Proceedings of the Twelfth International Conference on the Principles of Knowledge Representation and Reasoning (KR 2010)

Towards Runtime Support for Norm-Governed Multi-Agent Systems

Visara Urovi*, Stefano Bromuri*, Kostas Stathis*, Alexander Artikis**
*Department of Computer Science, Royal Holloway, University of London, UK.
**]nstitute of Informatics and Telecommunications, NCSR Demokritos, Greece.

Abstract

We present a knowledge representation framework with an
associated run-time support infrastructure that is able to com-
pute, for the benefit of the members of a norm-governed
multi-agent system, physically possible and/or permitted ac-
tions current at each time, as well as sanctions that should be
applied to violations of prohibitions. Experimental results on
a benchmark scenario indicate how by distributing norms we
can provide run-time support to large-scale, norm-governed
multi-agent systems.

Introduction

Norm-governed multi-agent systems are systems in which
actuality does not necessarily coincide with ideality, and
thus the agents’ interactions are regulated by permissions,
obligations, and other normative relations that may exist be-
tween them. Despite the proliferation of knowledge rep-
resentation frameworks for norm-governed systems, these
frameworks often focus on the expressive power of the for-
malism proposed and typically abstract away from the com-
putational aspects and experimentation. If the computational
behavior is studied, then this often happens in isolation, at
times theoretically only, and in many occasions leaves unex-
plored any experimental evaluation.

Our work aims at using existing Event Calculi (Kesim and
Sergot 1996; Bromuri and Stathis 2009) for computing, at
run-time, permissions, prohibitions, and sanctions dealing
with the performance of forbidden actions. We assume that
agents cannot compute these normative relations on their
own because of computational constraints, and incomplete
knowledge about the application state. The novelty of our
approach is the ability to formulate the distribution of the
physical and social environments of a norm-governed ap-
plication in order to efficiently compute their corresponding
physical and social states.

The Open Packet World

To exemplify our approach we use Packet World (Weyns,
Helleboogh, and Holvoet 2005), an application in which
a set of agents situated in a rectangular grid pick colored
packets (squares) and deliver them in destinations (circles)
matching a packet’s color (see Fig. 1(a)(i)). Agents see only

Copyright (© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

596

(i)

(i)

mo-»rcnr®»n Fe-now

8 P 8
W
Y
7 % 7
1
6 c 6
¢ D
5 L] L] L B L]
U} z . (i)
¢|m 5 @ [=]5 ofm = @
H
3 T 3
u . ™
z %’“ | z ﬁ“ n
E
0 -
] | BN | ﬁ‘“] R 1 ™ ml= F}al =
1 2 3 4 5 6 7 8 1 2 3 4 5 3 T B
(a) (b)

Figure 1: Open Packet-World as a Norm-Governed System

part of the grid (e.g. the square around agent a2 in Fig. 1
is its perception range), and are assumed to be collabora-
tive. Also, agents are powered by a battery that discharges
when they move. Recharging the battery requires a charger
(located at (7,8) of Fig. 1). The charger emits a perceivable
gradient; a small/large value implies that the distance from
the charger is close/far respectively.

We introduce a competitive version of the above scenario,
the Open Packet World (OPW), where agents score points
when they deliver packets, and to ensure that they score the
most points, they may deceive others e.g. by placing a flag
indicating that there no packets left in the surrounding area,
although this may not be the case. To deal with (such) unso-
cial behavior, we introduce norms in OPW — e.g. an agent
is not permitted to flag an unexplored area as it will mislead
others to think that there are no packets in this part of the
grid. Violation of norms results in sanctions, for example,
the reduction of points of the violating agent.

We experiment with our scenario using the GOLEM agent
platform'. GOLEM supports the deployment of agents -
cognitive entities that can reason about sensory input re-
ceived from the environment and act upon it, objects - re-

'http://golem.cs.rhul.ac.uk

wmoHABrcn-Bn Fm-now

-»4z20n FepA-wn=<zT

wama

sources that lack cognitive ability, and containers - virtual
spaces containing agents and objects, capturing their ongo-
ing interactions in terms of an event-based approach.

The simplest way to model the OPW in GOLEM is shown
in Fig. 1(a). Here we deploy a container representing the
world (Bromuri and Stathis 2007) extended with an active
object which we call Social Calculator (Artikis, Sergot, and
Pitt 2009). This object contains the norms, encapsulates the
state of the physical container in order to check for viola-
tions in it, extends it with a social state by storing possible
violations, while at the same time serves agents who would
want to know what their permissions are at a specific time.

To represent the state of a GOLEM container we use the
object-based notation of C-logic, a formalism that describes
objects as complex terms (Chen and Warren 1989). The term
below, e.g., represents the state of a 2 x 2 packet world show-
ing only one agent, packet, destination and battery:

packet_.world:c1[
address = “container://one@134.219.7.1:13000”,
type = open,
grid = {square:sq1, square:sq2, square:sq3, square:sq4}
entities = {picker:ag1, packet:p1, dest:d1, battery:b1}]

Object instances belong to classes (e.g. packet_-world), are
characterized by unique identifiers (e.g. c1), and have at-
tributes with single values (e.g. address) or multiple values
(e.g grid). The representation of the 8 x 8 grid of Fig. 1
is similar but larger, i.e. more agents, packets, destinations,
and squares.

Complex objects evolve as a result of events happening in
the state of a container (Bromuri and Stathis 2009). To query
the value Val of an attribute Attr for an entity Id of container
C at a specific time T, we will use the definition:

solve_at(C, Id, Class, Attr, Val, T) —
holds_at(C, container, entity_of, Id, T),
holds_at(ld, Class, Attr, Val, T).

holds_at/5 extends the Event Calculus with an object-based
data-model (Kesim and Sergot 1996). The extension de-
scribes how the value Val of an attribute Attr for specific
Class instance identified by Id holds at a particular time T.
For details the reader is referred to (Kesim and Sergot 1996).
With this extended Event Calculus we specify physical pos-
sibility for the OPW as, e.g.:

possible(E, T)—
do:E [actor = A, act = move, location=- SgB],
solve_at(this, A, picker, position, SqA, T),
adjacent(SqA, SqgB),
not occupied(SgB, T).

The rule states that it is possible for an agent to move to an
adjacent position as long as it is not occupied. The keyword
this is used here to refer to the identifier of the current con-
tainer.

We can now formalize the social state of a system as a
C-logic structure that extends the physical state with social
attributes to hold information about any current sanctions
imposed on any of the agents, and the points agents have
collected so far. An example snapshot of a social state for
the OPW is shown below:

597

packet_world_social_state: s1 [

physical_state= packet_world:c1,

sanctions=- {sanction:s1 [agent = a2, ticket = 5]},

records=- {record:r1[agent = al, points = 35],

record:r2[agent = a2, points = 25]}]

The term above states that agent a2 has been sanctioned with
5 points. We show the records of two agents only to save
space. Agent al has collected 35 points, while a2 has col-
lected 25 after the sanction is applied. The social state con-
tains rules for what is permitted and what is forbidden :

permitted(Event, T)« not forbidden(Event, T).

forbidden(E, T) «—
do:E[actor = A, act=-drop, object=-flag, location=-SqgA],
solve_at(this, Id, packet, position, SqB, T),
adjacent(SqA, SqB).
When a forbidden act has taken place, the Social Calculator
raises a violation. More complex permissions and sanctions
can be formalized similarly.

An alternative way to model the OPW is to split the phys-
ical state of a single container into smaller states that we dis-
tribute into different containers. Fig. 1(b)(i) shows four 4 x 4
adjacent containers for OPW together with their correspond-
ing Social Calculators (see Fig. 1(b)(ii)). GOLEM supports
this feature with the Ambient Event Calculus (AEC) (Bro-
muri and Stathis 2009). Given a container C and a starting
Path, we can query a maximum number of neighbors Max,
returning a final Path® where an object identifier Id, class
Cls, attribute Attr, and value Val hold at time T:
neighbouring_at(C, Path, Path*, Max, Id, Cls, Attr, Val, T)«

Max >= 0,

locally_at(C, Path, Path*, Id, Cls, Attr, Val, T).
neighbouring_at(C, Path, Path*, Max, Id, Cls, Attr, Val, T)«

holds_at(C, container, neighbour, N, T),

not member(N, Path),

Max* is Max - 1,

append(Path, [C], New),

neighbouring_at(N, New, Path*, Max*, Id, Cls, Attr, Val, T).

The first clause checks whether the object is in the local state
of a container. locally_at/8 checks with holds_at/5 to find the
object in the container’s state, including sub-containers?, if
any. The second clause looks for neighbors. If a new neigh-
bor N is found, this neighbor is asked the query but in the
context of a New path and a new Max™.

We are now in a position to customize our representation
for distributing the physical and social state by redefining the
solve_at/6. The definition below has the effect of changing
all the physical and social rules so that they can work with
distributed containers:
solve_at(C, Id, Class, Attr, Val, T) «—

neighbouring_at(C, [], -, 1, Id, Class, Attr, Val, T).
The empty list [] above states that the initial path is empty,
the underscore ‘_’, that we are not interested in the result-
ing path, and the number 1 indicates that we should look
at all neighbors whose distance is one step from the current
container. In this way, we can query all the neighbors of a
container in the OPW of Fig. 1(b).

2We refer the interested reader to (Bromuri and Stathis 2009)
for a definition of locally_at/8.

Experimentation

We performed two sets of experiments: one where the OPW
is deployed in a single container and another where it is de-
ployed in many distributed containers. In both sets of exper-
iments we measured the time needed to compute whether
an action is physically possible and/or permitted. We also
varied the number of agents participating in OPW, observed
the number of events in the system, and observed how these
parameters affect the performance of the system in both ex-
perimental settings.

In the first set of experiments the environment was repre-
sented by a 40x40 grid and 100 packets were collected by
the agents and released into one of the 8 destinations in the
grid. We run the first test with 10 agents, the second test with
30 agents and the third test with 50 agents. We found that
the time needed to compute the social and physical state, in
a single container setting, is proportional to the number of
events taking place in OPW.

In the second series of experiments we distributed the
OPW grid (40x40) first into two containers (20x40) and then
into four (20x20) different containers. For the distribution
of the containers we used an Intel Centrino Core 2 Duo
2.66GHz with 4GB of RAM and an Intel Centrino Core Duo
1.66Ghz with 1GB of RAM. Agents were deployed in dis-
tributed containers and were mobile (Bromuri and Stathis
2009). Figure 2 shows the experimental results. It shows
that in a system with a small number of events (0-500), it is
better to adopt a single container setting. With an increas-
ing number of events, however, we achieve a considerable
performance gain by distributing the grid into two or four
containers. In general, we found that when we distribute the
agent environment into multiple containers, the time to com-
pute the physical and the social state is inversionally pro-
portional to the number of containers, thus improving the
performance. However, there is an additional delay to com-
pute the physical and social state which is due to the inter-
actions between the containers (e.g. when an agent moves
from the grid under supervision of one container to the grid
supervised by another container). A detailed discussion on
our experimental evaluation and the implementation can be
found in (Urovi et al. 2010).

Conclusions and Future Work

We presented a knowledge representation framework with
an associated run-time infrastructure that is able to com-
pute, for the benefit of the members of a norm-governed
multi-agent system, the physically possible and permitted
actions current at each time, as well as the sanctions that
should be applied to violations of prohibitions. We exempli-
fied the ideas by applying the infrastructure on a benchmark
scenario for norm-governed multi-agent systems. Through
experimentation we explored how to use the knowledge rep-
resentation framework to distribute parts of the infrastruc-
ture so that we can provide run-time support to larger-scale
multi-agent systems regulated by norms.

There are several directions for further work. First, we are
examining various caching mechanisms for the Event Cal-
culus, such as those proposed in (Chittaro and Montanari

598

2080

38 Agents 1 Container -
38 Agents 2 Containers
38 Agents 4 Contaiger;

1880

1688 [

1488 [

1288

1888

Tinelns)

2588 3888 3560 4688 4588

Events

a 588 1888 1588 2888

Figure 2: Experimental Results

1996), in order to further improve the efficiency of tempo-
ral reasoning. Second, we aim to perform experiments with
larger multi-agent systems in order to determine the extent
to which our infrastructure can be used for run-time support.
Third, we aim to formalise additional normative relations,
such as institutional power.

References

Artikis, A.; Sergot, M.; and Pitt, J. 2009. Specifying norm-
governed computational societies. ACM Transactions on
Computational Logic 10(1).

Bromuri, S., and Stathis, K. 2007. Situating Cognitive
Agents in GOLEM. In Engineering Environment-Mediated
Multi-Agent Systems, LNCS 5049, 115-134. Springer.

Bromuri, S., and Stathis, K. 2009. Distributed Agent Envi-
ronments in the Ambient Event Calculus. In Proceedings of
conference on Distributed event-based systems. ACM.

Chen, W., and Warren, D. S. 1989. C-logic of complex
objects. In Proceedings of Symposium on Principles of
database systems, 369-378. ACM.

Chittaro, L., and Montanari, A. 1996. Efficient temporal
reasoning in the cached event calculus. Computational In-
telligence 12:359-382.

Kesim, F. N., and Sergot, M. 1996. A Logic Programming
Framework for Modeling Temporal Objects. /[EEE TKDE
8(5):724-741.

Urovi, V.; Bromuri, S.; Stathis, K.; and Artikis, A. 2010.
Run-time support for norm-governed systems. CS Tech-
nical Report CSD-TR-10-01, Royal Holloway. http://
golem.cs.rhul.ac.uk/TR/CSD-TR-10-01.pdf.
Weyns, D.; Helleboogh, A.; and Holvoet, T. 2005. The
packet-world: A testbed for investigating situated multia-
gent systems. In Software Agent-Based Applications, Plat-
forms, and Development Kits. Birkhauser Verlag. 383—408.

5688 558t

