
 

Affect and Mental Engagement:

Maher Chaouachi, Pierre Chalfoun, Imène Jraidi and Claude Frasson 
 

Département d’informatique et de recherche opérationnelle 
Université de Montréal, 2920 Chemin de la Tour, Montréal, CANADA 

{chaouacm, chalfoun, jraidiim, frasson}@iro.umontreal.ca 
 

 
 

Abstract 
This paper discusses novel research conducted to study the 
direct impact of learner’s affective changes on the value of a 
well established EEG mental engagement index. An 
acquisition protocol for recording the electrical activity of 
the human brain, known as electroencephalography or EEG, 
was implemented in a learning environment specifically 
constructed for emotional elicitation. Data was collected 
from 35 healthy subjects using 8 sensors and two video 
cameras. A correlation analysis of the engagement index 
with emotional states was conducted. Results have shown 
that emotional states are strongly correlated with learners’ 
mental engagement index and that the later can be used in 
an educational setting to reliably predict performance. 
 
Keywords: engagement index, affect, intelligent systems. 

Introduction   

Research on affect modeling and recognition is a well 
developed and explored field considering the fact that the 
precise cognitive mechanisms that underlie and explain 
emotions are still the subject of much debate. Few will 
disagree however that emotions are very omnipresent in 
human life. They influence our behavior and play an 
important role in our every-day decision making processes 
(Quartz 2009). Learning activity is also fundamentally 
related to emotions (Snow, Corno, and Jackson 1996). 
Cognitive processes, such as problem solving and decision 
making, not only depend on the individual’s emotional 
state, but are greatly intertwined with it (Damasio 1994). 
Moreover, emotions are essential actors for creative 
thinking, inspiration as well as concentration and 
motivation (Isen 2000). Hence, learning systems should 
intelligently adapt their communication and interaction 
abilities with learners with regards to changes taking place 
in this important affective dimension.   
 A growing body of research in the field of artificial 
intelligence has identified and reproduced emotions using 
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complex models and physiological sensors. Research in 
emotional AI for example has enabled computers to start 
recognizing emotion from speech (D'Mello et al. 2005), 
facial expressions (Pantic and Rothkrantz 2000) or a hybrid 
of both these methods (Busso et al. 2004). Other researches 
attempted to recognize affect by analyzing physiological 
signals like heart rate and skin conductivity (Arroyo et al. 
2009). In the majority of these papers, emotional states 
were associated to various patterns of physiological 
manifestations with high accuracy and performance. 
 However, only scarce research has been conducted on 
studying the impact that affective changes can have on 
cognitive processes by means of EEG physiological 
sensors. Nevertheless, in the last few decades, researchers 
from various scientific communities have made great 
improvements in methodologies and technologies that give 
insight into the brain and the learner’s physiological 
activity. (Pope, Bogart, and Bartolome 1995) at NASA 
developed an EEG-engagement index based on brainwave 
band power and applied it in a closed-loop system to 
modulate task allocation. Performance in a vigilance task 
improved when this index was used as a criterion for  
switching between manual and automated piloting mode 
(Freeman et al. 2000; Pope et al. 1995). We believe that the 
integration of this index in education could greatly enhance 
the ability of AI models to continuously detect, adapt and 
adjust learning to the user’s level of mental engagement. 
 Nonetheless, research regarding this engagement index 
has mainly focused on cognitive aspects. It neglected to 
take into account the impact that the emotional component 
can have since emotions and cognition are strongly 
intertwined. Furthermore, this index has barely been used 
outside the field of automated cognition.  
 To that end, we propose bringing this valuable index 
into the field of education by establishing its importance in 
modeling learner’s engagement and emotional state. In 
order to do so, we will address in this paper the two 
following research questions: (1) Can learner’s emotional 
states have an impact of the evolution of this engagement 
index? (2) If so, can this new index, combined with the 
learner’s emotional state, give useful and valid insight 
regarding the evolution of learner’s performance? 

Towards Adaptability for Intelligent Systems  
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 The organization of this paper is as follows: In the first 
section, we present previous work done in fields similar to 
our own. In the second section, we lay the grounds on 
which the core of this paper is based: the computation of 
the engagement index. In the third section, we detail our 
experimental methodology. In the fourth section, we 
present the obtained results and discuss them, in the last 
section, as well as present future work. 

Previous Work 

 The integration of physio-cognitive data is one of the 
most important and promising challenges for developing 
and significantly improving human-technology interaction 
by enhancing skill acquisition, performance and 
productivity in educational, military and industrial fields 
(Parasuraman 2005). Indeed, several physiological sensors 
were incorporated in various systems for detecting changes 
in monitored emotional and cognitive states (Arroyo et al. 
2009; McQuiggan and Lester 2009; Murugappan et al. 
2007). Having said that, the most reliable and accurate 
physiological signal for monitoring cognitive state changes 
remains the electroencephalogram (EEG). The EEG data 
has a high level of time resolution and precision. In fact, 
EEG information and features extracted from Power 
spectral distribution (PSD) bands and/or event related 
potential (ERP) components has served as input for linear 
and non linear models to identify and classify cognitive 
changes such as alertness, attention, workload, executive 
function, verbal or spatial memory and engagement (Berka 
et al. 2007; Russell et al. 2005). In one of the most renown 
studies, (Sterman et al. 1993) used EEG data to assess 
mental workload in the evaluation of 15 Air Force pilots 
during refueling and landing exercises performed in an 
advanced technology aircraft simulator.  Most of these 
models used statistical and artificial intelligence techniques 
such as discriminant function analysis (DFA), artificial 
neural networks (ANN), and support vector machines 
(SVM) to construct their models. One such stunning 
example is the study by (Wilson 2005) where 38 measures 
derived from EEG and heart rate were used to classify with 
high accuracy workload level and verbal/spatial working 
memory in unmanned combat air vehicle simulation. 
 However, to the best of our knowledge, the closest work 
we could find relevant to our present research is in bio-
cybernetic systems. An EEG-based engagement index was 
proposed by (Freeman et al. 1999; Pope et al. 1995) and 
used on a closed-loop method to adjust modes of 
automation according to operator’s level of engagement. 
Performance improvement was reported using this 
engagement index for task allocation mode (manual or 
automated). Getting closer to education and problem 
solving, (Stevens, Galloway, and Berka 2007) used EEG-
based engagement index to relate mental changes during 
problem solving task.  
 This mental engagement index however has always been 
established without taking into consideration the emotional 
state of the learner. We propose to extend this index into 

the educational field and refine it by adding an affective 
analysis. We will start by explaining how to compute the 
mental engagement index. 

Computing Engagement Index  

Before going further, let us summarize in a brief, but 
concise way, the nature of an EEG signal. EEG, like any 
electrical signal, is composed of frequencies resulting from 
electrical neural activity in the brain. These frequencies are 
often grouped in sequence and are known as bands. Theta 
band, for example, is the name given to frequencies 
ranging from 4 to 8 Hz. These bands reflect specific and 
different cognitive processing abilities in specific areas of 
the brain (Lubar et al. 1995). Thus, the computation and 
analysis of frequency bands within power spectral density 
(PSD) combined with numerous research on alertness and 
attention provides a powerful tool for monitoring and 
mapping mental engagement (Lubar et al. 1995). As 
previously mentioned, (Pope et al. 1995) developed an 
engagement index using three EEG bands: Theta (4 8 
Hz), Alpha (8 13 Hz) and Beta (13 22 Hz). The ratio 
used was: Beta / (Alpha + Theta).  This ratio was also 
found as being the most effective when validated and 
compared to many other indices (Freeman et al. 1999).  
 In our study, we computed the engagement index by 
applying a Fast Fourier transformation to convert the EEG 
signal from each active site into a power spectrum. Bin 
powers (the estimated power over 1Hz) were summed 
together with respect to each band in order to compute total 
power and produce the EEG band ratio. By combined 
power, we mean the sum of band power computed from 
each measured scalp site. The EEG engagement index at 
instant T is computed by averaging each engagement ratio 
within a 40s sliding window preceding instant T. This 
procedure was repeated every 2s and a new 40s sliding 
window is used to update the index. Two main methods 
exist to help interpret this index: 
 The slope method: the slope of successively derived 
engagement indexes (every 2s) is computed. More 
importantly the sign, negative (Low engagement tendency) 
or positive (high engagement tendency) is also considered.   
 The absolute method: sets an engagement threshold by 
averaging engagement index values over a period of time 
prior to testing (baseline). During task performance, 
engagement index exceeding the threshold is considered 
positive and values below the threshold negative.  
 We opted to follow the absolute method when 
evaluating changes in the engagement index. Henceforth, 
we designed and integrated this method in an experiment 
that will be discussed in the following section.  

Experimental Methodology 

In order to assess any relation between emotions and the 
evolution of the engagement index, an experiment 
designed to provoke specific emotional reactions was 
conducted. In this experiment, two video feeds, an EEG 
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headset and physiological sensors were used to monitor 
and record the user’s reactions throughout the learning 
process. All the data was synchronized. This setup is 
important for our investigation. It permits us to compute, 
offline, the engagement index from the EEG headset 
sensors. Furthermore, each computed index can easily be 
paired with the emotional state of the learner obtained from 
two separate physiological sensors called BVP for blood 
volume pressure and SC for skin conductance. This pairing 
(EEG & BVP-GSR), as discussed in the results section, 
allows us to map and follow the evolution of both these 
important cognitive and emotional parameters involved in 
learning. Further widely used parameters were also 
recorded for the offline analysis, namely question response 
time (RT) as well as a pre and post questionnaires for 
general evaluation purposes. 
 Before the beginning of the experiment, a one minute 
baseline was recorded for each participant. This widely 
used technique establishes a neutral emotional and 
engagement state for future comparisons. During this time, 
learners were instructed neither to be engaged nor too 
relaxed. Learners were then told to respond to three series 
of ten successive true/false questions.  
 Most of the questions in this experiment were relatively 
simple and did not require any prerequisite knowledge or 
specific skills. However, a good level of attention and 
alertness is required to avoid making easy mistakes. 
Question response time was limited to 20 seconds. 
Participants were informed that a correct answer was 
rewarded one point whereas no points were given for a bad 
answer or no answer at all. The goal set for all participants 
was to obtain the highest possible score within the imposed 
time limit. Apparently obvious questions were designed to 
mislead learners on purpose. Learners were sometimes so 
confident of their answer that they would get surprised, 
frustrated or upset after discovering that they were wrong.  
 The first series presented general knowledge questions. 
One sample true/false question would be “Is Rio De Janero 
the capital of Brazil?”. The second series pertained to spell 
checking. Carefully chosen words were presented one by 
one on the screen. The task is to determine whether the 
presented word is properly spelled or not. Finally, 
participants were asked to respond by true or false to a 
series of logical statements: “If X < Y-2 then X < Y.”      
 After each given answer, the system interacted with 
learners by sending different textual emotional messages to 
inform them about the correctness of their response. When 
a good answer is given, the message was encouraging, for 
example, “Excellent answer! You seem to be very 
concentrated.”  Conversely, in case of a wrong answer, the 
message could be empathic or may contain an advice, for 
example, “I’m sure that you know the correct answer” or 
“Wrong! You need to be more concentrated”. 
 
EEG recordings. During data acquisition, learners wore 
an electro-cap and data was recorded from six active sites, 
four located on the scalp at locations P3, C3, Pz, Fz as 
defined by the international 10-20 system (Jasper 1958) 

and referenced to Cz. The last two actives sites are A1 and 
A2 and are more typically known respectively as the left 
and right ear.  This specific setup, also called a montage, is 
technically referred to as a “referential linked ears 
montage” and is illustrated on figure 1. The details and 
specifics of this montage being out of the scope of the 
present paper, suffice it to say that the distinct advantage of 
a referential montage over other setups is that the EEG 
signal is equally amplified throughout both hemispheres. 
Furthermore, the “linked-ears” aspect allows us to 
mathematically obtain a much more precise and cleaner 
EEG signal by correcting each scalp location signal to that 
of the middle of the brain. For example, the corrected C3 
would become (C3=C3-(A1+A2)/2). Overall, one can say 
that we obtain a “centrally calibrated equally amplified” 
EEG signal. Electrode impedance was kept below 5 kilo 
Ohms. A non sticky proprietary gel from Electro-Cap was 
also used. The recorded sampling rate was 256 Hz.  

Figure 1: Channel electrode placement. 

 Furthermore, the brain electrical activity is very weak 
(in the order of micro volts: 10-6 volts) and usually contains 
a lot of noise. Thus all EEG signals were amplified and 
filtered. Sources of noise are static electricity or 
electromagnetic fields produced by surrounding devices. A 
60-Hz notch filter was applied to remove such 
environmental interference during the data acquisition 
phase. It is important to specify that a 50-Hz notch filter 
should be used in Europe where the power distribution 
(110 volts) differs from that of North America (120 volts). 
In addition to external noise, the EEG signal can be heavily 
contaminated by artifacts that originate from body 
movement or very frequent eye blinks. Therefore, a 48-Hz 
high pass and 1-Hz low pass filters were applied for 
artifact rejection. 
 
Affect detection with physiological sensors. To detect 
affective states, as previously mentioned, learners were 
equipped with both a blood volume pressure sensor and 
skin conductance sensor. BVP signals were used to derive 
the heart rate (HR) whereas SC sensors computed galvanic 
skin response (GSR). Affective data was recorded at 1024 
Hz of sampling rate. These sensors are known to reliably 
measure specific emotional activations and are widely used 
for emotional detection. Indeed, as emotions can be 
characterized in terms of judged valence (pleasant or 
unpleasant) and arousal (calm or aroused), collected 
physiological signals were analyzed according to the 
arousal/dominance emotional space. GSR increases 
linearly with a person’s level of arousal, while HR has 
been shown to correlate with valence (Lang 1995). We 
established four quadrants, labeled Q1 to Q4, with regards 
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to signal variations in both HR and GSR (figure 2). Thus, 
learner’s affective state is determined by normalizing HR 
and GSR variations with regards to the baseline. For 
example, a positive HR signal and a positive GSR signal 
will be considered as a signal located in Q1. Normalization 
is done by mean-shifting (subtracting current values from 
the baseline and dividing the difference with the standard 
deviation). For readability purposes, we will refer to the 
mean-shifted normalized values simply as mean HR and 
mean GSR from now on.  

Figure 2: Lang’s 2D affective space labeled by quadrant 

Participants. Thirty-five learners (13 women) with a mean 
age of 27.2 ± 6.91 years, ranging from 19 to 46 years, took 
part in the experiment. Participation was compensated with 
10 Canadian dollars. All participants signed a written 
consent form, were French speakers with normal or 
corrected-to-normal vision and without any 
neuropsychological disorder according to self report. 

Experimental Results and Discussion 

During the session, computed engagement index was 
associated with one of the four quadrants of the 2D 
affective space for all learners. The obtained results will be 
presented in following four sub-sections. 
 
Emotional states impact the index. Our first research 
question was to investigate the possible impact that 
learner’s emotional states can have on the evolution of the 
engagement index. The obtained results in this sub-section 
strongly suggest such impact. In order to analyze the effect 
of the learner’s emotional state on the engagement index, a 
one-way ANOVA was performed. The result shows that 
there is a significant main effect of the emotional state on 
the index value, F(3, 6064)=115.749, p < 0.01 for all 
participants. Specifically, the analysis of this result 
revealed that mean engagement index values were 
significantly higher when learner’s emotional state was in 
Q1 (Positive valence and high arousal: M = 0.769, SD = 
0.085) compared to the other quadrants (see figure 3). 
Giving this result, we can state that positive emotions 
arising in Q1 (such as joy or excitation) seem to lead to the 
highest level of learner engagement. 
 However, the second highest mean engagement index 
was found in Q3 (Negative valence and high Arousal: M = 
0.743, SD = 0.074) indicating that emotions in this state 
(ex: confusion or frustration) might also elicit high 
engagement levels. An obvious example is the following: 

the learner answers a question being 100% sure of the 
correctness of his response. The system then reveals to the 
learner that he was wrong, placing him in a state of 
confusion. Thus, learner’s engagement increases to recoup 
and to better perform on the rest of the test. Finally, the 
two lowest mean engagement indexes were registered in 
Q2 (Positive valence and negative arousal: M = 0.72, SD = 
0.086) and Q4 (Negative valence and negative arousal: M 
= 0.712, SD = 0.105) suggesting that better engagement 
levels can be attained when the learner is relaxed rather 
than bored. 

Figure 3: Mean engagement index per quadrant. 

Engagement index correlates with GSR and HR. The 
significant impact of the emotional state on learner’s 
engagement index is a promising result. Nonetheless, we 
wished to examine in more depth the nature of the relation 
between the engagement index and the mean GSR and HR 
signals across all learners. To this end, a bi-variate 
correlation was computed. Results show a significant linear 
relation between the engagement index and the GSR signal 
(r=0.68, p=0.032). However, a non significant linear 
relation between the engagement index and the HR was 
found (r=-0.042, p=0.197). Table 1 sums these results. We 
believe that mentioning this relation with HR is important 
even though it seems non-significant at first glance because 
it may hide a subtle, but revealing, significance. Indeed, we 
have observed that emotional state shifts from Q1 to Q3 
(joyful to frustrated) or from Q2 to Q4 (relaxed to 
boredom) explained by a change in the valence dimension 
(computed from HR) do have a visible but small effect on 
the engagement index. However, this effect in the 
variability of the engagement index is far less pronounced 
when emotional state shifts occur from Q1 to Q2 (joyful to 
relaxed) or from Q3 to Q4 (frustrated to boredom) 
following a change in the arousal dimension (GSR). As a 
matter of fact, both these correlations were observed and 
confirmed on multiple occasions throughout the 
experiment after analyzing and observing, offline, the 
recorded synchronized video feeds. 
 

Bi variate correlation results for GSR and HR with index 

 r p 
Index correlation with arousal (GSR) 0.680 0.032 
Index correlation with valence (HR) 0.042 0.197 

Table 1: Results for the bi variate correlation    

 Therefore, as shown in the first sub-section, higher mean 
engagement index values are located within Q1 and Q3 
and lower mean engagement index values can be traced to 
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Q2 and Q4. It is important to mention that Q1 and Q3 
explain an increase in the engagement index while Q2 and 
Q4 explain a decrease. In the light of those results, it seems 
clear that intelligent systems wishing to influence the 
engagement index, either by increasing or decreasing it, 
should clearly be aware of the strong influence exerted by 
the emotional state of the learner. Any AI model wishing 
to implement this index should take into account learner’s 
emotional state when planning an intervention or 
interaction during any given problem solving task. This 
will strongly attune the intervention, thus sustaining a 
stronger motivational state and consequently enhance 
performance. Figure 4 shows an example of one learner’s 
visible engagement index increase following a positive 
intervention. We can clearly observe that the positive 
message was followed by an emotional state shift from Q2 
to Q1 resulting in an increase in mental engagement.  
 
Engagement index and task performance. We have 
answered, in the two previous two sub-sections, our first 
research question pertaining to the importance of the 
impact of learner’s emotional states on the engagement 
index. In light of those results, we took a step further by 
answering the second research question: can this new 
index, combined with learner’s emotional state, give us 
useful and valid insight regarding the evolution of learner’s 
performance? Results in this sub-section will point to the 
affirmative. In order to analyze the impact of mental 
engagement on task performance, measured by the 
obtained score, two groups were considered: (G1) Learners 
whose mean engagement level was lower than the neutral 
baseline throughout the experiment (they were less 
engaged in the task) and (G2) learners whose level 
engagement was higher than the baseline. 

Overall performance comparison between G1 and G2 

 Mean score Mean score SD 
G1: mentally less engaged 16.00 3.120 
G2: mentally engaged 19.78 2.025 

Table 2: Performance comparison between G1 and G2 

 Results from a one-way ANOVA showed that the 
performance in G2 was significantly higher than in G1: 
F(1, 33) = 19.782, p < 0.01. Table 2 shows that learners 
who stayed engaged performed statistically better (M = 
19.8, SD = 2.025) on average than those who were less 
engaged in the task (M = 16, SD = 3.120). 
 
Linear regression analysis. Knowing that the engagement 
index can serve as an indicator for learner’s performance, 
we computed a linear regression analysis between 
emotional indicators and this index. The chosen dependant 
variable was the mean engagement index on each question. 
Four predictors were introduced in the model: (1) mean 
HR, (2) mean GSR, (3) response time (RT) for answering 
the current question and (4) learner’s current question 
result, coded +1 for a good answer and -1 otherwise.  

 The overall model was statistically significant 
F(4,947)=121.45, p < 0.01; R2 = 0.289. Furthermore, 
conditional main effect analysis showed an effect of the 
mean HR (beta =- 0.001, p < 0.05), the mean GSR (beta = 
0.42, p<0.05) as well as the mean RT on the current 
question (beta = 0.21, p < 0.05), but a non-significant 
effect of the answer from the current question (beta = 0.03, 
p = 0.46). At first glance, one might find such result 
counterintuitive. After all, how can a given answer, either 
wrong or right, not significantly explain, impact or 
influence learner’s engagement level? Is it possible that the 
contribution of the fourth predictor simply got drowned in 
the averaging process throughout the 35 learners? The 
answer to both of these questions, after careful observation, 
resides in the participant himself.  

Figure 4: EEG mental engagement index shift. 

 Indeed, we have observed different trends in different 
learners. For some, a consecutive series of wrong answers 
lowered their mental engagement. For other, the same 
effect was observed however for a consecutive series of 
good answers. This pattern of low engagement index after 
successive responses was observed on a large portion of 
the participants. Indeed, learners tend to relax after getting 
a few good answers and consequently become less 
engaged. This is where the contribution of the emotional 
factor is crucial. Intelligent systems should integrate into 
their model the values from the two emotional dimensions 
(arousal and valence) to guide the system towards choosing 
the best intervention strategy for a specific learner. In the 
case of learners relaxing and becoming mentally 
disengaged, the system would intelligently recognize this 
situation and intervene in order to increase their 
engagement levels. Hence, we propose the construction of 
an individualized computational model for each learner.  
 Furthermore, we believe that multiple factors, besides 
emotions, can influence the engagement index, notably the 
objectives of the learner (does he want to achieve a 
medium score or be the best?) and his personality. We 
believe the obtained results thus far are very encouraging 
and a deeper analysis is called for in order to successfully 
construct such a personalized model.  

Conclusion and Future Works 

We have presented in this paper evidence of a direct link 
between the learner’s emotional state and the engagement 
index in a problem solving environment. The two 
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hypotheses in this paper were (1) does the emotional state 
influence the engagement index and if so (2) what insight 
can it give us with regards to the learner’s performance? 
We have successfully answered those questions with an 
experiment in which learners were asked to answer three 
series of problem solving questions. Throughout that 
experiment, physiological and EEG sensors were used to 
monitor and record the learner’s activity followed by an 
offline analysis to compute and link engagement index 
with emotional state changes. Performance was also 
analyzed. The presented results have clearly shown that (1) 
emotions impact the engagement index, (2) the 
engagement index is more correlated with arousal than 
valence, (3) the engagement index is a valid indicator of 
learners’ performance and (4) construction of a 
personalized model to predict the variation of that 
engagement index is not only possible but highly 
recommended.  
 The use of such an index varies from pure AI modeling 
to intelligent system design. For example, given a required 
level of engagement for a specific task, a system using this 
index could calm learners in order to decrease their 
engagement levels or push and even encourage them to get 
the opposite effect. 
 As future work, we propose the elaboration and 
development of a pedagogical intervention strategy aimed 
at optimizing learning. This strategy has to takes into 
account the mental engagement index and the learner’s 
emotional state. We also propose that this strategy 
considers the workload as well as personal attributes such 
as personality and objectives in order to intelligently adapt 
the system’s interventions. 

Acknowledgement 

We would like to acknowledge the FQRSC and the 
CRSNG for funding this work. 

References 

Arroyo, I., Cooper, D., Burleson, W., Woolf, B. P., Muldner, K., 
and Christopherson, R. 2009. Emotion Sensors Go To School. In 
Proc. of AIED. Brighton, England. 

Berka, C., Levendowski, D. J., Lumicao, M. N., Yau, A., Davis, 
G., Zivkovic, V., Olmstead, R. E., Tremoulet, P. D., and Craven, 
P. L. 2007. EEG Correlates of Task Engagement and Mental 
Workload in Vigilence, Learning, and Memory Tasks. Aviation, 
Space, and Environmental Medicine. 78:5. 

Busso, C., Deng, Z., Yildirim, S., Bulut, M., Lee, C., 
Kazemzadeh, A., Lee, S., Neumann, U., and Narayanan, S. 2004 
Analysis of emotion recognition using facial expressions, speech 
and multimodal information. In Proc. of ICMI.  New York, USA. 

D'Mello, S. K., Craig, S. D., Gholson, B., Franklin, S., Picard, R. 
W., and Graesser, A. C. 2005. Integrating Affect Sensors in an 
Intelligent Tutoring System. Workshop of IUI. San Diego, USA. 

Damasio, A. 1994. Descartes Error  Emotion, Reason and the 
Humain Brain. Puttman Press. 

Freeman, F. G., Mikulka, P. J., Prinzel, L. J., and Scerbo, M. W. 
1999. Evaluation of an adaptive automation system using three 
EEG indices with a visual tracking task. Biological Psychology. 
50. 61 76. 

Freeman, F. G., Mikulka, P. J., Scerbo, M. W., Prinzel, L. J., and 
Clouatre, K. 2000. Evaluation of a Psychophysiological 
Controlled Adaptive Automation System, Using performance on 
a Tracking Task. Applied Psychophysiology and Biofeedback. 
25(2). 

Isen, A. M. 2000. Positive affect and decision making. In 
Handbook of emotions. 

Lang, P. J. 1995. The emotion probe: studies of motivation and 
attention. American Psychologist. 50(5). 

Lubar, J. F., Swartwood, M. O., Swartwood, J. N., and 
O’Donnell, P. H. 1995. Evaluation of the effectiveness of EEG 
neurofeedback training for ADHD in a clinical setting as 
measured by changes in T.O.V.A. scores, behavioral ratings, and 
WISC R performance. Biofeedback and Self Regulation. 20(1). 

McQuiggan, S. W. and Lester, J. C. 2009. Modelling affect 
expression and recognition in an interactive learning 
environment. International Journal of Learning Technology. 4(3
4): 216 233. 

Murugappan, M., Rizon, M., Nagarajan, R., Yaacob, S., Zunaidi, 
I., and Hazry, D. 2007 EEG feature extraction for classifying 
emotions using FCM and FKM. In Proc. of ACACO. China. 

Pantic, M. and Rothkrantz, L. 2000. Automatic analysis of facial 
expressions : the state of the art. IEEE Transactions on pattern 
analysis and machine intelligence. 22(12). 

Parasuraman, R. 2005. Neuroergonomics : the brain at work. 
Oxford University Press. 

Pope, A. T., Bogart, E. H. and Bartolome, D. S. 1995. 
Biocybernetic system evaluation indices of operator engagement 
in automated task. Biological psychology. 40(9). 

Quartz, S. R. 2009. Reason, emotion and decision making: risk 
and reward computation with feeling. Trends in Cognitive 
Sciences. 13(5). 

Russell, C. A., Wilson, G. F., Rizki, M. M., Webb, T. S., and 
Gustafson, S. C. 2005. Comparing classifiers for real time 
estimation of cognitive workload. In Foundations of Augmented 
Cognition. Las Vegas, NV:  Lawrence Erlbaum Associates Inc. 

Snow, R. E., Corno, L. and Jackson, D. 1996. Individual 
differences in affective and cognitive functions. In Handbook of 
Educational Psychology. Prentice Hall. 

Sterman, M. B., Kaiser, D. A., Mann, C. A., Suyenobu, B. Y., 
Beyma, D. C., and Francis, J. R. 1993. Application of quantitative 
EEG analysis to workload assessment in an advanced aircraft 
simulator. In Proceedings of the Human Factors and Ergonomics. 
Seattle, Washington, USA. 

Stevens, R. H., Galloway, T. and Berka, C. 2007. EEG Related 
Changes in Cognitive Workload, Engagement and Distraction as 
Students Acquire Problem Solving Skills. In UM. Corfu, Greece. 

Wilson, G. 2005. Operator functional state assessment for 
adaptive automation implementation. The International Society 
for Optical Engineering. 5797. 100 104 

360




