
Suspiciously Structured Entropy:
Wavelet Decomposition of Software Entropy

Reveals Symptoms of Malware in the Energy Spectrum

Michael Wojnowicz, Glenn Chisholm, Matt Wolff
Cylance, Inc.

18201 Von Karman Ave.
Irvine, California 92612

Abstract

Sophisticated malware authors can sneak hidden malicious
code into portable executable files, and this code can be hard
to detect, especially if it is encrypted or compressed. How-
ever, when an executable file shifts between native code, en-
crypted or compressed code, and padding, there are corre-
sponding shifts in the file’s representation as an entropy sig-
nal. In this paper, we develop a method for automatically
quantifying the extent to which the patterned variations in
a file’s entropy signal makes it “suspicious.” A corpus of
n = 39, 968 portable executable files were studied, 50% of
which were malicious. Each portable executable file was rep-
resented as an entropy stream, where each value in the en-
tropy stream describes the amount of entropy at a particular
locations in the file. Wavelet transforms were then applied to
this entropy signal in order to extract the amount of entropic
energy at multiple scales of code resolution. Based on this
entropic energy spectrum, we derive a Suspiciously Struc-
tured Entropic Change Score (SSECS), a single scalar feature
which quantifies the extent to which a given file’s entropic en-
ergy spectrum makes the file suspicious as possible malware.
We found that, based on SSECS alone, it was possible to pre-
dict with 68.7% accuracy whether a file in this corpus was
malicious or legitimate (a 18.7% gain over random guessing).
Moreover, we found that SSECS contains predictive informa-
tion not contained in mean entropy alone. Thus, we argue that
SSECS could be a useful single feature for machine learning
models which attempt to identify malware based on millions
of file features.

Introduction

The Entropy Of Malicious Software

A fundamental goal in the information security industry is
malware detection. In this paper, we focus our malware de-
tection efforts on the fact that malicious files (e.g. exploits
with injected shellcode) commonly contain encrypted or
compressed (“packed”) segments which conceal malicious
code (Brosch and Morgenstern 2006). Thus, the information
security industry has been interested in developing method-
ologies which can automatically detect the presence of en-
crypted or compressed segments hidden within portable ex-
ecutable files. To this end, entropy analysis has been used,
because files with high entropy are relatively likely to have

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

encrypted or compressed sections inside them (Lyda and
Hamrock 2007). In general, the entropy of a random vari-
able reflects the amount of uncertainty (or lack of knowl-
edge) about that variable. Chunks of code that have been
compressed or encrypted tend to have higher entropy than
native code (Lyda and Hamrock 2007).

Suspiciously Structured Entropy

Malicious code, when concealed in a sophisticated manner,
may not be detectable through simple entropy statistics, such
as mean file entropy. Malware writers sometimes try to con-
ceal hidden encrypted or compressed code; for instance, they
may add additional padding (zero entropy chunks), so that
the file passes through high entropy filters. However, files
with concealed encrypted or compressed segments tend to
vacillate markedly between native code, encrypted and com-
pressed segments, and padding, with each segment having
distinct and characteristic expected entropy levels. Thus, cy-
bersecurity researchers (Sorokin 2011), have started to pay
attention to files with highly structured entropy, that is, files
whose code flips between various distinguishing levels of
entropy through the file.

In order to automatically identify the degree of entropic
structure within a piece of software, we represent each
portable executable file as an “entropy stream.” The entropy
stream describes the amount of entropy over a small snip-
pet of code in a certain location of the file. The “amount” of
entropic structure can then be quantified, such that we can
differentiate, for example, between a low-structured signal
with a single local mean and variation around that mean,
versus a highly-structured signal whose local mean changes
many times over the course of the file.

In this paper, we define suspiciously structured entropy
as a particular pattern of entropic structure which matches
those of malicious files. To quantify the suspiciousness of
the structured entropy within a piece of software, we develop
the notion of a “Suspiciously Structured Entropic Change
Score” (SSECS). In this paper, we describe how to calcu-
late SSECS. The derivation of the feature depends upon the
notion of a wavelet transform, which we now briefly review.

Brief Overview Of Wavelets

The Wavelet Transform is the primary mathematical oper-
ator underlying our quantification of structurally suspicious

Proceedings of the Twenty-Ninth International
Florida Artificial Intelligence Research Society Conference

288

entropy. The Wavelet Transform extracts the amount of “de-
tail” exhibited within a signal at various locations over var-
ious levels of resolution (Nason 2010). In essence, it trans-
forms a one-dimensional function of “location” (in our case,
file location) into a two-dimensional function of “location”
and “scale”. By using the output of the wavelet transform
(the so-called “wavelet coefficients”), it is possible to obtain
a series of coarse-to-fine approximations of an original func-
tion. These successive approximations allow us to determine
the multi-scale structure of the entropy signal, in particular
the “energy” available at different levels of resolution.

For this paper, we apply Haar Wavelets, which is a par-
ticularly simple family of wavelets whose members are
piecewise constant. The Haar Wavelet Transform projects
the original entropy signal onto a collection of piecewise
constant functions which oscillates as a square wave over
bounded support (i.e. assume non-zero values only on cer-
tain bounded intervals). Since these piecewise constant func-
tions have supports which vary in their scale (width) and lo-
cation, the resulting projections describe the “detail” within
the signal at various locations and resolutions.

More specifically, the Haar Wavelet Transform is based
upon the so called “mother function”, ψ(t), defined by:

ψ(t) =

⎧⎨
⎩
1, t ∈ [0, 1/2)

−1, t ∈ [1/2, 1)

0, otherwise

a very simple step function. Given the Haar mother function
ψ(t), a collection of dyadically scaled and translated wavelet
functions ψj,k(t) are formed by:

ψj,k(t) = 2j/2ψ(2jt− k)
where the integers j, k are scaling parameters. The dilation
parameter j indexes the level of detail or resolution at a par-
ticular stage of analysis, and the translation parameter k se-
lects a certain location within the signal to be analyzed. Note
that as the scaling parameter j increases, the function ψj,k

applies to (is non-zero over) successively finer intervals of
the signal.

Given a signal x(t) where t = 1, . . . , T , we first rescale
the signal so that the final observation occurs at time t = 1,
and then the so-called “mother wavelet coefficient” at scale
j and location k is given by the inner product of the signal
with the wavelet. Since we are dealing with discrete signals,
the inner product takes the form:

dj,k =< x,ψj,k >=
T∑

t=1

x(t)ψj,k(t),

One interpretation of this coefficient is that it gives the
(scaled) difference between local averages of signal across
neighboring chunks or bins. The size of the neighboring
chunks is determined by the scaling parameter j.

The family of mother wavelet coefficients, {dj,k}, enable
a “Multi-Resolution Analysis” (MRA) of the signal x(t). In
particular, the signal x(t) can be decomposed into a series
of approximations xj(t) , whereby each successive approx-
imation xj+1(t) is a more detailed refinement of the pre-
vious approximation, xj(t). The functional approximations

are obtained through the wavelet coefficients by the formula:

xj+1(t) = xj(t) +
2j−1∑
k=0

dj,kψj,k(t)

where x0(t), the coarsest-level functional approximation, is
the mean of the full signal. Thus, the collection of mother
wavelet coefficients {dj,k} store the “details” that allow one
to move from a coarser approximation to a finer approxima-
tion. Examples of successive functional approximations, in
the context of software entropy signals, will be provided in
the results section.

Using the wavelet transform, it is possible to “summarize”
the overall amount of detail in a signal at various levels of
resolution. The total amount of detail at a particular (jth)
level of resolution is known as the energy at that level of
resolution:

Ej =
2j−1∑
k=1

(djk)
2 (1)

The distribution of energy across various levels of resolu-
tion is known as an energy spectrum. Note that the energy at
resolution level j is just the squared Euclidean norm of the
vector of mother wavelet coefficients from resolution level
j. After this step, we have reduced the original signal of size
T = 2J (and resultant wavelet vector of size T −1) to a vec-
tor of J elements, where each element represents the amount
of “energy” at a single level of resolution.

Wavelet-Based Classifiers

The energy spectrum of signals have been very useful fea-
tures for classifiers such as neural networks. In fact, this
combined strategy, whereby the coefficients from a discrete
wavelet transform are used as node activations in a neural
network, is referred to as a wavelet-neural-network (WNN)
strategy (see e.g. (Pati and Krishnaprasad 1993)). Using
WNN’s, researchers have been able to automatically clas-
sify lung sounds into categories (crackles, wheezes, striders,
squawks, etc.) (Kandaswamy et al. 2004), to automatically
determine whether brain EEG scans originated from healthy
patients, patients with epilepsy, or patients who were in the
middle of having a seizure (Omerhodzic et al. 2013), or
to automatically determine whether EMG signals collected
from the bicep originated from patients who were healthy,
suffering from myopathy, or suffering from neurogenic dis-
ease (Subasi, Yilmaz, and Ozcalik 2006).

We refer to the overall strategy of using wavelet coeffi-
cients as features in a classifier as a Wavelet-Based Classi-
fier strategy. We prefer this term over WNN, which, although
well-established in the literature, is specific to neural net-
work classifiers. Indeed, in this paper, we choose logistic
regression rather than a neural network to model our data,
because the logistic regression model provides an “atomic
analysis” of the relationship between the wavelet-based fea-
tures and classification categories.

289

Suspiciously Structured Entropic Change Score
(SSECS)

The initial fundamental problem with applying wavelet-
based classifiers to malware analysis is that executable files
out in the “wild” have different lengths. This contrasts
with controlled observational situations, e.g. those described
above, which produce signal samples of fixed length that
are held constant across the data set. In controlled observa-
tional situations, all samples will produce the same number
of features, J, and variation across these set of J features can
be immediately associated with a classification variable in
a straightforward manner, for example by setting the input
layer of the neural network to have J activation notes.

However, in uncontrolled observational contexts, signal
lengths can differ wildly from sample to sample. Imag-
ine, for instance, comparing signal A of length 32 (so
J=5, and if Ef,j represents the energy at resolution level
j = 1, . . . , J for portable executable file f , we would have
Ea,1, . . . , Ea,5) with signal B of length 256 (so J=8, and
we have Eb,1, . . . , Eb,8). How should we compare these two
files?

Our solution to this problem is to transform each file’s
J-dimensional energy spectrum into a single scalar feature,
a 1-dimensional “Suspiciously Structured Entropic Change
Score” (SSECS). The computation of SSECS is a two-step
process: first, we compute the wavelet-based energy spec-
trum of a file’s entropy signal, and second, we compute
the file’s malware propensity score from that energy spec-
trum. In our case, we fit a logistic regression model to the
binary classification response (malware or not) which uses
these wavelet energy features as predictor variables. We fit
J separate regression models, one for each file size group-
ing. Given the Energy Spectrum {Ef,j}, which is the set of
wavelet energies for each resolution level j = 1, . . . , J of
portable executable file f , the logistic regression model es-
timates P̂f , the predicted probability that file f is malware,
by the formula

P̂f =
1

1 + exp[−Ef,j · β(J)
j]

where β(J)
j is a model parameter, known as a “logistic re-

gression coefficient”, from the J th logistic regression model.
This number, P̂f is what we refer to as the SSECS.

Data

Data were a set of n=39,968 portable executable files from
a Cylance repository. 19,988 (50.01%) of these files were
known to be malicious, and the remaining files were benign.

Method

Constructing the entropy stream

To compute the entropy of an executable file, the original
file, represented in hexadecimal (00h-FFh), is split into non-
overlapping chunks of fixed length, typically 256 bytes. For
each chunk of code, the entropy is then computed using the

formula below:

H(c) = −
m∑
i=1

pi(c) log2 pi(c), (2)

where c represents a particular chunk of code, m repre-
sents the number of possible characters (here, n=256), and
pi is the probability (observed frequency) of each character
in the given chunk of code. The entropy for any given chunk
then ranges from a minimum of 0 to a maximum of 8.

Computing the
Suspiciously Structured Entropic Change Score
(SSECS)

The procedure for computing the suspiciously structured en-
tropic change score (SSECS) is as follows:

1) Partition data set by size: Group sampled files into j =

{1, . . . , J} groups, where j = �log2T � and T is the length
of the file’s entropy stream:

2) Iterate: For all files which fall into the jth length group
2a) Compute Haar Discrete Wavelet Coefficients: The dis-

crete wavelet transform takes as input a discrete series
of size T = 2J observations. Because the transform re-
quires the series to have a dyadic length, if the number
of observations in the executable file’s entropy stream is
not an integer power of 2, we right-truncate the series
at value 2�log2T�. The so called “mother” wavelet coef-
ficients, djk, describe the “detail” at successively fine-
grained resolutions. In particular, the mother wavelet co-
efficients are indexed such that j ∈ {1, . . . , J} repre-
sents the resolution level, ordered from coarse-grained to
fine-grained, and k ∈ {1, . . . ,K = 2j−1} represents the
particular location (or bin) of the entropy signal at that
resolution level. At each resolution level j, the signal is
divided into Nj = 2j−1 non-overlapping, adjacent bins
such that each bin includesBj = 2J−j observations. Note
that the number of bins, K, increases as j increases to finer
resolutions. The mother wavelet coefficient at index (k, j)
is then given by:

dkj =
1

sj

(2kBj∑
i=(2k−1)Bj+1

yi −
(2k−1)Bj∑

i=(2k−2)Bj+1

yi

)
(3)

where the scaling factor is sj = (
√
2)J−j+1 and is neces-

sary for the wavelet transform to preserve the size (norm)
of the signal. There are T-1 mother wavelet coefficients.

2b) Compute Wavelet Energy Spectrum: The wavelet energy
spectrum summarizes the “detail” or “variation” available
at various resolution levels. The energy spectrum is com-
puted as a function of the mother wavelet coefficients,
djk. In particular, the “energy”, Ej , of the entropy stream
at the jth resolution level is defined by Equation 1.

2c) Compute Wavelet Energy Suspiciousness Now we use
the wavelet energy spectrum to determine the “propen-
sity” of each file to be malware (i.e. its suspiciousness).
Computing this propensity requires training. We use 5-
fold validation.

290

2c1) Partition The Current Sample Of Files: Split the entire
set of FJ files which are of the appropriate size into 5
mutually exclusive subsets F 1

J , . . . , F
5
J , each of which

represents exactly 20% of the entire sample.
2c2) Iterate: For each subset F i

J , where i ∈ {1, . . . , 5}
2c2a) Fit a logistic regression : Fit a logistic regression

model on the other four subsets {F k
J : k �= i} which

fits the class variable (malware or not) as a function
of the wavelet energy spectrum. The logistic regression
model will produce a set of beta coefficients to weight
the strength of each resolution energy on the probabil-
ity of being malware.

2c2b) Calculate malware propensity: Use the logistic regres-
sion model above to then make a prediction about files
in subset F i

J . In particular, use the model learned in step
1c2a to calculate the predicted probability that each file
in set F i

J is malware, given its wavelet energy spec-
trum. This malware propensity (i.e., predicted malware
probability) lies within the interval [0, 1], and is what
we call the Suspiciously Structured Entropic Change
Score (SSECS).

Results

The Logistic Regression Model
for One File Size Group, J = 5

How does the model transform these wavelet energy spectra
into predictions about whether the file is malware (that is,
into a Suspiciously Structured Entropic Change Score)? To
illustrate, we consider the subset of n=1,599 files in our cor-
pus belonging to file size group J = 5. Because these files
can be analyzed at J = 5 different resolutions, we extract
5 features from each file, with each feature representing the
energy at one level of resolution in the file’s entropy stream.

For illustrative purposes, we begin by analyzing the
wavelet energy spectrum for two files from this size cate-
gory, as they embody more general trends in the energy pat-
terns of malicious versus clean files. Figure 1 shows wavelet-
based functional approximations for two different entropy
streams. The left column of the plot depicts the entropy sig-
nal from File A, which is legitimate software, whereas the
right column of the plot depicts the entropy signal from File
B, which is malware. Reading these columns from top to
bottom, we see that the wavelet transform produces succes-
sively detailed functional approximations to these files’ en-
tropy signals. The title above each subplot shows the wavelet
energy, as computed in Equation (1) in the text, of the signal
at a particular resolution level. The wavelet energy is sim-
ply the sum of the squares of the scaled differences in the
mean entropy levels, where the differences are only taken
between even/odd index pairings (i.e. the algorithm takes the
differences meanbin2 −meanbin1,meanbin4 −meanbin3,
and so forth). Thus, we can gain some visual intuition about
how the energy spectra can be derived from these successive
functional approximations.

Based on this entropic energy spectrum decomposition
(or distribution of energy across various levels of resolu-
tion), the model believes that File A is legitimate software,
whereas File B is malware. Investigating this conclusion, we

0 5 10 15 20 25 30

0
4

8

Wavelet Energy at Level 1 = 4.35 squared bits

0 5 10 15 20 25 30

0
4

8

Wavelet Energy at Level 1 = 14.44 squared bits

0 5 10 15 20 25 30

0
4

8

Wavelet Energy at Level 2 = 0.8 squared bits

0 5 10 15 20 25 30

0
4

8

Wavelet Energy at Level 2 = 139.99 squared bits

0 5 10 15 20 25 30

0
4

8

Wavelet Energy at Level 3 = 5.29 squared bits

0 5 10 15 20 25 30

0
4

8

Wavelet Energy at Level 3 = 53.84 squared bits

0 5 10 15 20 25 30

0
4

8

Wavelet Energy at Level 4 = 34.5 squared bits

0 5 10 15 20 25 30

0
4

8

Wavelet Energy at Level 4 = 9.75 squared bits

0 5 10 15 20 25 30

0
4

8

Wavelet Energy at Level 5 = 23.84 squared bits

0 5 10 15 20 25 30

0
4

8

Wavelet Energy at Level 5 = 19.22 squared bits

File Location (Each Chunk is 256 Bytes)

E
n

tr
o

p
y

Figure 1: Wavelet-based functional approximations, and the
corresponding wavelet energy spectrum, for the entropy sig-
nals of two representative portable executable files from one
file size group.

see that these two files have radically different wavelet en-
ergy distributions across the 5 resolution levels. The legiti-
mate software (File A) has its “entropic energy” mostly con-
centrated at finer levels of resolution, whereas the piece of
malware (File B) has its “entropic energy” mostly concen-
trated at coarser levels of resolution. For the clean file, the
energy in the entropy stream is concentrated at the resolu-
tion levels j = 4 and j = 5 (where the energy is 34.5 and
23.84 squared bits, respectively). For the dirty file, the en-
ergy in the entropy signal is concentrated at coarser levels of
analysis, peaking especially strongly at level j = 2 (where
the energy is 139.99 squared bits).

The fit of the logistic regression model (for both raw and
normalized features) is summarized in Table 1. Note that
for the entire table, numbers outside the parentheses rep-
resent results for the normalized features, whereas num-
bers inside the parentheses represent results for raw fea-
tures. The two “Energy” columns list the energy at all five
levels of resolution for these two files. The “Value of βj”
column describes the estimated beta weight in a logistic re-
gression fitting file maliciousness to the five wavelet energy
values, based on a corpus of n=1,599 files. The “P-value”
column describes the probability of getting the test statis-
tic we observed (not shown, it is a function of the data)
under the hypothesis that there is no relationship between
energy at that level and file maliciousness. The codes are:
∗ = p < .05, ∗∗ = p < .01, ∗ ∗ ∗ = p < .001, ∗ ∗ ∗∗ =
p < .0001, ∗ ∗ ∗ ∗ ∗∗ = p < .00001. The “Malware Sen-
sitivity” represents the estimated change in the odds that a
file is malware associated with an increase of one unit in the
corresponding feature. It is calculated by (eβ − 1)× 100%.
For the normalized values (those outside the parenthesis),
an increase of one unit refers to an increase of one standard
deviation.

Based on these logistic regression beta weight (βj) values,
we see that the two sample files from Figure 1 are indeed
representative of a larger trend: having high energy at resolu-

291

tion levels 1,2 and 3 (the coarser levels) is associated with a
higher probability of the file being malware (since those βj’s
are positive), whereas having high energy at levels 4 and 5
(the finer levels) is associated with a lower probability of the
file being malicious (since those βj’s are negative). More-
over, these associations appears to be reflective of trends in
the larger population of files, since the p-values are largely
strongly statistically significant. This finding makes sense if
artificial encryption and compression tactics tend to elevate
moderate to large sized chunks of malicious files into “high”
entropy states.

Logistic Regression Models
For All File Size Groups

Do the trends found in the single level analysis of n = 1, 599
files hold up in the full corpus of n = 39, 968 files? In par-
ticular, regardless of file size, can we corroborate the sim-
ply stated conclusion that “malware tends to concentrate en-
tropic energy at relatively coarse levels of resolution?” And
if so, where is the dividing line between “coarse” and “fine”?

In Figure 2, we summarize the results of logistic re-
gression models fit to each file size grouping separately.
The plot shows logistic regression beta coefficients for de-
termining the probability that a portable executable file is
malware based upon the magnitude of file’s entropic en-
ergy at various levels of resolution within the code. Posi-
tive betas (red colors) mean that higher “entropic energy”
at that resolution level is associated with a greater probabil-
ity of being malware. Negative betas (blue colors) mean that
higher “entropic energy” at that resolution level is associated
with a lower probability of being malware. For both colors,
stronger intensities represent stronger magnitudes of the re-
lationship between entropic energy and malware. Mathemat-
ically, the dot product between a file’s energy spectrum and
these beta weights determine the fitted probability that the
file is malicious. Thus, the Danger Map interpretation arises
as follows: For any file size grouping (or row), files that have
high energies in the red spots and low energies in the blue
spots are significantly more likely to be “dangerous.” Con-
versely, files that have low energies in the red spots and high
energies in the red spots are significantly more likely to be
“safe.”

Taking this Danger Map into consideration, we draw the
following conclusions:

• The full analysis supports the “coarse-energy-is-bad, fine-
energy-is-good” mantra to a first approximation. Visually,
most diagonal elements of the matrix are blue (and also
more blue than the off-diagonals). Thus, across most file
sizes, high energies at the finest-level of resolution appear
to be indicative of file legitimacy, and high energies at
coarse levels of resolution are often associated with sus-
piciousness.

• However, this mantra is too simplistic to be satisfying
as a full description. What qualifies as a suspicious pat-
tern in the wavelet decomposition of a file’s entropy
stream appears to be much more complex. For exam-
ple, the appearance of the double diagonal bands in blue
suggest somewhat regular vacillations in terms of how

 A 'Danger Map' For Software Entropy

Resolution Level

Fi
le

Si
ze

 G
ro

up
ing

 (J
)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

3

4

5

6

7

8

9

10

11

12

13

14

15

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

Beta Value

Figure 2: A Danger Map for entropy patterns within a piece
of software.

“suspicious” high entropic energy would look at a par-
ticular level of resolution. Indeed, the particular pattern-
ing depicted in the Danger Map provides a statistically
significantly better description of malware than random
(baseline-informed) guessing alone. Likelihood ratio tests
comparing the fit of the size-specific models (where the
beta coefficients of each size-specific model are given
by the specific colorings in the corresponding row of the
Danger Map) versus the fit of models with no features
(interpretable as a uniform color across rows, where the
intensity of the color is determined by baseline malware
rates, independent of the wavelet energy spectrum) yield
the test statistics below. Moving from bottom (J=3) to top
(J=16) of the figure, we have

χ2(3) = 198.36, χ2(4) = 563.51, χ2(5) = 257.52,

χ2(6) = 235.09, χ2(7) = 150.11, χ2(8) = 585.57,

χ2(9) = 662.22, χ2(10) = 283.24, χ2(11) = 385.33,

χ2(12) = 305.04, χ2(13) = 233.39, χ2(14) = 116.17,

χ2(15) = 61.88, χ2(16) = 31.44

All of these are statistically significant at the α = .05
level.

The Predictive Power of SSECS

How can we use the information distributed across the “Dan-
ger Map” to construct a single number which could score a
piece of software’s suspiciousness based on the wavelet de-
composition of its entropy signal? We studied the predictive
performance of SSECS in identifying malware by construct-
ing a hold-out test set of n = 7, 991 files and found:

1. SSECS as a single feature improved predictions of mal-
ware, within a balanced sample of malware and legiti-
mate software, from 50% to 68.7% accuracy. This makes
SSECS a particularly impressive feature, considering that

292

Resolution Energy Spectra Statistical Model For F ile Size J = 5

Level # Bins Bin Size F ile A File B V alue of βj P − value Malware Sensitivity

1 2 16 -0.39 (4.35) -0.01 (14.44) 0.448 (0.017) ***** +56.5% (+1.7%)
2 4 8 -0.79 (0.80) 6.27 (139.99) 0.174 (0.008) * +19.0% (+0.89%)
3 8 4 -0.48 (5.29) 2.18 (53.83) 0.847 (0.046) ***** +133.2% (+4.74%)
4 16 2 1.42 (34.50) -0.37 (9.75) -0.106 (-0.008) n.s. -10.0% (-0.75%)
5 32 1 1.77 (23.84) 1.19 (19.22) -0.240 (-0.030) ** -21.4% (-2.99%)

Table 1: Investigating the relationship between the entropic Wavelet Energy Spectrum and maliciousness for files of size J=5.

most machine learning models of malware consist of mil-
lions of features.

2. SSECS provides predictive information beyond what is
contained in a mean entropy feature. A model with mean
entropy as a single feature achieved 66.2% predictive ac-
curacy. Thus, mean entropy is indeed also a very impres-
sive single predictor of malware (perhaps not surprisingly
given its prevalence in the literature). However, unlike
mean entropy, the wavelet energy spectrum detects sus-
picious patterns of entropic change across the code of the
executable file. We found that a 2-feature model which
includes both mean entropy and SSECS achieves 73.3%
predictive accuracy (so adding wavelet-based information
to the model yields a 7.1% boost in predictive accuracy
beyond what is obtained by mean entropy alone).

3. SSECS provides predictive information beyond what is
contained in a “standard deviation of entropy” feature.
A skeptic might ask: why not simply use standard devi-
ation, a more commonly used and more computationally
straightforward measure of variation? Standard deviation
is useful, but a relatively cruder measure of variation, as it
operates on only a single spatial scale. Indeed, a 2-feature
model which includes both mean entropy and standard de-
viation achieves merely 70.4% predictive accuracy.

4. Overall, SSECS is a valuable contributor to a collec-
tion of entropy-based features for predictive modeling of
malware. We construct a somewhat more comprehensive
model of Entropic Suspiciousness, which includes both
SSECS as well as 8 simple statistical summary features
of the entropy signal which may be relevant for malware
detection: mean, standard deviation, signal-to-noise ratio,
maximum entropy, percentage of the signal with “high”
entropy (≥ 6.5 bits), percentage of the signal with zero
entropy, and length and squared length of the signal. This
model made correct predictions 74.3% of the time.

Discussion

All together, we have found that the Suspiciously Structured
Entropic Change Score (SSECS) is a single feature which
would appear to be useful in machine learning models of
malware detection. Malware authors have been known to
deliberately tinker with software to incorporate malicious
code, but then to conceal this code by encryption, compres-
sion, and padding. By design, SSECS helps to capture the

degree to which a portable executable file exhibits suspi-
cious patterns of shifting entropy within the code of portable
executable files. Moreover, SSECS (and a broader notion
of entropic suspiciousness that goes beyond mean entropy)
could easily be combined with other classes of data mining
features, such as n-gram features (Kolter and Maloof 2004)
and strings (Schultz et al. 2001), to construct more powerful
automatic malware classifiers.

References
Brosch, T., and Morgenstern, M. 2006. Runtime packers: The
hidden problem. Black Hat USA.
Kandaswamy, A.; Kumar, C. S.; Ramanathan, R. P.; Jayaraman, S.;
and Malmurugan, N. 2004. Neural classification of lung sounds
using wavelet coefficients. Computers in Biology and Medicine
34(6):523–537.
Kolter, J. Z., and Maloof, M. A. 2004. Learning to detect malicious
executables in the wild. In Proceedings of the tenth ACM SIGKDD
international conference on Knowledge discovery and data mining,
470–478. ACM.
Lyda, R., and Hamrock, J. 2007. Using entropy analysis to find
encrypted and packed malware. IEEE Security & Privacy (2):40–
45.
Nason, G. 2010. Wavelet methods in statistics with R. Springer
Science & Business Media.
Omerhodzic, I.; Avdakovic, S.; Nuhanovic, A.; and Dizdarevic, K.
2013. Energy distribution of eeg signals: Eeg signal wavelet-neural
network classifier. arXiv preprint arXiv:1307.7897.
Pati, Y. C., and Krishnaprasad, P. S. 1993. Analysis and synthesis
of feedforward neural networks using discrete affine wavelet trans-
formations. Neural Networks, IEEE Transactions on 4(1):73–85.
Schultz, M. G.; Eskin, E.; Zadok, E.; and Stolfo, S. J. 2001. Data
mining methods for detection of new malicious executables. In
Security and Privacy, 2001. S&P 2001. Proceedings. 2001 IEEE
Symposium on, 38–49. IEEE.
Sorokin, I. 2011. Comparing files using structural entropy. Journal
in computer virology 7(4):259–265.
Subasi, A.; Yilmaz, M.; and Ozcalik, H. R. 2006. Classification of
emg signals using wavelet neural network. Journal of neuroscience
methods 156(1):360–367.

293

