

Game-Related Examples of Artificial Intelligence

Ken T. N. Hartness

Sam Houston State University
SHSU Box 2090, Huntsville, TX 77341

hartness@shsu.edu

Abstract
The field of artificial intelligence needs to attract new re-
searchers to the field to continue current explorations and
look for novel approaches to tomorrow's problems. One ap-
proach involves providing students with learning tools that
excite their imagination and help them obtain an apprecia-
tion for what artificial intelligence can do. The tools de-
scribed here are used in an undergraduate course at Sam
Houston State University. They include heuristic-driven
search in a potential game's terrain map, reinforcement
learning in a tank battle game, and game tree search tech-
niques in tic-tac-toe.

 Introduction
An artificial intelligence course often lacks the time to ex-
plore anything other than toy problems. Even when these
toy problems fail to excite the imagination of students, the
discussion of a particular area of artificial intelligence can
be greatly enhanced by an implementation of the solution,
something that a student can adjust and examine the impact
of certain choices on how well the system solves its prob-
lem. If the goal is to simply demonstrate what a technique
can accomplish, implementations of complex practical
problems could be used to interest students in the power of
the technique even if the implementation is not easily
comprehended.
 The author hypothesizes that students will learn the
implications and purpose of different areas of artificial
intelligence more thoroughly with hands-on activities. In
order to limit the time spent by students on one particular
topic in a course that touches on numerous aspects of arti-
ficial intelligence, the author seeks prototypes, partially-
implemented applications, and full, interesting applications
that touch on such material as path planning, genetic algo-
rithms, expert systems, and reinforcement learning. This
paper describes tools currently used by the author for this
purpose.

Copyright © 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Philosophy
Computer science enrollment has dropped for many
programs. Students interested in artificial intelligence
represent a subset of the decreasing computer science stu-
dent population. Russell et al (2007) suggest that one rea-
son for this decline is that students do not truly compre-
hend what computer science is or the opportunities to
which it may lead. Computer science educators need to
make a special effort to teach courses that remind students
of the interesting possibilities that may await them in in-
dustry or academic research. Artificial intelligence, in par-
ticular, has a potential for helping students consider
opportunities other than coding jobs, and instructors should
take advantage of this opportunity.
 Caspersen and Bennedsen (2007), in trying to describe
the important qualities of a programming course, con-
cluded that most students prefer learning from examples.
Evidence exists to support the idea that learning is im-
proved if a mixture of examples and student work is used,
and partial examples that must be completed by the student
seemed to be a powerful means of teaching concepts. A
number of attempts have been made to provide a learning
environment for artificial intelligence. One, Flexible
Learning with an Artificial Intelligence Repository
(FLAIR), provided instructors with insight into a failure on
the part of students to comprehend or apply some of the
material from the lecture (Ingargiola et al, 1994). The
students were unable to predict the behavior of a path-
planning algorithm that found a path between cities in spite
of knowing the different heuristic-based cost-estimation
functions being used with the A* algorithm. The use of
examples, partial or complete, can be very valuable to the
students' learning process. By including examples that have
significant practical use or are entertaining, interest in the
subject is enhanced as well.

172

Proceedings of the Twenty-Second International FLAIRS Conference (2009)

Examples Currently Used
I teach my introduction to artificial intelligence course in
two parts. The first part covers classical search techniques
that utilize heuristics to create estimates of cost or quality
with regard to an intermediate step in obtaining a solution;
this section covers the A* algorithm, hill-climbing search,
and minimax search. The remainder of the course provides
an overview of interesting artificial intelligence topics
ranging from the more static expert systems to machine
learning techniques like genetic algorithms and reinforce-
ment learning. Students are required to explore a topic in
more detail as a semester project, but, otherwise, there is
little time to explore any one topic in depth.
 One tool used to explore A* search is the terrain map
explorer. The A* algorithm can simulate skill and intelli-
gence on the part of a computer-controlled character in a
game by locating the most efficient path to a destination.
The terrain map explorer represents a computer-controlled
character attempting to reach a castle in a strange land. The
land is represented as a two-dimensional array of tiles
where each tile represents a type of terrain; some types of
terrain can be crossed quickly (inexpensively), and other
types are more difficult to cross (more expensive). The
terrain object only allows access to terrain information as a
3x3 grid around a specified position (the tile at that posi-
tion and its neighboring tiles). The character maintains its
own map of explored terrain and its current tile within that
terrain. Because undergraduate students often mistakenly
consider the cost of backtracking, one version of this tool
uses the A* algorithm on the character's incomplete map;
this search process is used to generate a path to where the
character assumes the goal may be located. As the terrain
map is explored, new paths are calculated based on the
new information. The A* algorithm is seen, here, as a sup-
porting tool for considering possible paths rather than di-
rectly driving the character's exploration of the terrain. The
tool is designed so that a student only has to write a func-
tion, h, for estimating the cost of reaching a goal.
 A tic-tac-toe program provides a simple example of a
two-player, turn-oriented game. The instructor can remove
the minimax algorithm and assign its implementation to the
student, change two lines and require that the student im-
plement alpha-beta pruning and compare the efficiency, or
simply ask the student to provide the evaluation function to
implement appropriate heuristics for playing the game.
Students are encouraged to consider the difficulty of cre-
ating a good evaluation function that performs well at
lower look-ahead values or increases pruning.
 Students learn about reinforcement learning with the aid
of an open-source game developed to encourage users to
learn Java. Robocode (Nelson, 2001) is a program written
in Java that simulates robot tanks shooting at one another
as they move across the playing field. Each robot's control
software is implemented as a Java class. Students are free
to create their own robots independently of those based on
reinforcement learning algorithms and allow them to com-
pete on the battlefield. A reinforcement learning algorithm
called Q learning (Dean et al, 1993) has been written as a

Java class, and a robot class called QRobot (Hartness,
2004) has been defined for the purpose of applying posi-
tive and negative reinforcement to the Q learning model as
it successfully attacks and destroys other robots or is at-
tacked, itself. A file of learned data is maintained under the
robot's name, allowing it to learn across sessions. Students
must determine how to associate positive and negative re-
inforcement with events during the battle; fortunately, the
robots are notified of relevant events.
 A version of the Robocode robot has also been designed
to work with a genetic algorithm. The robots load control
parameters from a server, then send an evaluation of their
performance back to the server. Because of limited popu-
lation size and the fact that an entire battle must be fought
before a new generation can be explored, I have preferred
to have students work with a simple genetic programming
implementation, although the robots are available for in-
dependent student projects. One could conceivably have
students pit their own creations against the evolving robots
throughout the semester.

Conclusion
Examples are a powerful tool for enhancing student
learning. With limited time to create our own examples for
every area of artificial intelligence, A.I. educators should
be willing to share interesting examples that seem to be
successful at clarifying a concept for students. Mine are at
www.shsu.edu/~csc_kth/cs582/.

References
Casperson, M., and Bennedsen, J. 2007. Instructional
design of a programming course – A learning theoretic
approach. ICER '07: 3rd International Workshop on
Computing Education Research, September 2007.
Dean, T., Basye, K., and Shewchuk, J. 1993.
Reinforcement learning for planning and control. 67–92.
Minton, S., ed. Machine Learning Methods for Planning.
San Mateo, CA: Morgan Kaufmann.
Hartness, K. 2004. Robocode: Using games to teach
artificial intelligence. Journal of Computing Sciences in
Colleges 19(4): 287–291.
Ingargiola, G., Hoskin, N., Aiken, R., Dirbey, R., Wilson,
J., Papalaskari, M., Christensen, M., Webster, R. 1994. A
repository that supports teaching and cooperation in the
introductory artificial intelligence course. In SIGCSE '94:
25th SIGCSE Symposium on Computer Science Education,
36–40. New York, NY: ACM.
Nelson, M. 2001. Robocode. http://robocode.alphaworks.
ibm.com/home/home.html.
Russell, J., Russell, B., and Pollacia, L. F. 2007. Reversing
the Decline of CIS Enrollment in Colleges and Universities
by Creating Viable and Attractive Minors in CIS: A
Statistical Study of CIS Minors at US Colleges and
Universities. In The Proceedings of ISECON 2007, v 24
(Pittsburgh).

173

