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Abstract

We present a preliminary investigation into applying
dimension extraction methods from coevolutionary al-
gorithm theory to the analysis of student-problem per-
formance in a computer programming instruction con-
text. Specifically, we explore using the dimension ex-
traction coevolutionary algorithm (DECA) from coevo-
lution and co-optimization theory (Bucci 2007), which
identifies structural relationships amongst learners and
tests by constructing a geometry encoding how learner
performance can be distinguished in fundamentally dif-
ferent ways. While DECA was developed for software
learners and tests, its foundational ideas can in principle
be applied to data generated by human students taking
real tests. Here we apply DECA’s dimension-extraction
algorithm to student-problem data from four semesters
of an introduction to programming course where stu-
dents used an online software tutor to solve a number
of predesigned problems. Dimension extraction reveals
structures (dimensions) that partially align with the con-
cepts originally designed into the problems. Preliminary
results suggest the structure DECA reveals is consistent
when the set of students is varied.

1 Introduction
This paper presents results of a preliminary investigation
into applying dimension extraction methods from coevolu-
tionary algorithm theory to the analysis of student-problem
performance in a computer programming instruction con-
text. Our long-term goal is to improve an existing adaptive
software tutor, problets.org, that is designed to help students
learn basic programming concepts. We believe that extend-
ing this system to generate new problems that both vary in
difficulty and are as informative as possible about how to
differentiate student performance is an important first step.
We begin by focusing on using existing data to understand
the informativeness of student assessments.
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Our jumping off point is a method that uncovers the
underlying structure within student problem performance
data. The idea is based on the dimension extraction co-
evolutionary algorithm (DECA) from coevolution and co-
optimization theory (Bucci 2007), where a focus on max-
imizing the informativeness of tests has been shown to
help in certain (machine) learning problems. DECA iden-
tifies structural relationships amongst learners and tests by
constructing a geometry with these that demonstrates how
learner performances can be distinguished in fundamentally
different ways.

We apply dimension extraction to student-problem data
from four semesters of an introduction to programming
course where students used an on-line software tutor to work
a number of predesigned problems. We show that dimen-
sion extraction produces structures that are consistent across
minor variations in input, which suggests that the method
finds relatively stable structures. Additionally, we show how
the dimensions produced are relatively consistent with the
conceptual framework with which the problems were orig-
inally designed. However, extracted performance-oriented
dimensions do not perfectly align with pre-conceived con-
cepts, which motivates the use of information-theoretic,
performance-driven methods to inform adaptive intelligent
tutoring systems.

2 Background
2.1 Student-Problem Performance Analysis
There are a number data-driven approaches to analyze
student-problem performance, for varying purposes. Many
times, researchers are interested in building a model to pre-
dict student performance based on existing data (Oyelade,
Oladipupo, and Obaguwa 2010). From a more exploratory
perspective, Konold et al. (1999) applied a multi-stage k-
means clustering algorithm to try to understand the decom-
position of the results of an intelligence test for children.
Kerr et al. used cluster analysis to identify key student strate-
gies and error patterns in an educational video game context
(2012). Clustering is a useful tool in performance analysis
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since it provides a way to group student or problem data
based on some measure of similarity; however, these meth-
ods are highly sensitive to the measure of distance used.
Learning about how the data is structured both amongst
items within a group as well as understanding the interpre-
tation of different groups requires additional methods.

An obvious alternative to traditional clustering methods
is multidimensional scaling (MDS). MDS gives a projection
and rotation in a space such that items are organized into
separate dimensions. Because of this, MDS has also been
applied to analyzing student performance. Davison (1994;
1996) uses MDS as an exploratory method to identify major
structural patterns in student performance data. Davis and
Skay (1991) compare MDS to factor analysis (e.g., Q-Factor
analysis (Cattell 1967)) for uncovering structural properties
of subjects versus measures in psychological studies as a
means to motivate and build a response model for how dif-
ferent kinds of subjects respond to different kinds of psy-
chological instruments. Ding (2001) uses a similar method
in order to classify different types of students for a voca-
tional interest test. MDS is capable of producing geometries
of points in a space with useful properties; however, those
geometries are in terms of the underlying (perhaps arbitrary)
distance measure rather than explicitly depending on distinc-
tions in problem/student performance.

2.2 Co-optimization & Coevolution
Co-optimization problems are distinguished from optimiza-
tion problems by the presence of two or more types of en-
tity (e.g., student or problem) that might vary and can in-
teract with one another with a measurable outcome or score
(Popovici et al. 2012). This is directly analogous to student-
problem performance analysis. In this paper, we have com-
puter science students and a variety of computer program-
ming problems. A given student might attempt and receive
outcomes on some subset of problems. This means that
the relative performance among students is determined by
the problems with which they interact, just as is so in co-
optimization problems.

Foundational theory in co-optimization and coevolution-
ary algorithms concerns the development dimension extrac-
tion methods (Bucci, Pollack, and de Jong 2004; de Jong
and Bucci 2006; Bucci 2007; de Jong and Bucci 2008). Ab-
stractly, this line of work posits that the information gleaned
from interactions, for instance the scores of students solving
problems, can be decomposed into a vector-space-like coor-
dinate system. Within a coordinate system, there are poten-
tially multiple axes or dimensions, consisting of a linearly
ordered subset of the set of all entities. Entities further along
a given axis are “no worse than” those preceding it. Across
two different axes, entities are incomparable to one another,
in the sense that an entity on one axis will be better in some
ways, but worse in other ways, than an entity on another
axis. This method has been used for a number of purposes,
including automatically identifying key conceptual tactics in
the game of Nim (de Jong and Bucci 2008).

Wiegand et al. (2016) recently used dimension extraction
analysis as a means of uncovering problems in a dataset that
are both challenging and informative — that is, problems for

which not only do fewer students get right, but also help dif-
ferentiate the general performance of students on problems.
However, this work does not provide insight into the effec-
tiveness of dimension extraction in terms of how it orders
items within each dimension.

2.3 Applications to Programming Education
Extracting the underlying dimensions of a large interaction
space opens new possibilities when applied to educational
data. In the case of the interaction space between student
and programming practice problems, such dimensions cap-
ture underlying key concepts.

Dimension extraction offers a data-driven approach that
supplements the research designs traditionally leveraged in
this type of work. For instance, Goldman and his colleagues
(2008) used a Delphi process to identify and rank a list of
topics based on their importance and difficulty. Meanwhile,
Hertz and Ford (2013) instead surveyed CS1/CS2 instruc-
tors in order to measure the amount of time spent on various
topics. This measurement was then correlated with student
performance.

Furthermore, dimension extraction techniques also enable
us to address the issue of granularity (Porter, Taylor, and
Webb 2014) by identifying low-level concepts on most of
the topics typically covered in introductory programming.

While several concept inventories have been attempted on
various Computer Science subjects (e.g., digital logic, op-
erating systems, algorithms) digital logic (Herman, Zilles,
and Loui 2014) algorithms (Vahrenhold and Wolfgang 2014;
Taylor et al. 2014), none has yet been completed on intro-
ductory programming. To create a concept inventory for in-
troductory programming, assessment items must be created
on a continuum of specific concepts within each topic that
students do not understand. Therefore, dimension extraction
is a necessary first step to achieve a better understanding of
key concepts and how they may lie on the continuum.

3 Methods
3.1 Problets.org
The data analyzed in this study was gathered through Prob-
lets.org Intelligent Tutoring System. This afforded us the
benefits of relying on a tool that has been used by third-party
educators in their introductory courses for over a decade and
that has been continually and extensively evaluated (e.g.,
(Kumar 2015a; 2015b)).

Students used different software tutors, named problets,
each dedicated to covering the various concepts related to a
specific topic typically studied in introductory programming
courses. The concepts address different skills: evaluating ex-
pressions, tracing programs (e.g., predicting the output), de-
bugging programs and identifying the state of variables in a
program.

Each problet adapts the sequence of problems to the learn-
ing needs of the student. A predefined set of pretest problems
is first used, one per concept covered by the problet, to gauge
the student’s prior knowledge. Thereafter, students are only
presented with practice problems on the concepts on which
they solved the pretest problem incorrectly.
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The tutor uses parametrized templates to generate prob-
lems. In a parametrized template, the problem is described
in terms of meta-variables with constraints, e.g., a template
〈r1 ∈ {2, . . . , 5}〉+〈r2 ∈ {6, . . . , 9}〉 is used to generate an
addition expression, r1 being chosen randomly in the range
2 through 5 and r2 in the range 6 through 9. So, typically, no
two students see the same problem and no student sees the
same problem twice. Our data analysis was done in terms of
problem templates rather than specific problems.

In this study, we used pretest and practice data of students
who used a problet on arithmetic expression evaluation. This
problet featured 25 concepts. Arithmetic expression evalu-
ation is especially suitable for empirical analysis because
a typical problem tests multiple concepts and concepts are
often inter-connected, e.g., 3 + 4 * 5 tests correct evalua-
tion of addition and multiplication, as well both their prece-
dence. The precedence of addition and subtraction are the
same and can be treated as one “bundled” concept. Because
of the one-to-many relationship between problems and con-
cepts, extracting the state of knowledge of a student based
on the student’s performance on a series of problems is not
a straightforward task.

3.2 Population & Sample

Participants were students enrolled in introductory program-
ming courses offered by high schools, community colleges
and four-year colleges. Problets were used for after-class as-
signments after the related topics had been covered in class.
Our data was gathered on one problet that dealt with the
topic of arithmetic expressions. It was used by a total of
1319 students during the fall 2012, fall 2013, spring 2013
and spring 2014 semesters.

Table 1 summarizes the distribution of our sample with
respect to several factors. Problets users were free to opt to
not provide information regarding any but two of the factors
being considered. Both the programming language used by
the tutor, i.e. “Language” factor, and the type of institution,
i.e. “School” factor, were determined when the instructor re-
quested access to Problets.org for his or her students.

For each factor, we therefore specify the percentage of
the students who did not provide the corresponding data in
column % skip. These percentages are below 22% for all
factors, thus indicating that the resulting information is most
likely representative of the entire sample. We also provide,
for each factor, the distribution of responses. All results are
rounded to the nearest integer.

From this sample, we extracted a subset of students who
actually interacted with all the practice problems featured in
our study. This allowed us to focus on a rectangular matrix
providing pass or fail information with respect to all avail-
able tests. This resulted in a subset of 17 students that char-
acteristics are summarized in table 2, using the same for-
mat than table 1. As mentioned above, this reduction in data
stems from simplifying conditions of our preliminary study
meant to baseline our ideas. In studies following this paper,
we aggregate at a concept level and can apply these methods
to hundreds of students.

3.3 Dimension Extraction for Problem Analysis
Dimension Extraction Coevolutionary Algorithm (DECA)
(de Jong and Bucci 2006) is a coevolutionary algorithm
that uses a dimension-extraction method, as discussed in
Sect. 2.2. Coevolutionary algorithms search through can-
didate solutions and tests, but here we harness DECA’s
internal dimension-extraction to examine the performance
relationships between students and problems. Dimension-
extraction can be done from the perspective of students or
problems; however, in this paper we confine our attention to
problem analysis.

We applied dimension extraction to the subset of the four-
semester dataset discussed in Sect. 3.2. The result of this
problem analysis is a coordinate system of problems, where
each dimension ordered a subset of the problems. Problems
further along a dimension are not passed by the same stu-
dents as those lower on the dimension, plus possibly more.
Problems on different dimensions are those on which stu-
dents performed incomparably in a multiobjective sense. In-
tuitively, each dimension corresponds to a different concep-
tual way to differentiate student performance, and the prob-
lems that are highest on each dimension are the problems
most students did not solve.

Application of this kind of analysis to the performance
of students on computer programming problems potentially
provides several sources of insight. First, the number of di-
mensions extracted from problem analysis gives an implicit
measure of the number of different ways that problems dis-
tinguish student performance. Additionally, by examining
how problems are arranged within a dimension, we can can
learn which problems are consistent in how they distinguish
performance, as well as how such problems scaffold (get
progressively harder) along any given dimensional axis.

What remains to be determined is what relationship these
extracted dimensions have to the concepts that were a priori
designed into the problem sets to begin with, or the extent to
which small changes in the students considered for the anal-
ysis will change the structure returned by dimension extrac-
tion. This latter issue is an issue of consistency with respect
to the algorithm.

We address the question of alignment by comparing the
dimension extraction results to a concept map given by the
subject matter expert who designed problets.org, described
in Sect. 4.1. We address the consistency issue conducting
leave-one-out and leave-two-out validation extractions —
that is, we remove a student (or two) and run the extraction
again, doing so for each student (and pair of students). The
results of these comparisons are described below.

4 Results
4.1 Pedagogical Interpretation
DECA discovered 12 orthogonal ways in which problem
templates fundamentally distinguished student performance.
Problem templates along a given dimension can be com-
pared to one another — later templates are strictly “harder”
than earlier templates. Problem templates on different di-
mensions are, in a multiobjective sense, incomparable.
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Factor % skip Responses
Language 0% 64% Java, 35% C++, 1% VB
School 0% 88% Undergraduate, 9% community college, 2% K12
Gender 16% 62% male, 22% female
Race 20% 51% Caucasian, 15% Asian, 4% Hispanic/Latino, 5% African American, 6% Other

Major 18% 25% Computer Science, 25% Engineering, 4% Social Sciences,
11% Other Science (e.g. Physics, Chemistry, Biology...), 18% Other

Year 16% 33% Freshman, 24% Sophomore, 13% Junior, 9% Senior, 1 % Graduate, 2% Others

Table 1: Characterization of our Sample

Factor % skip Responses
Language 0% 59% Java, 35% C++, 6% VB
School 0% 65% Undergraduate, 29% community college, 6% K12
Gender 12% 59% male, 29% female

Race 12% 53% Caucasian, 6% Asian, 6% Hispanic/Latino,
12% African American, 6% Native American, 6% Other

Major 12% 41% Computer Science, 35% Engineering, 6% Business, 6% Other
Year 12% 29% Freshman, 35% Sophomore, 18% Junior, 6% Senior

Table 2: Characterization of our Sample’s subset

• Seven dimensions consisted of two or more problem tem-
plates — the longest dimension consisted of 5 problem
templates. This was followed by one with 4 templates,
two with 3 templates and finally, three with 2 templates.

• Five dimensions consisted of one template each. It is con-
ceivable that with additional data, these problem tem-
plates could seed longer dimensions, and their “singleton”
nature is more an artifact of the sample size. Therefore,
we ignored these dimensions in our analysis.

We analyzed the concepts covered by the problem templates
in the seven non-singleton dimensions. The concepts them-
selves were grouped by similarity as follows:

• Addition and subtraction being similar, we grouped their
correct evaluation, precedence and associativity.

• The precedence and associativity of multiplication, divi-
sion and remainder operators being the same, we grouped
them together.

• Each of the following was treated as one conceptual
group: correct evaluation of multiplication; correct evalu-
ation of division — both integer and real division; correct
evaluation of remainder operation — with integer and real
operands; evaluation of parentheses; divide-by-zero error;
and coercion necessitated by real operands.

So, in all, we analyzed the 7 dimensions yielded by DECA
along 8 conceptual groups, as shown in Table 3. In the ta-
ble, each dimension is identified by the number of problem
templates in it (column 1). Our analysis showed:

• The dimension consisting of four templates was domi-
nated by coercion (“Real” column in the table).

• One dimension consisting of three templates was domi-
nated by correct evaluation of addition/subtraction (+,−
column in the table). The other dimension was dominated

by coercion and evaluation of remainder operator with
real operands, the latter being one of the two concepts in
the column % in the table.

• A dimension consisting of two templates was dominated
by integer division, which was one of the two concepts in
the column titled / in the table. Another was dominated
by divide-by-zero error (#/0 in the table).

In the above cases, the dimensions extracted by DECA
grouped problem templates around concepts or conceptual
groups that corroborate educators’ intuition. This is interest-
ing in that the problem templates in each dimension were
not originally designed to serve the conceptual groups iden-
tified by DECA. But, given that each non-trivial problem
with two or more operators inherently co-opts multiple con-
cepts, DECA “discovered” the salient concepts common to
all the templates in each dimension.

The conceptual groupings of the two remaining dimen-
sions, however, are not as clear:

• The largest dimension with five templates was dom-
inated by multiple conceptual groups: correct evalua-
tion of addition/subtraction, precedence of multiplica-
tion/division/remainder and evaluation of remainder.

• The remaining dimension with two templates did not have
a dominant conceptual theme (last row in the table).

Neither dimension seems focused around any particular con-
ceptual groups. Since five out of seven multi-problem di-
mensions extracted by DECA cohered around clearly iden-
tifiable concepts, it is reasonable to assume that the concepts
pointed to by these two dimensions, while not intuitively dis-
cernible, are important for learning all the same.

Note that there was no exclusivity among the conceptual
groups or the dimensions extracted by DECA:
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Dim Prob +,− ∗, /,% ∗ / % () #/0 Real
5 5 5 1 1 4 3 0 3
4 1 2 1 1 4
3 2 2 2 2 3
3 5 1 1 1
2 4 4 1 2 1
2 2 1 2
2 1 1 1 1 1

Table 3: Number of occurrences of each conceptual group in the different dimensions. For example, the dimension in the last
row contains two problems: 5 * 3.0, which accounts for the entries in * (correct evaluation of multiplication) and Real (real
operand) columns, and 9 / 3 / 0, which accounts for the entries in *,/,% (associativity of division), / (correct evaluation of
division) and #/0 (divide-by-zero) columns.

• The problems in a dimension dominated by a conceptual
group were not limited to just that group — they tested
concepts from other groups also, although not in as con-
certed a manner as the dominant group.

• A conceptual group could dominate multiple dimensions.

This highlights the interconnected nature of the domain (i.e.,
each problem covers multiple concepts) and makes the di-
mensions extracted, and hence, the concepts discovered by
DECA all the more interesting. In this sense, these results
are promising.

4.2 Consistency
While running DECA on the full dataset produced 12 di-
mensions, it is not clear the algorithm would produce simi-
lar results on similar datasets. To begin to address DECA’s
sensitivity to input data, we performed leave-one-out and
(exhaustive) leave-two-out cross validation to estimate the
mean number of dimensions found by DECA. The results
are summarized in Table 4.

To be specific, for each fold in the leave-one-out cross
validation, we produced a subset of the original dataset con-
sisting of 16 of the 17 students and all 27 templates. We ran
DECA on this subset and recorded the number of dimen-
sions extracted. We repeated this for each of the 17 students,
leaving out a different student for each iteration. We thus
had 17 number of dimension estimates. The first line of Ta-
ble 4 reports the sample mean, sample standard deviation,
minimum and maximum for these estimates.

The leave-two-out cross validation was similar. However,
each subset was created from the original dataset by omit-
ting 2 distinct students. We ran DECA on each dataset, for a
total of 272 estimates of number of dimensions. The second
line of Table 4 reports the sample mean, sample standard
deviation, minimum and maximum for these estimates.

It is worth remarking that the leave-two-out cross valida-
tion omits over 10% of the original dataset while still esti-
mating a number of dimensions close to the 12 found for the
full dataset.

5 Discussion
DECA was originally developed in the context of coevolu-
tionary algorithms that were intended, among other things,

to adaptively train computer programs to perform a desired
task. In that context, DECA has shown a number of desir-
able theoretical and pragmatic properties. The dimension-
extracting component of the algorithm was extended in
(de Jong and Bucci 2008) and applied to analyzing instances
of the game Nim, where it was found the extracted di-
mensions corresponded closely to our intuitions about what
makes for strong or weak moves in that game. The present
work can be considered a first assessment of whether the
benefits DECA has demonstrated in the context of coevolu-
tionary algorithms transfer to the domain of adaptive intelli-
gent tutoring systems.

In Sect. 4.1 we analyzed extracted problem template di-
mensions and found relationships with the concepts built
into the problem templates by design. The relationship was
not straightforward–some dimensions found by DECA ap-
peared to be dominated by a single concept, while others
mixed multiple concepts–and further work is needed to elu-
cidate what, if anything, these dimensions might signify
pedagogically. We also observed a “compression” in the
sense of (de Jong and Bucci 2008): 12 dimensions were
found among the 27 problem templates. We feel that while
not conclusive, these results suggest our original hope of
transferring DECA’s strengths to adaptive intelligent tutor-
ing systems shows promise.

In Sect. 4.2 we performed a simple analysis of the con-
sistency in the number of dimensions DECA finds in this
dataset. We observed that while 12 dimensions were found
in the full dataset containing 17 students, anywhere from 9
to 12 dimensions might be found in a subset of 15 or 16 stu-
dents, with an average number of dimensions found roughly
11. We have not performed comparisons between the dimen-
sions found in subsets of the data with the dimensions found
in the full dataset, but plan to do so in future work.

We should emphasize that the dataset used, consisting
of 27 problem templates and 17 students, is small. DECA
found 12 dimensions in this data, but 5 of them consisted of
a single template and did not lend themselves to compari-
son with intuitive concepts. In future work we hope to ana-
lyze larger datasets and develop appropriate measures of sta-
tistical significance that allow for stronger inference about
the number of dimensions found and their relationships with
known concepts. In our view the present work is best viewed
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sample mean number of dims s2 number of dims min number of dims max number of dims
leave-one-out 11.06 0.43 10 12
leave-two-out 10.96 0.60 9 12

Table 4: Sample mean and sample standard deviation of extracted number of dimensions in leave-one-out and leave-two-out
cross validation

as exploratory and suggestive, not predictive.
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