
Timed Planning

Ajay Bansal
Department of Computer Science,

Georgetown University,
Washington, DC 20057.

Email: bansal@cs.georgetown.edu

Neda Saeedloei and Gopal Gupta
Department of Computer Science,
The University of Texas at Dallas,

Richardson, TX 75080.
Email: {nxs048000, gupta}@utdallas.edu

Abstract

Planning has been at the forefront of research in the
areas of Artificial Intelligence and cognitive science.
High-level action description languages (e.g., language
A) have been used to specify, verify and diagnose plans.
Timed Planning is planning under real-time constraints.
To specify timed planning problems, an extension of
the action description language A with real-time stop-
watches, called AT has been used. In this paper, we
show how timed planning domains (described in AT)
can be easily and elegantly encoded as answer set pro-
grams extended with constraints over reals.

1. Introduction

Planning has been an active area of research since the early
days of AI and cognitive science. In planning, a domain de-
scription D is given along with a set of observations about
the initial state O and a collection of fluent literals G =
{g1, . . . , gl}, which is referred to as a goal. The prob-
lem is to find a sequence of actions a1, . . . , an such that
∀i, 1 ≤ i ≤ l, D entails gi from initial state O, after actions
a1, . . . , an. The sequence of actions a1, . . . , an is called a
plan for goal G w.r.t. (D,O) (Baral 2003).

Timed Planning is planning under real-time constraints.
For real-time domains, the occurrence of an action is as im-
portant as the time at which the action occurs. One needs to
be able to reason about time in a quantitative manner, as the
system may have real-time constraints that must be satisfied
for an action to occur. In the field of logic programming,
action description languages (e.g., language A - realized via
Answer Set Programming (ASP)) have been used to repre-
sent and reason about actions and change (Gelfond and Lif-
schitz 1993). These are (high-level) languages that can be
used to specify, verify and diagnose plans.They are widely
used for planning with domain specific constraints To en-
code timed planning problems, an extension of the action
description language A with real-time stop-watches, called
AT has been proposed (Simon, Mallya, and Gupta 2005).
However, the implementation of AT is quite ad hoc. In this
paper, we show how timed planning domains (described in
AT) can be elegantly encoded as answer set programs ex-
tended with constraints over reals.

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2. A Real-time Action Description Lang.: AT

The action description languageA was proposed by Gelfond
and Lifschitz to represent actions and change using logic
programs (Gelfond and Lifschitz 1993). Real-time systems
are computing systems in domains where response within
a hard time bound is critical for success. The real-time ac-
tion description language AT , which extends language A by
augmenting action with real-time constraints, is presented in
(Simon, Mallya, and Gupta 2005). AT defines a complete
real-time action α by pairing its name with a list of clock
constraints associated with it. In AT , this is written as

A at T1, . . . , Tn

where T1 . . . , Tn (n ≥ 0) are clock constraints of the form
C ≤ E, C ≥ E, C < E, and C > E, where C and E
are clock names or a clock name plus or minus a real valued
constant. When n = 0 the at clause can be dropped.

With the ability to explicitly state when an action oc-
curs, value propositions can be easily extended to include it.
Given fluent expressions F1, . . . , Fm (m > 0) and real-time
actions α1, . . . , αn (n ≥ 0), a real-time value proposition
can be written as:

F1, . . . , Fm after α1; . . . ; αn

When the sequence of actions is empty (n = 0), a real-time
value proposition is written as

initially F1, . . . , Fm

The real-time effect propositions (sometimes referred to as
action rules) in AT are written as

A causes F1, . . . , Fm resets C1, . . . Cn

when T1, . . . , Tk if P1, . . . , Pi

for action name A, fluent expressions F1 . . . , Fm,
P1, . . . , Pi (m, i ≥ 0), clock names C1, . . . , Cn (n ≥ 0),
and clock constraints T1, . . . , Tk (k ≥ 0), where m + n +
k + i > 0. As usual, when m, n, k, or i is zero the key-
words causes, resets, when, or if respectively, can be
dropped. The resets clause specifies clocks that are to be re-
set, assuming the when clause and fluent preconditions are
satisfied. Clocks continue to advance, if they are not reset.
A special action wait that denotes the action of waiting for
time to elapse is also provided in AT . This action acts as a
wild-card that matches all other action names, and thus pro-
vides the ability to encode the passing of time in the current
state of the system.

136

Proceedings of the Twenty-Third International Florida Artificial Intelligence Research Society Conference (FLAIRS 2010)

3. AT = ASP + CLP(R)
AT programs can easily and elegantly be encoded as answer
set programs extended with constraints over reals. Given an
answer set program, constraints over reals can be embedded
within goals in the body of the rules, similar to how Horn
clause logic programs are extended with constraints. As the
body of these rules are evaluated in a goal-directed manner,
these constraints are posted in the constraint store as they
are encountered. Posting a constraint that is not entailed by
the constraint store will result in a failure which will cause
backtracking. Constraints over reals in logic programming
are realized in the CLP(R) system (Jaffar and Lassez 1987),
which we have incorporated in our goal-directed implemen-
tation of Answer Set Programming (ASP).

3.1 Example: Fragile Object Domain

Now we present a domain with real-time constraints on its
actions (Gelfond and Lifschitz 1993). The real-time Fragile
Object domain, extends the original example with the notion
that a dropped object can be caught before it hits the ground.
We assume the object takes 1 second to hit the ground. The
assumption that units are in seconds is merely a convention
we use in this example. In the language AT all clocks are
variables in the real number domain, i.e., they can take any
arbitrary real values. Figure 1 depicts the real-time Fragile
Object Domain.

holding

broken
falling

holding
falling
broken

holding
falling
broken

drop

clock : 0

catch

clock < 1

wait

clock > 1

Figure 1: Real-time Fragile Object Domain

The language AT describes many possible worlds. In one
of these worlds initially Holding,¬Falling,¬Broken is
true, and therefore Broken after Drop; wait at Clock =
2 also holds as the object is dropped and then allowed to fall
to the ground. In that same world, if one takes too long to
catch the object, then the object still shatters on the ground.
Hence in the aforementioned world Broken after Drop;
Catch at Clock = 2 is also true. However, if the object is
dropped and then is successfully caught, say at half a second
after dropping (i.e., before it hits the ground), then the ob-
ject is not broken by the sequence of events, i.e., ¬Broken
after Drop; Catch at Clock = 0.5 is true. Other possi-
ble worlds include the object starting out already in a falling
state, while another world could even have the object already
broken. Table 1 shows the encoding of the real-time Fragile
Object Domain in language AT .

3.2 General Procedure

Now we briefly present the general procedure for encoding
an AT program in our integrated framework. The general
AT command:

Table 1: Fragile Object Domain in language AT

Drop causes ¬Holding, Falling
resets Clock if Holding, ¬Falling

Catch causes Holding, ¬Falling, ¬Broken
when Clock ≤ 1 if ¬Holding, Falling

wait causes Broken, ¬Falling
when Clock > 1 if ¬Holding, Falling

A causes F1, . . . , Fl,¬Fl+1, . . . ,¬Fm

resets C1, . . . , Cn when T1, . . . , Tk

if P1, . . . , Pu,¬Pu+1, . . . ,¬Pv

is encoded in our framework as:

for each Fi (i = 1 . . . l), we define
holds(Fi, res(A, S)) :-

holds(P1, S), . . ., holds(Pu, S),
not holds(Pu+1, S), . . ., not holds(Pv, S),
T1, . . ., Tn, C1 > 0, . . ., Cn > 0,
NewC1 > C1, . . ., NewCn > Cn.

for each Fj (j = l + 1 . . .m), we define
not holds(Fj, res(A, S)) :-

holds(P1, S), . . ., holds(Pu, S),
not holds(Pu+1, S), . . ., not holds(Pv, S),
T1, . . ., Tn, C1 > 0, . . ., Cn > 0,
NewC1 > C1, . . ., NewCn > Cn.

For the fluents that are true initially, we define the holds and
not holds clauses with the second argument as s0.

4. Conclusions

We presented how real-time domains and thus timed plan-
ning problems can easily and elegantly be encoded in our
integrated framework, that combines the power of CLP and
ASP in one system. The ability to do non-monotonic reason-
ing (ASP) in presence of time constraints (CLP) in a single
system, is needed to realize Timed Planning.

References

Baral, C. 2003. Knowledge Representation - Reasoning and
Declarative Problem Solving. Cambridge Univ. Press.

Gelfond, M., and Lifschitz, V. 1993. Representing action
and change by logic programs. Journal of Logic Program-
ming 17(2/3&4):301–321.

Simon, L.; Mallya, A.; and Gupta, G. 2005. Design and
implementation of AT : A real-time action description lan-
guage. In International Workshop on Logic-based Program
Synthesis and Transformation. Springer Verlag.

Jaffar, J., and Lassez, J. L. 1987. Constraint Logic Program-
ming. In POPL, 111–119.

137

