Contributions. This DS framework is then designed to be
applied to quasi-periodic signals (such as ECG data (Gane-
shapillai and Guttag 2012)) using a set of cross-correlated
ECG templates as a form of evidence. The contributions of
this work are:

1. We develop an uncertainty and ‘probability’ value at each
point in time of the ECG signal to provide information on
the quality of each QRS prediction.

2. We develop a template cross-correlation approach using
DS theory to fuse ECG leads to overcome corruption.

3. We demonstrate that the only prior information used was
a single set of templates for each ECG lead.

Background

In this section we introduce DS theory, cross-correlation,
and the non-syntactic approach for QRS complex detection
in ECG signals.

Cross-Correlation. The central idea of cross-correlation
is to examine how well the shape of the waveform coincides
with a particular template (Thompkins 2000). This correla-
tion coefficient is assigned to the template for a particular
point in time within the ECG signal, providing evidence of
a match. A correlation coefficient of p = 1 demonstrates a
perfect match between the template and the signal, a coef-
ficient of p = 0 indicates no match, and when p = —1 the
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topology is the same but the two signals are out of phase
or negatively correlated. A recently explored method re-
duces the original template into multiple components which
searches for specific components within the ECG waveform
(T. Last and Owens 2004).

Non-Syntactic. The Non-Syntactic approaches tend to
have two stages, a pre-processing stage and a decision stage
(T. Last and Owens 2004; Pan and Tompkins 1985). There
are many designs for a non-syntactic approach; however,
(Pan and Tompkins 1985) has one of the most accepted ap-
proaches for QRS detection. The pre-processing stage filters
the signal to remove baseline wandering and increase the
SNR. The signal is then differentiated to provide slope in-
formation of the QRS complex and rectified using a squar-
ing function (Pan and Tompkins 1985). A moving window
integration is applied to obtain features of the QRS and es-
sentially defines how many peaks are produced from a QRS
complex. Fiducial Marks are then placed on the rising edges
to indicate the locations of the assumed QRS complex.

Dempster Shafer Theory. DS Theory is an evidence-
based approach which develops support for hypotheses.
Evidence is constructed using information from different
events, and it can be gathered from sources such as experts,
databases, or sensors, where a single piece of evidence may
also support multiple hypotheses. DS theory, can be thought
of as a generalization of probability theory (Dewasurendra,
Bauer, and Premaratne 2007), where support for hypotheses
can be considered a set of propositions. The set of propo-
sitions is mutually exclusive and exhaustive and is referred
to as the frame of discernment (FOD). The FOD () is de-
fined as a finite set (i.e., @ = {61,...,0,}), composed of
n singleton propositions. The basic probability assignment
(BPA), otherwise referred to as a basic belief assignment or
mass function is a function m : 2 — [0, 1], where 2* is the
power set of 2, such thatm(0) = 0; >4 po m(A;) = 1.
While m(A;) measures the support that is directly assigned
to proposition A; C € only, the belief Bl(A;) represents
the total support that can move into A; from other proposi-
tion that contain A;. So, BI(A;) = > pc 4, m(B). Belief is
the minimum amount of support that is given for a specific
proposition. For the singleton case, the DS mass of the sin-
gleton is equal to the belief. In order to develop a mass func-
tion, evidence is required. Evidence is typically defined sub-
jectively by experts and data. When modeling evidence there
are two main types of uncertainties, aleatory uncertainty and
epistemic uncertainty. DS Theory reduces epistemic uncer-
tainty, caused by lack of knowledge, through increased un-
derstanding (Dewasurendra, Bauer, and Premaratne 2007).
Evidence that is fused dynamically updates the mass func-
tion to aid in the reduction of uncertainty and to redistribute
mass to the propositions (Beliefs).

Methods

The overview of the methodology is to construct a template
for each lead, capturing the inherent characteristics of the
topology for an ECG lead. This template is partitioned to
compartmentalize critical waveforms of the ECG signal (P-



wave, T-Wave, QRS Complex). These partitioned compo-
nents of the template are then cross-correlated with their
associated lead producing correlation coefficients for each
component over the time span of the signal. Using these cor-
relation coefficients for each lead, we apply the DS Frame-
work to the correlation coefficients to produce DS Masses.
We then apply Dempster Combination Rule (DCR) to ana-
lyze conflict between leads and refine our detection by eval-
vating the belief and uncertainty of the propositions. The
proposed template fusion algorithm and the non-syntactic
model, otherwise known as the Pan Algorithm, described by
(Pan and Tompkins 1985) are compared to evaluate perfor-
mance under corrupted signal conditions.

Template Framework.

Creating a proper template framework is one of the cor-
nerstones of this algorithm. First, the template must accu-
rately develop and compartmentalize the waveforms of in-
terest that comprise the ECG signal. Moreover, for unsu-
pervised detection regarding the partitioning, it is crucial to
know where the compartmentalized critical waveforms are
located within the master template.

Master Template. We first construct a master template for
each lead using a sample of the first 20 seconds of data. The
template is developed by segmenting the raw ECG wave-
form over multiple iterations. In the time-domain, the ECG
waveforms are optimally aligned using cross-correlation co-
efficients and the lag before averaging all of the time se-
ries together, a process similar to (Goldberger and Ng 2010;
Kim, Noh, and Jeong 2013). This provides a stronger model
by accentuating prevalent waveform features of the signal
and filtering out the noise.

Compartmentalizing Template Components. A multi-
component template method is developed around the master
template for each lead. This method aids us in avoiding pre-
vious thresholding techniques in the detection process (Pan
and Tompkins 1985), assessing conflict between competing
components, and incorporating a DS framework using this
conflict between competing coefficients (Napoli 2014). To
incorporate this DS Theory into a multi-component template
method, the compartmentalization within the master tem-
plate needs to be formalized with meaningful evidence to
satisfy the FOD framework. Therefore, we propose a win-
dowing scheme that will capture a set of critical events to
be K = {ki,...kp}, of the ECG signal, where we con-
sider a single critical event in the set as «;. For our purposes,
we defined these critical events as the P-Wave, T-Wave, and
QRS Complex with a window length n. In addition, a fifty
percent window overlap scheme is implemented to capture
transitions from one criteria event, k;, to the next criteria
event, x;41. Thus, we form additional events called transi-
tional events. The number of events, N, using a fifty percent
windowing scheme is defined as

N = |ev| = 2|K]|. (1)

Each event has fixed windowed length, n, segmenting the
master template into N/2 critical events. Therefore we pro-
duce N events, ev;, which are considered as a doubletons,
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due to the overlapping windows having intersections within
the finite set, shown in Figure 1. Formulating this window-
ing framework will later enable us to apply DCR as a fusion
method by treating the additional leads as evidence sources
by accounting for these intersections, which will aid in re-
fining our decision.
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Figure 1: Compartmentalized Evidence Templates

Templates to DS Masses

Cross Correlation of Components. In the implementa-
tion of any template matching scheme, the evidence that is
obtained informs us of how well a segmented component
or event matches a specific time point within the signal. We
quantify this evidence for each ECG lead by calculating a
cross-correlation coefficient using Equation 2 for every time
instance, ¢, in the signal. We quantify the strength of the
match between the two signals with a correlation coefficient,
which gauges the ’closeness’ or similarity between two sig-
nals. This quantification can be expressed as:

pxy(T) = nZiZI(xi,_;)(ZHT -y) —.
\/Zz:l(fi -X) Zj:l(ijr'r -y)
where the correlation coefficient p € [-1,1], X =

Iy jx;andy =1 71 y; denote the ‘sample’ means
T

2

of the real-valued time series data vectors x = [z1, . .
andy = [y1,...,yn|T, respectively.

Correlations to DS Framework. Evidence is formed
around each indexed time point, where we produce a vec-
tor of normalized correlation coefficients, V, for each ECG
Lead. Within V, we have N elements, where each element
is a coefficient that represents the correlation of a specific
event, ev;, to the signal at time ¢. Therefore, each ECG lead
can be considered a separate, independent source of evi-
dence, producing a set of N correlation coefficients. The cor-
relation coefficients are developed into a DS Frameworks by
analyzing the conflict and penalizing the propositions that
are weak within the set described in (Napoli, Barnes, and
Premaratne 2015). This framework is appropriately suited
for the singleton cases. However, due to the size of set
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(n) and uniqueness of the QRS in the set, this framework
should roughly capture the conflict appropriately. Applying
the windowing scheme discussed above for a single lead, a
vector of normalized correlation coefficients are generated,
thus taking the form V = [Vi VW, VN}T7 where
Vi e[-1,1]and V;, i = 1,..., N, denotes only the positive
normalized correlation coefficient between a corresponding
windowed event within the ECG signal and the i*" event
in the template data set. We consider negative correlations
events that have already passed in time because of the phase
change in the signal. We follow (Napoli 2014)’s DS frame-
work for correlation coefficients to capture the overall mag-
nitude of each element in V by utilizing a weighting strategy
as

AW = AVo JynDn

ViAViT  VoAVy VNAVN
VlAVu E’UQAVQQ VNAVNQ
ViAViy  VaAVay VAV

where o denotes the matrix Hadamard product, AVij =
(V; = V) € [-1,41],Vi,j € 1,N. Jyun denotes the
N x M matrix with each entry being 1 and Dy =
diag [V1, Vo - -+, Vn] denotes the diagonal matrix with the
diagonal entries being {V;, V5, -+, Vy}. The columns of
AW compares the distance of an element V; with all the el-
ements in V and weights V;; with V;. This weighting of V;
could be thought of as an indication of the “strength” of the
corresponding prototype being a match. Thus, the column
weight, the summation of the column vectors, informs us
how each element in V is different from the other elements
and how strongly it matches a specific event. The column
weights, C;, are calculated as

C=[C1 C On)" = (IvAW)", @)
where C; € [-(N —1)/4,(N —1)], Vi € 1,N.

A reduction of propositions is done by applying a con-
straint to the column weights vector, C. This determines the
propositions that are assigned DS masses, known as a fo-
cal element. The criterion to determine the number of focal
elements, P, is the number of elements whose C; is posi-
tive. This determines the propositions that are assigned DS
masses, known as a focal element. The criterion to deter-
mine the number of focal elements, P, is the number of
elements whose C; is positive. The mass measure vector

H = [H,, Hy -, Hy] is defined as H; = 4% Thus,
H; € [0,(N —1)], Vi € 1, N. The mass measure vector’s
elements are calculated to DS masses by

1— (ﬁ) , for A=0;
m(A) = 5)

H; (559, fora = H,

where © = {V1,Va,-+- |V} and S = Zi\; H; is the the
FoD consisting of the propositions H;, i € 1, N.
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Template Fusion. The fusion of evidence sources (ECG
Leads) allows us to refine our supports and our uncer-
tainty. Thus, as additional information (ECG sources) is pro-
vided, we can refine our epistemic uncertainty by quantify-
ing conflict within a single source and the conflict between
sources. This ability to handle conflict allow us to work
with imperfect data in an effective and more intuitive man-
ner (Lefevre, Vannorenberghe, and Colot 1999). The fusion
method utilizes the Dempster’s Combination Rule (DCR)
(Black 1988):

Y md)ma(4,)
ApNAg=A;#0
4,) = NG
"WEITS mmay
ApNA,=0

where the evidence provided by the mass functions m;
(ECG lead 1) and ms (ECG lead 2) are combined to get
the fused mass function m, denoted as m = mj ® ma.

Evaluation and Discussion

This section evaluates and validates the performance of the
proposed fusion algorithm using the following three re-
search questions:

RQ1 Does our template fusion framework provide and cap-
ture contextual meaning about the quality of the informa-
tion and the QRS prediction?

RQ2 Does our framework appropriately handle corrupted
and inconsistent leads?

RQ3 Does this template approach require a large amount of
historic information for its decision or training processes?

The non-syntactic model described by (Pan and Tompkins
1985) and the proposed fusion model were evaluated using
the annotations and data from the MIT-BIH Normal Sinus
Rhythm Database (Goldberger et al. 2000). The traditional
template methodology was not used in the comparison since
the proposed methodology is built upon this traditional ap-
proach and therefore would be expected to produce similar,
if not better, results.

These signals are a two lead extended ECG recording
from subjects with no significant arrhythmias that were
taken at the Beth Israel Deaconess Medical Center, with an-
notated QRS complexes. Each original signal, X, from the
Beth Israel Deaconess Medical Center was not initially fil-
tered to enhance its SNR. Furthermore, Gaussian additive
noise, IV,, was introduced by X, = X, + N, producing
a further corrupted signal, X .. The original signal, X, was
bandpass filtered to produce a further degraded signal, X g,
and assess the SNR by (E[X%]/E[X?]) for quantifying the
signal quality.

The performance was calculated using the number of false
positives, F'p and false negatives, F'y. False positives occur
when the method indicated that a QRS complex occurred but
it actually did not. The number of false negatives is when a
QRS complex was not detected when one actually did occur.
The QRS failure rate is defined by,

_ Fp+Fn

€= — )
Tors



where Thrg is the total number of QRS complexes in the
signal (Pan and Tompkins 1985). Although, the precision
and recall metric are typically used in analytics, this domain
has used this metric for decades (Pan and Tompkins 1985).
Since an hour of data would produce over a million samples,
but only 4000 QRS complex. The goal is to strictly high-
light the misses and detections of the QRS complex, rather
than being over shadowed by total number of samples caus-
ing a small change in the performance metric. We discuss
and present experimental results that address each of the re-
search questions below. In each experiment, we address a re-
search question demonstrating our findings associated with
that specific question.

RQ1 — Capturing belief and uncertainty We address
the question regarding capturing contextual meaning by run-
ning various experiments with different SNRs providing a
graphical representation of belief vs uncertainty for QRS
candidates. Figure 2 depicts the calculated belief and un-
certainty for instances in the signal that indicated a possi-
ble ‘candidate’ of a QRS complex. A ‘candidate’, in red,
is indicated by having the highest belief within the set af-
ter applying DCR for a particular time instance. The actual
QRS complexes, in blue, are plotted over the candidates to
demonstrate their belief and uncertainty relative to the other
candidates. Note, if we took all the proposed candidates our
error rate would be very high. However, we can note the lin-
ear separability of the two classes even when the SNR is be-
low common standards (SNR less than 1), seen in Figure 2c.
As the SNR degrades further, the class separation becomes
more complex.

SNR =0.98  SNR,=0.77 SNR =0.98 SNR,=038

(a) SNRy = .98& SNRy = .77 (b) SNRy = .98& SNRy = .38

SNR=0.98 SNR,=0.11 SNR =0.38  SNR,=0.28

' . '
© Gandatos |
09 * QRS Complexes. 09
08 08
07 07 &
o
e o BT
208 g z06 . .
£ e o ° £ ee @
£ ¢ H
04 ‘
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(c) SNRy = .98& SNRy = .11 (d) SNR; = .38& SNRy = .28

Figure 2: Uncertainty vs Belief

We can note the capturing of contextual meaning of the
quality of the information by how the uncertainty graph-
ically increases and belief decreases as SNR further de-
grades. Similar quantitative results can also be observed in
Tables 1 and 2 discussed in research question two, where the
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average belief (Bel,) and uncertainty (£2,,) were listed.

RQ2— Robustness against noise Here we address
whether our framework appropriately handles corrupted and
inconsistent leads. Regardless of what pre-processing meth-
ods are utilized, imminent sporadic events of noise will
always occur, which drastically affect the calculations for
HRC and HRV and have downstream effects on predictive
algorithms.The simulated noise that was added to these un-
filtered signals was done to demonstrate the effectiveness
of detection when these sporadic events occur and when
pre-processing the signal fails to obtain adequate SNR. We
also hypothesize that the proposed DS template algorithm is
more effective than the benchmark non-syntactic methodol-
ogy signal in corrupted situations. For simplicity, we took
an arbitrary classification stance where, in order to classify
a candidate as a QRS complex, it must have a Bel > .4 and
Q) < .55. However, it is recognized that optimizing these
constraints on these given conditions would provide supe-
rior results for DS template method.

Table 1: Corruption: MIT Data Set 16265 (Tors = 253)

Corruption Pan Algo. D.S. Fusion Algo.
SNRl SNR2 €5, €S, Belu QM €F 5
.96 74 0 1.18 .66 | .32 1 1.18
A7 .66 129.6 | 1.18 .64 | 34 0
29 29 146.2 | 62.8 S8 | .40 | 245
13 11 203.2 | 221.3 52 1 .46 | 80.2

The simulation in Table 1 and the simulation in Table 2
were done for a small segment of the time series, associated
with Data Sets 16125 and 16272, respectively. Equation 7
was applied providing the performance for the fusion algo-
rithm (er,,) and the non-syntactic algorithm for each ECG
lead (eg, and €g,). The two QRS algorithms have compara-
ble performance at the higher SNR cases; however, the non-
syntactic algorithms’ performance deteriorates as corruption
of the signal occurs. More interestingly, the proposed DS
template algorithm is able to handle inconsistent leads. This
can be seen when the performance of the non-syntactic al-
gorithm deteriorates on a single lead or on both leads, and
the marginal error for the DS template method is substan-
tially smaller than the marginal errors for the non-syntactic
algorithms.

Table 2: Corruption: MIT Data Set 16272 (Thrs = 164)

Corruption Pan Algo. D.S. Fusion Algo.
SNR; | SNRy || es, €S, Bel, | 0, | €,
.70 78 1.83 | 31.7 6 | .23 ] 1.83
.64 44 1.83 | 39.0 g4 1 .25 1 1.23
.52 .39 3.65| 470 J0 ] .29 ] 1.22
40 32 58.5 | 145.7 .66 | 32| 549

The experiment was then extended for approximately one
hour’s worth of data, providing a more accurate measure of
performance, Table 3. We can note that for this specific ex-
ample of the fusion algorithm performance, €f,,, it outper-
formed the non-syntactic algorithm in both leads, .S; and S5.
Obviously, So had a higher QRS failure detection percentage



of 54.5%, since the SNR for that particular signal was much
lower. However, it is worth noting that we were able to ob-
tain an improved detection using the degraded signal from
So. This ultimately cuts our error by half.

Table 3: Method Comparison: MIT Data Set 16265

M SNR TQRS Fp FN #E €

Fip | .82/.31 | 4647 25 51 76 1.6%
S .82 4647 | 128 19 147 | 32%
S 31 4647 | 1680 | 857 | 2537 | 54.5%

RQ3 — Little Prior Knowledge The proposed approach
requires very little to no information, where no training is
required. The amount of information required is equivalent
for the traditional template algorithm for a single ECG lead.
which is important for the use of algorithms in clinical set-
ting. Algorithms that are reliant on large data sets for clin-
ical research can contain hidden biases that might restrict
the algorithm’s accuracy and application on heterogeneous
data sources. Hence, this design was built around the idea of
template matching. However, more data with respects to the
number of ECG leads would further refine the support of the
DS framework for further enhanced performance.

Conclusion

Future work will focus on optimization methods for defining
the proper constraints for the belief and uncertainty values to
enhance classification, and on producing a better framework
to handle the doubleton case. We have demonstrated strong
potential for further improvement, which could include uti-
lizing more ECG leads as evidence sources, parallelizing the
process (Napoli et al. 2016), and detection of other cardiac
waveforms using this template paradigm.

The proposed DS fusion multiple template approach over
multiple leads has demonstrated strong evidence for be-
ing a superior detection methodology when signals are cor-
rupted with noise. This work demonstrates that using little
to no prior knowledge, contextualized QRS detection pro-
vides powerful evidence to support a decision. Unlike the
non-syntactic and conventional cross-correlation methods,
where an arbitrary threshold is set and requires adjusting,
this contextual meaning provides information on how cor-
rupt the signals are by quantifying the uncertainty that is
associated with the present conflict between competing tem-
plates. More importantly, unreliable information from cor-
rupted signals still provides value to the detection process
and are leveraged by addressing the conflicting information
sources across additional leads.
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