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Abstract

Handling exceptions in a knowledge-based system has
been considered as an important issue in many domains
of applications, such as medical domain. In this pa-
per, we propose several preferential semantics for plau-
sible subsumption to deal with exceptions in description
logic-based knowledge bases. Our preferential seman-
tics are defined in the framework of possibility theory,
which is an uncertainty theory devoted to the handling
of incomplete information. We consider the properties
of these semantics and their relationships. Entailment
of these plausible subsumption relative to a knowledge
base is also considered. We show the close relation-
ship between two of our semantics and the mutually
dual preferential semantics given by Britz, Heidema and
Meyer. Finally, we show that our semantics for plausi-
ble subsumption can be reduced to standard semantics
of an expressive description logic. Thus, the problem
of plausible subsumption checking under our semantics
can be reduced to the problem of subsumption checking
under the classical semantics.

Introduction

Handling exceptions in a knowledge-based system has been
considered as an important issue in many domains of ap-
plications, such as medical domain. Many nonmonotonic
logics have been proposed to deal with this issue, among
them are preferential logics (Kraus, Lehmann, and Magi-
dor 1990). However, most of the preferential logics are
based on propositional language, thus are not suitable to
handle exceptions in applications where first-order logic is
needed. As decidable fragments of first-order logic, de-
scription logics have received much attention as they are
widely used in some applications, such as the Semantic
Web and software engineering (see (Baader et al. 2007)).
There have been some work on extending description log-
ics with preferential semantics (Giordano et al. 2007;
Britz, Heidema, and Meyer 2008). The work presented in
(Britz, Heidema, and Meyer 2008) proposes two preferential
subsumption relations in description logics and discusses
their properties by adapting familiar properties of rational
preferential entailment.
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Possibility theory, which is developed from Zadeh’s fuzzy
set theory (Zadeh 1965), provides a powerful tool for per-
forming nonmonotonic reasoning (Dubois, Lang, and Prade
1994; Benferhat, Dubois, and Prade 1997; 1998). It has been
shown in (Benferhat, Dubois, and Prade 1998) that default
rules (i.e., generic rules of the form “generally, if α then β”,
where α and β are propositional symbols) and hard rules
(i.e., rules of the form “if α is observed, then β is always
true”) can be modelled in possibility theory. The authors
show that the possibilistic inference based on default rules
is equivalent to System P given in (Kraus, Lehmann, and
Magidor 1990) subject to some minor difference. Consid-
ering the important role of possibility theory in nonmono-
tonic reasoning, one may wonder if we can apply it to deal
with nonmonotonic reasoning in description logics. How-
ever, this is not a trivial problem because description logics,
as fragments of first-order logic, have their own features. For
example, in description logics, conjunction between two ax-
ioms in a knowledge base is not allowed. However, to inter-
pret a propositional default rule or a propositional hard rule
in possibility theory, we need to conjunct the propositional
symbols.

In this paper, we propose several preferential semantics
for plausible subsumption to handle exceptions in descrip-
tion logic-based knowledge bases. We extend an interpreta-
tion in description logics with a possibility distribution over
its domain. With this extended interpretation, we define our
preferential semantics. We first define a preferential sub-
sumption which is inspired from the default rules interpreted
in possibility theory in (Benferhat, Dubois, and Prade 1998).
We call it a default preferential subsumption. We then define
another preferential subsumption which is dual to the default
preferential subsumption. We show that the default pref-
erential subsumption and the dual default preferential sub-
sumption are closely related to the preferential subsumption
and the dual preferential subsumption given in (Britz, Hei-
dema, and Meyer 2008) respectively. We further define a
preferential subsumption which is the combination of both
default preferential subsumption and dual default preferen-
tial subsumption. This preferential subsumption shows a
strong causal relationship between two concepts. Finally,
we define a preferential subsumption which is inspired from
the hard rules interpreted in possibility theory in (Benferhat,
Dubois, and Prade 1998). The relationships among different
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preferential subsumption relations are discussed. Entailment
of these preferential subsumption relative to a knowledge
base is then considered. Finally, we show that our seman-
tics for plausible subsumption can be reduced to standard
semantics of an expressive description logic. Thus, the prob-
lem of plausible subsumption checking under our semantics
can be reduced to the problem of subsumption checking un-
der the classical semantics.

The paper is organized as follows. We first provide some
preliminaries on description logics and possibility theory,
then present our preferential semantics for plausible sub-
sumption and investigate their properties. After that, we
consider the reduction of our semantics for plausible sub-
sumption to standard semantics of description logics. We
discuss related work before concluding this work.

Preliminaries

In this section, we introduce some background knowledge
about description logics and possibility theory.

Description logics

We assume that the reader is familiar with Description Log-
ics (DLs) and refer to Chapter 2 of the DL handbook (Baader
et al. 2007) for a good introduction. Our method is indepen-
dent of a specific DL language, and thus can be applied to
any DL.

In DLs, elementary descriptions are concept names (unary
predicates) and role names (binary predicates). Complex
descriptions are built from them inductively using concept
and role constructors provided by the particular DL under
consideration. A DL-based knowledge base (or ontology)
O = (T ,R,A) consists of a set T of concept axioms
(TBox), a set R of role axioms (RBox), and a set A of as-
sertional axioms (ABox). Concept axioms (or terminology
axioms) have the form C � D where C and D are (possi-
bly complex) concept descriptions, and role axioms are ex-
pressions of the form R�S, where R and S are (possibly
complex) role descriptions. The ABox contains concept as-
sertions of the form C(a) where C is a concept and a is
an individual name, and role assertions of the form R(a, b),
where R is a role and a and b are individual names. The
TBox and RBox are used to express the intensional level of
the ontology while the ABox is used to express the instance
level of the ontology.

An interpretation I = (�I , ·I) consists of a non-empty
domain set �I and an interpretation function ·I , which
maps from individuals, concepts and roles to elements of
the domain, subsets of the domain and binary relations on
the domain, respectively. Given an interpretation I, we say
that I satisfies a concept axiom C � D (resp., a role ax-
iom R � S) if CI⊆DI (resp., RI ⊆ SI). Furthermore,
I satisfies a concept assertion C(a) (resp., a role assertion
R(a, b)) if aI∈CI (resp., (aI , bI)∈RI). An interpretation
I is called a model of an ontology O, iff it satisfies each
axiom in O.

In our work, we are interested in an extension of DL ALC
(Schmidt-Schauß and Smolka 1991), which is a simple yet
relatively expressive DL. The set of ALC concepts is the

smallest set such that: (1) every concept name is a concept;
(2) if C and D are concepts, R is a role name, then the fol-
lowing expressions are also concepts: ¬C (full negation),
C�D (concept conjunction), C�D (concept disjunction),
∀R.C (value restriction on role names) and ∃R.C (existen-
tial restriction on role names). The semantics of the con-
structors are defined as follows:

(1) 
I = ΔI and ⊥I = ∅, (¬C)I = ΔI \ CI ,

(2) (C�D)I = CI∩DI , (C�D)I = CI∪DI ,

(3) (∃R.C)I = {x|∃ y s.t.(x, y)∈RI and y∈CI},

(4) (∀R.C)I = {x|∀y(x, y)∈RI implies y∈CI}.

Possibility theory

Possibility theory (Dubois and Prade 1986), which is devel-
oped from Zadeh’s fuzzy set theory (Zadeh 1965), is based
on the notion of a possibility distribution. A possibility dis-
tribution π is a mapping from the set (finite or infinite) Ω to a
bounded, total ordered scale (L, <), which is equipped with
the maximum and the minimum operations and an order-
reversing map that is taken as 1-(·). We follow the qualitative
view of possibility theory, that is (L, <) is merely taken as
an ordinal scale. For example, we can take the unit interval
[0,1] or its subsets as the range of possibility distributions.
According to (Dubois and Prade 1998), the referential set
Ω represents the universe of discourse and a possibility dis-
tribution represents a state of knowledge that distinguishes
what is plausible from what is less plausible, what is the
normal course of thing from what is not, what is surprising
from what is expected. The inequality π(ω) ≥ π(ω′) means
that ω is a priori more plausible than ω′. A possibility distri-
bution is said to be normal if ∃ω0∈Ω, such that π(ω0) = 1.

From a possibility distribution π, two measures can be de-
termined: the possibility degree of subset A of ω, Π(A) =
sup{π(ω) : ω ∈ A} and the necessity degree of A,

N(A) = 1 − Π(A) = inf{1 − π(ω) : ω �∈ A}, where

A is the complement of A in Ω. The possibility measure
Π satisfies the following properties: (1) ∀ A, B, Π(A ∪
B) = max(Π(A), Π(B)) (2) Π(∅) = 0. Dually, the ne-
cessity measure N satisfies the following properties: (1)
∀ A, B, N(A ∩ B) = min(N(A), N(B)) (2) N(Ω) = 1.

Preferential Semantics for Subsumption in

Possibility Theory

In this section, we first define some preferential subsumption
relations in possibility theory. We then consider entailment
of these plausible subsumption relations relative to a knowl-
edge base. Finally, we provide examples to illustrate some
key notions.

Preferential semantics

In (Giordano et al. 2007) and (Britz, Heidema, and Meyer
2008), to define their preferential semantics of extended de-
scription logics, the authors extend a DL interpretation by at-
taching a partial order on its domain. This inspires us to de-
fine a possibilistic interpretation, which is a pair consisting
of a DL interpretation and a possibility distribution over its
domain. Following the convention of preferential logic (see
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the smoothness condition in (Kraus, Lehmann, and Magi-
dor 1990)), we consider only those possibility distributions
which are Noetherian, i.e., for any subset Ω′ of Ω, there ex-
ists a ω ∈ Ω′ such that π(ωi) ≤ π(ω) for all ωi ∈ Ω′.

Definition 1. A possibilistic interpretation (I, π) consists of
an interpretation I = (�I , ·I) and a possibility distribution
π over its domain �I .

Consider Definition 1, the requirement that a possibility
distribution should be Neotherian ensures that the possibil-
ity measure Π defined on �I is well-defined, i.e., Π(CI)
always exists for any concept C. Following the view of
a possibility distribution in possibility theory, the possibil-
ity distribution of a possibilistic interpretation (I, π) gives a
ranking on the domain�I of DL interpretation I. We do not
specify how to obtain such a possibility distribution on the
domain of a DL interpretation because this is often applica-
tion dependent. For example, in the medical domain, given
a DL interpretation with finite domain, a possibility distribu-
tion on its domain can be obtained by counting the number
of occurrences of each element of the domain in the avail-
able clinical databases (Britz, Heidema, and Meyer 2008).

The satisfaction of classical subsumption relation � rela-
tive to a possibilistic interpretation is defined as follows:

Definition 2. A possibilistic interpretation (I, π) satisfies
C � D, written as (I, π) � C � D, iff I satisfies C � D.

We are now ready to define our first preferential subsump-
tion, which is inspired from the default rules interpreted in
possibility theory in (Benferhat, Dubois, and Prade 1998).

Definition 3. A possibilistic interpretation (I, π) satisfies
the default preferential subsumption C �D D, written as
(I, π) � C �D D, iff Π(CI ∩ DI) > Π(CI ∩ ¬DI) is
satisfied.

Definition 3 implies that Π(CI ∩ DI) > 0 if (I, π) �

C �D D. In Definition 3, if we consider objects in the
interpretation of a concept with highest possibility degree as
its kernel1, then the default subsumption C �D D expresses
that the kernel of C is in D (see Theorem 12). Definition 3
defined the satisfaction of the default preferential subsump-
tion for a possibilistic interpretation. It will be used to define
preferential subsumption entailment between a knowledge
base and a preferential subsumption.

Dually, we define another preferential subsumption which
expresses that the kernel of ¬D is in ¬C.

Definition 4. A possibilistic interpretation (I, π) satisfies
dual default preferential subsumption C �D2 D, written as
(I, π) � C �D2 D, iff Π(¬CI ∩ ¬DI) > Π(CI ∩ ¬DI)
is satisfied.

Definition 3 implies that Π(¬CI ∩¬DI) > 0 if (I, π) �

C �D2 D. According to Definition 3, we can see that
our dual default preferential subsumption corresponds to the
contraposition of the dual preferential subsumption.

Each of the mutually dual preferential subsumption rela-
tions �D and �D2 has its own feature (see next subsection).
By combining these two subsumption relations, we can get a

1This term is borrowed from fuzzy set theory, where the kernel
of a fuzzy set is the set of the elements with membership degree 1.

new preferential subsumption which shows stronger causal
relationship between two concepts.

Definition 5. A possibilistic interpretation (I, π) satisfies
the preferential subsumption C �B D (combining Both �D

and �D2), written as (I, π) � C �B D, iff Π(CI ∩DI) >
Π(CI ∩ ¬DI) and Π(¬CI ∩ ¬DI) > Π(CI ∩ ¬DI) are
satisfied.

One may think that our preferential subsumption relation
�B looks like a kind of default equivalence, thus it is ex-
pected to be symmetrical in the sense that, if (I, π) � C �B

D then (I, π) � D �B C. However, this is not the case as
can be seen from the following example.

Example 1 Let (I, π) be a possibilistic interpretation with

I = (�I , ·I), where �I = {a, b, c, d}, CI = {a, b} and
DI = {b, c}, π(a) = 0.3, π(b) = 0.5, π(c) = 0.9 and
π(d) = 0.9. Since CI ∩ DI = {b} and CI ∩ ¬DI =
{a}, we have Π(CI ∩ DI) > Π(CI ∩ ¬DI). So (I, π) �

C �D D. Similarly, we can check that (I, π) � C �D2 D.
Therefore, (I, π) � C �B D. Since DI ∩ ¬CI = {c}, we
do not have Π(DI ∩ CI) > Π(DI ∩ ¬CI). So (I, π) �

D �D C does not hold. Thus (I, π) � D �B C does not
hold as well.

Our final preferential subsumption, defined below, is in-
spired from the hard rules interpreted in possibility theory in
(Benferhat, Dubois, and Prade 1998).

Definition 6. A possibilistic interpretation (I, π) satisfies
the hard preferential subsumption C �H D, written as
(I, π) � C �H D, iff Π(CI ∩ ¬DI) = 0.

In Definition 6, if we take the objects with non-zero pos-
sibility degree as its support2, then the hard preferential sub-
sumption between concepts C and D expresses that the sup-
port of C is in D.

Theorems 7 and 8 show relationships among different
preferential subsumption relations.

Theorem 7 Given a possibilistic interpretation (I, π), for
any concept C and D we have

- (I, π) � C �D2 D iff (I, π) � ¬D �D ¬C.

- (I, π) � C �B D iff (I, π) � C �D D and (I, π) �

C �D2 D.

- If ∀x ∈ �I , we have π(x) = 1, then (I, π) � C � D
iff (I, π) � C �D D iff (I, π) � C �D2 D iff (I, π) �

C �B D iff (I, π) � C �H D.

In Theorem 7, the first item shows the duality of �D and
�D2 and the last item shows that if π(x) = 1 for all x ∈ �I ,
then all the preferential subsumption relations are reduced to
the classical subsumption relation.

Theorem 8 Given a possibilistic interpretation (I, π), and
any concepts C and D. If (I, π) � C �H D then

- Π(CI) > 0 implies (I, π) � C �D D.

- Π(¬DI) > 0 implies (I, π) � C �D2 D.

2This term is borrowed from fuzzy set theory, where the support
of a fuzzy set is the set of the elements with non-zero membership
degrees.
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In the following, we investigate the properties of our pref-
erential subsumption relations. We adapt properties for pref-
erential subsumption relations given in (Britz, Heidema, and
Meyer 2008) (we need to replace (I,�) by (I, π)). We sum-
marize some of the results in Table 1.

Table 1: Properties of subsumption relations.

�
�

�
�

�
�

�
�

�
�

Properties

Subsumption

�D �D2 �B �H

And
√ √ √ √

Or
√ √ √ √

Left logical equivalence
√ √ √ √

Right logical equivalence
√ √ √ √

Left defeasible equivalence
√ √

Right defeasible equivalence
√ √

Right weakening
√ √

Rational right weakening
√ √ √ √

Cautious right weakening
√ √ √ √

Cautious monotonicity
√ √ √ √

Rational monotonicity
√ √ √ √

Cut
√ √

It is easy to check that all of our preferential subsumption
relations are defeasible in the sense of the following term:

- Defeasibility: (I, π) � C �X D does not necessarily
imply (I, π) � C � D,

where X ∈ {D, D2, B, H}.
Furthermore, it is easy to check that �H is supraclassi-

cal, but other three preferential subsumption relations are
restricted supraclassical in the following sense:

- if (I, π) � C � D then (I, π) � C �H D.

- if (I, π) � C � D and Π(CI) > 0, then (I, π) � C �D

D.

- if (I, π) � C � D and Π(¬DI) > 0, then (I, π) �

C �D2 D.

- if (I, π) � C � D and Π(CI) > 0 and Π(¬DI) > 0,
then (I, π) � C �B D.

We can also check that the preferential subsumption rela-
tions �D2 and �H are monotonic:

- (I, π) � C �D2 D implies (I, π) � C � C′ �D2 D.

- (I, π) � C �H D implies (I, π) � C � C′ �H D.

Whilst other two preferential subsumption relations are
not monotonic in the sense of the following terms:

- (I, π) � C �D D does not necessarily imply (I, π) �

C � C′ �D D.

- (I, π) � C �B D does not necessarily imply (I, π) �

C � C′ �B D.

All of our preferential subsumption relations except the
hard preferential subsumption relation satisfy restricted re-
flexivity (RR), which is adapted from a property for possi-
bilistic consequence relations given in (Benferhat, Dubois,
and Prade 1997).

- if Π(CI) > 0 then (I, π) � C �D C.

- if Π(¬CI) > 0 then (I, π) � C �D2 C.

- if Π(CI) > 0 then Π(¬CI) > 0, then(I, π) � C �B C.

The hard preferential subsumption relation is reflexive,
that is, for any concept C and possibility interpretation
(I, π), we always have (I, π) � C �H C.

�D and �B satisfy consistency preservation, which is
adapted from another property for possibilistic consequence
relations in (Benferhat, Dubois, and Prade 1997):

- Consistency Preservation(CP): for any concept C, we
have (I, π) �� C �X ∅, where X ∈ {D, B}.

The final property we will consider is called ”Nihil ex ab-
surdo”, which is dual to consistency preservation:

- Nihil ex absurdo: for any concept C, we have (I, π) ��
∅ �X C, where X ∈ {D, B}.

Both �D and �B satisfy this property.

Other Properties

In this subsection, we discuss the relationship between our
preferential subsumption relations and the mutually dual
preferential subsumption relations given in (Britz, Heidema,
and Meyer 2008).

We redefine the mutually dual preferential subsumption
relations given in (Britz, Heidema, and Meyer 2008) by an
ordered interpretation (I,≤), where ≤ is a Noetherian total
pre-order over �I . In (Britz, Heidema, and Meyer 2008),
the authors take ≤ as a Noetherian modular partial order.
Since there is a bijection between modular partial orders and
total preorders on �I , the order relation used in the follow-
ing definitions can be a Noetherian modular partial order as
well.

Definition 9. An ordered interpretation (I,≤) satisfies the
preferential subsumption C �ps D, written as (I,≤) �

C �ps D iff CI− ⊆ DI , where CI− = {x ∈ CI | for no

y ∈ CI is x ≤ y but y � x}.

Definition 10. An ordered interpretation (I,≤) satisfies the
dual preferential subsumption C �∗

ps D, written as (I,≤π

) � C �∗
ps D iff CI ⊆ DI+, where DI+ = DI ∪ {x ∈

�I |∃y /∈ DI with x ≤ y but y � x}.

We provide a novel result showing that these two prefer-
ential subsumption relations can be defined by each other.

Theorem 11 Given an ordered interpretation (I,≤), for any
two concepts C and D, we have

(I,≤) � C �ps∗ D iff (I,≤) � ¬D �ps ¬C.

Proof. We use ⇔ to denote “if and only if”. For any ordered
interpretation (I,≤), we have

(I,≤) � C �ps∗ D
⇔CI ⊆ DI ∪ {x ∈ �I |∃y /∈ DI , x ≤ y , y � x}
⇔CI ⊆ DI ∪ {x ∈ �I − DI |∃y ∈ ¬DI , x ≤ y, y � x}
⇔CI ⊆ DI ∪ {x ∈ ¬DI |∃y ∈ ¬DI , x ≤ y, y � x}
⇔CI ⊆ DI ∪ (¬DI − (¬D)I−)
⇔CI ⊆ DI ∪ (¬DI ∩ ¬(¬D)I−)
⇔CI ⊆ DI or CI − DI ⊆ ¬(¬D)I−)
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⇔CI − DI ⊆ ¬(¬D)I−)
⇔(¬D)I− ⊆ ¬(CI − DI)
⇔(¬D)I− ⊆ ¬CI ∪ DI

⇔(¬D)I− ⊆ ¬CI (note (¬D)I− ⊆ DI always hold)
⇔(I,≤) � ¬D �ps ¬C

Let ≤π be an order relation on �I , satisfying ∀x, y ∈
�I , x ≤π y iff π(x) ≤ π(y). Then, ≤π is a Noetherian
total order as we have assumed that π is Noetherian. We say
that a set CI is minimized relative to ≤π if all objects in
CI are minimal relative to ≤π, i.e., for all a ∈ CI , there
does not exist b ∈ �I such that b ≤π a but a �≤π b, this is
equivalent to say that Π(CI) = 0. The following theorem
shows that our preferential subsumption relations �D and
�D2 are equivalent to the preferential subsumption relations
�ps and �∗

ps respectively subject to some condition.

Theorem 12 Given a possibilistic interpretation (I, π), for
any two concepts C and D, we have

- (I, π) � C �D D iff (I,≤π) � C �ps D and CI is not
minimized.

- (I, π) � C �D2 D iff (I,≤π) � C �∗
ps D and (¬D)I

is not minimized.

Proof. For the first item, we have
(I, π) � C �D D

⇔ Π(CI ∩ DI) > Π(CI ∩ ¬DI)
⇔ {x ∈ CI |π(x) = Π(CI)} ⊆ DI , and also Π(CI) > 0
⇔ {x ∈ CI |�y ∈ CI(π(x) ≤π π(y) ∧ π(y) �π π(x))} ⊆
DI , and ∃x ∈ CI(∃y ∈ �I , x ≥π y ∧ y �π x)
⇔ {x ∈ CI |�y ∈ CI(x ≤π y ∧ y �π x)} ⊆ DI , and CI

is not minimized
⇔ CI− ⊆ DI , CI is not minimized
⇔ (I,≤π) � C �ps D, CI is not minimized.

For the second item, we have
(I, π) � C �D2 D
⇔ (I, π) � ¬D �D ¬C
⇔ (I, π) � ¬D �ps ¬C, and ¬DI is not minimized (item
1)
⇔ (I,≤π) � C �∗

ps D , and ¬DI is not minimized.

The relationship between our other preferential subsump-
tion relations and the preferential subsumption relations �ps

and �∗
ps can be easily seen by Theorems 7, 8 and 12.

Based on Theorem 12, we are able to show the following
relationship between our preferential subsumption relations
C �D and C �D2 and the preferential subsumption rela-
tions defined in (Britz, Heidema, and Meyer 2008).

Corollary 1 Given a possibilistic interpretation (I, π), for

any two concepts C and D, if (I, π) � C �D D (resp.
(I, π) � C �D2 D), then there exists a Neotherian, mod-
ular partial order ≤ such that (I,≤) � C �ps D (resp.
(I,≤) � C �∗

ps D.

According to Theorem 12, we can also see that given a
Neotherian, modular partial order ≤, (I,≤) � C �ps D
(resp. (I,≤) � C �∗

ps D may not imply that there exists a

possibilistic interpretation (I, π) such that (I, π) � C �D

D (resp. (I, π) � C �D2 D), unless we further assume
that CI (resp. (¬D)I ) is not minimized. This assumption is

reasonable because if CI (resp. (¬D)I ) is not minimized,
then every object in CI− (resp. (¬D)I−) which is used
to define the (dual) preferential subsumption can be consid-
ered as atypical. In this sense, our preferential subsumption
relations are more reasonable than preferential subsumption
relations given in (Britz, Heidema, and Meyer 2008).

Plausible subsumption entailment

We have defined the semantics of our preferential subsump-
tion relations relative to a possibilistic interpretation. In
this subsection, we consider plausible subsumption entail-
ment from a knowledge base. We extend a DL knowledge
base with our preferential subsumption statements, that is,
a TBox consists of standard terminology axioms and sub-
sumption statements of the form C �D D, C �D2 D,
C �B D and C �H D. We further extend the ABox to
allow statements3 of the form a � b, which will be used to
constrain π, formally defined as follows:

Definition 13. A possibilistic interpretation (I, π) satisfies
an assertion a � b iff π(aI) ≤ π(bI).

We need to point out that even if there does not exist any
ABox assertion of the form a � b, a possibility distribution
can be still constrained by preferential subsumption state-
ments in the DL knowledge base.

We call such an extended DL knowledge base as a
possibility-based DL (PDL for short) knowledge base. We
first define the notion of validity of the entailment of a pref-
erential subsumption.

Definition 14. The preferential subsumption statement
C �X D is valid, written as |=P C �X D, iff it is
satisfied by all possibilistic interpretations (I, π), where
X ∈ {D, D2, B, H}.

The entailment of a preferential subsumption statement
relative to a PDL knowledge base is defined as follows.

Definition 15. For a PDL knowledge base K, K entails the
preferential subsumption C �X D, written as K |=P C �X

D, iff every possibilistic interpretation that satisfies K also
satisfies C �X D where X ∈ {D, D2, B, H}.

According to Theorem 12 and the discussion about appli-
cation of the entailment of preferential subsumption to in-
ductive and abductive reasoning given in (Britz, Heidema,
and Meyer 2008), we may propose K |=P C �D D (resp.
K |=P C �D2 D) as an apt constraint on “C is plausibly
subsumed by D” in the context of an inductive (resp. ab-
ductive) stance on the instance checking problem. Further-
more, our preferential subsumption relations �B and �H

can be used to capture stronger causal relationship between
two concepts.

The properties of a preferential subsumption relation rel-
ative to a fixed possibilistic interpretation can be extended
in the context of entailment relative to a PDL knowledge
base. For example, property And of �X relative to K reads
as follows: if K |=P C �X D and K |=P C �X E then
K |=P C �X D � E, where X ∈ {D, D2, B, H}.

3This kind of statements was originally proposed in (Britz, Hei-
dema, and Meyer 2008) to constrain an ordered interpretation.
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Examples

In this subsection, we give two examples to illustrate our
preferential semantics and plausible subsumption entail-
ment. The first example illustrates satisfaction relations of
our preferential subsumption. To simply notations, we write
Π(C) instead of Π(CI) when it is clear from the context.

Example 16 (adapted from the example about clinical
record given in (Britz, Heidema, and Meyer 2008)) Suppose
we have the following entry in a clinical record, where A,
B and C are symptoms, and Y and Z are medical condi-
tions: This entry says that patient 03154 had symptom A,

Number Date A B C ... Y Z

03154 17/06/04 1 - 0 ... - 1

did not have symptom C, and suffered from condition Z on
day 17/06/04. The information about symptom B and condi-
tion Y is unknown. Following (Britz, Heidema, and Meyer
2008), we assume that symptoms A and C are relevant to
condition Z and each complete profile (A, C, Z), i.e., each
entry having values of 0 or 1 for A, C and Z , contributes
to the generation of a possibility distribution on patient pro-
files. We do not discuss how the possibility distribution for
the profile (A, C, Z) is generated, but refer the reader to
(Britz, Heidema, and Meyer 2008) and (Britz, Heidema, and
Meyer 2009) for some possible methods4. Suppose we have
the following possibility distribution, denoted as π, for the
profile (A, C, Z):

π(100) = 1.0 π(010) = 0.8

π(011) = 0.7 π(111) = 0.7

π(101) = 0.5 π(000) = 0.5

π(001) = 0.0 π(110) = 0.0

We take all the eight profiles as the domain ΔI of an in-
terpretation I. A concept is interpreted under I as the set
of all profiles that assign value 1 to the concept. For exam-
ple, we have AI = {100, 111, 101, 110} and (A � ¬C)I =
{100, 101}. Profile 100 with highest possibility degree is
considered as the most typical profiles, and profiles 001 and
110 with lowest possibility degree are considered as atypi-
cal ones. We show that (I, π) � Z �D C. Since CI =
{010, 011, 111, 110} and ZI = {011, 111, 101, 001}, we
have (Z � C)I = {011, 111}. We also have (Z � ¬C)I =
{101, 001}. So we have Π(Z � C) = 0.7 > Π(Z � ¬C) =
0.5. It follows that (I, π) � Z �D C. Similarly, we can
show that (I, π) � Z �D2 A. Let us consider the relation-
ship between symptoms A and C and condition Z . Since
(A�C)I = {111, 110} and (¬Z)I = {100, 010, 000, 110},
we have (A�C �¬Z)I = {110}. So Π(A�C �¬Z) = 0.
If follows that (I, Π) � (A � C) �H Z . This infers that
(I, Π) � (A � C) �B Z . Therefore, we can say that a
patient having symptom A and testing positive for symp-
tom C is highly possible to suffer from condition Z . Now
suppose a patient having symptom A and testing negative

4Remind that we consider qualitative possibility theory in our
paper.

for symptom C. Since (A � ¬C)I = {100, 101}, we have
(A�¬C�Z)I = {101}, thus Π(A�¬C�Z) �= 0. However,
since (A�¬C�¬Z)I = {100}, we have Π(A�¬C�¬Z) >
Π(A�¬C �Z), thus (I, π) � A�¬C �D ¬Z . We do not
have (I, π) � A � ¬C �D2 ¬Z . Thus the causal relation-
ship between A � ¬C and ¬Z is weak.

Next, we consider an example which is widely used to
illustrate nonmonotonic logics.

Example 17 Suppose we have a knowledge base K =

{Bird �D Fly, Penguin �D ¬Fly, Penguin �H

Bird}, which says that generally any bird can fly, generally
penguin cannot fly, and all pengiums are birds. For simplic-
ity, we use B, P and F to denote concepts Bird, Penguin
and Fly resepctively. For any interpretation (I, π), if (I, π)
satisfies K, then the possibility distribution π must satisfy
the following constraints.

Π(B � F ) > Π(B � ¬F ), Π(P � ¬F ) > Π(P � F ),

Π(P � ¬B) = 0.

Therefore, (I, π) must satisfies P �D ¬F . But it does not
satisfy P �D F . Thus the subsumption P �D F is blocked
from being inferred. We also have that (I, π) satisfies the
default subsumption P �B �D ¬F , i.e, generally, any bird
which is a penguin cannot fly. This can be shown as follows.
Since Π(P �¬B) = 0, we have Π(P �¬F ) = max(Π(P �
¬F � B), Π(P � ¬F � ¬B)) = Π(P � ¬F � B) because
Π(P � ¬F � ¬B) ≤ Π(P � ¬B) = 0. We know that
Π(P�¬F ) > Π(P�F ), thus Π(P�¬F�B) > Π(P�F ) ≥
Π(P �B�F ). It follows that (I, π) satisfies P �B �D ¬F .
Therefore, we have K |=P P � B �D ¬F . Note that we
cannot infer this without the hard preferential subsumption
Penguin �H Bird.

Translation to DL Reasoning

In this section, we present a translation from all statements
expressible in possibility-based DL into statements of a clas-
sical DL. In this way, we provide a method for implement-
ing the plausible entailment relations by using a classical
DL reasoner. We consider possibility-based DL ALC in this
work. We first add two role axioms to the language ALC.

Definition 18. Given a role name R, we define a role axiom
Possibility(R) in a model theoretical way as follows: I is
a model of Possibility(R), written as I � Possibility(R),
iff RI is a total pre-order and is Noetherian. We define an-
other role axiom LBound(R) in a model theoretical way
as follows: I is a model of LBound(R), written as I �

LBound(R), iff RI has at least one minimal objects, that
is, RI is lower bounded.

In the following, we present a translation from all state-
ments expressible in possibility-based DL ALC into an ex-
pressive DL. Given a specific instance L of the language for
possibility-based DL ALC, we define the translation of a
statement expressible L as follows:

Definition 19. (Translation rules) For any statement φ in L,
the translation φt of φ is defined as follows: for role name
R not occuring in the alphabet of L, concepts C and D, and
individuals a and b,
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If φ is of the form a � b then φt = {R(a, b)};
If φ is of the form C �D D then φt = {C � ∀R �

¬R−.¬C � D, ∃(C � (∃(R− � ¬R).
))};
If φ is of the form C �D2 D then φt = {C � D � ∃R �

¬R−.¬D, ∃(¬D � (∃(R− � ¬R).
))};
If φ is of the form C �B D then φt = {C � (∃R �

¬R−.C � D) � (D � ∃R � ¬R−.¬D), ∃(C � (∃(R− �
¬R).
)), ∃(¬D � (∃(R− � ¬R).
))};

If φ is of the form C �H D then φt = {C � ¬D �
¬(∃(R− � ¬R).
)};

Otherwise φt = {φ}.

In Definition 19, the role R is used to capture a Noetherian
total pre-order� and the role R�¬R− is used to capture the
asymmetry of �, i.e., ≺. The transformation rules for prefer-
ential subsumption axioms can be explained as follows. For
the translation of C �D D, C�∀R�¬R−.¬C is interpreted
as the maximally preferred objects in the extension of C and
∃(R− � ¬R).
 is interpreted as the objects which are not
minimal (w.r.t. the preference order RI). For any concept
C, ∃C is called a concept existence axiom saying that there
exists some object of C (see (Horrocks and Patel-Schneider
2003)). According to Theorem 10, C �∀R�¬R−.¬C � D
and ∃(C � (∃(R− � ¬R).
)) together capture the meaning
of C �D D. �D2 can be explained similarly. For the trans-
lation of �B , it is easy to understand it according to the fact
that {C � (∃R � ¬R−.C � D) � (D � ∃R � ¬R−.¬D)}
is semantically equivalent to {C � ∃R �¬R−.C �D, C �
D�∃R�¬R−.¬D} and C � (∃R�¬R−.C�D) is equiv-
alent to C�∀R�¬R−.¬C � D. Finally, for the translation
of �H , C�¬D � ¬(∃(R−�¬R).
) means that any object
which is in C but not in D are minimal.

The translation of a knowledge base in L is defined as
follows.

Definition 20. Let K be a knowledge base expressed in L.
The translation of K, referred to as Kt, is defined as follows:
Kt = ∪φ∈Kφt ∪ {Possibility(R), LBound(R)}.

In order to translate a knowledge base K in L, the trans-
lated knowledge base Kt must contain two new Rbox role
axioms Possibility(R) and LBound(R), which are used to
ensure that the newly introduced role name R in the transla-
tion of defeasible subsumption relations is a Noetherian to-
tal pre-order and is lower bounded. Reflexivity of roles, role
transitivity and totality of roles are included in DL SHOIQ,
which underlies OWL 1.1. Note that we do not need all ex-
pressivity of that logic. In our translation, we also need in-
verse roles, role conjunctions, negation of atomic roles and
concept existence axioms. Extending ALC with role con-
junctions and negation of roles and other role constructors
have been discussed in (Hustadt and Schmidt 1998). Con-
cept existence axiom has been introduced in (Horrocks and
Patel-Schneider 2003). However, as far as we know, there is
no work discussing a DL which extends ALC with all these
constructors. Noetherian roles are not included in any exist-
ing DL. We will investigate their impact on the complexity
of entailment in the considered DLs which are at least as ex-
pressive as ALC plus reflexivity of roles, role transitivity, to-
tality of roles, inverse roles, role conjunctions and negation
of atomic roles, concept existence. Lower bounded roles are

also out of scope of OWL DL. However, suppose that we
are able to deal with Noetherian roles, then it should not be
a problem to deal with lower bounded roles. This is because
a lower bounded order is less constrained than a well-order
which is the reverse of a Noetherian order.

Example 21 (Example 17 Continued) The translation

of K is the following DL knowledge base Kt =
{Bird � ∀R � ¬R−.¬Bird � Fly, Penguin � ∀R �
¬R−.¬Penguin � ¬Fly, Penguin�¬Bird � ¬(∃(R−�
¬R).
), ∃(Bird � (∃(R− � ¬R).
)), ∃(Penguin �
(∃(R− � ¬R).
)), Possibility(R), LBound(R)}.

We proceed to show that the above translation is correct.

Theorem 22 For any knowledge base K expressed in L and
any kind of statement φ in L, we have that K |=P φ iff
Kt |= ψ for any ψ ∈ φt.

Proof. (Sketch) Only if direction: Suppose K |=P φ. For
any interpretation I, suppose I |= γ, for any γ ∈ Kt. Then
there exists a role name R such that RI is a Noetherian total
pre-order and is lower bounded. We can construct a possi-
bility distribution over �I from R as follows. Since R is a
total pre-order and is lower bounded, we can use it to stratify
�I in such a way as �I = S1∪ ...∪Sn ∪ ..., where S1 con-
tains all the minimal objects in �I , and any objects a and
b in the same set Si, we have (a, b) ∈ RI and (b, a) ∈ RI ,
and for a ∈ Si and b ∈ Sj , where i < j, (a, b) ∈ RI

but (b, a) �∈ RI . The possibility distribution π is then de-
fined as π(a) = k if a ∈ Sk. It is clear that (a, b) ∈ RI

iff π(a) ≤ π(b). Since I |= γ, for any γ ∈ Kt, we have
(I, π) � ψ for any ψ ∈ K. Therefore, (I, π) � φ. By
Theorem 12, it is easy to see that I |= ψ for any ψ ∈ φt.
Similarly we can show the if direction.

Theorem 22 tells us that checking whether a plausible
subsumption (or a standard subsumption) follows from a
knowledge base K expressed in L can be reduced to check-
ing whether the translated DL statements follows from the
translation Kt of K.

Related Work

There have been some work on preferential reasoning in de-
scription logics, such as the work reported in (Britz, Hei-
dema, and Meyer 2008; Giordano et al. 2007; 2008). As
shown in our paper, the default subsumption �D and dual
default subsumption�D2 are closely related to the preferen-
tial subsumption and dual preferential subsumption given in
(Britz, Heidema, and Meyer 2008). A preferential descrip-
tion logic, called ALC+T, is given in (Giordano et al. 2007)
and is later extended to deal with typicality in (Giordano et
al. 2008). Their work extends DL ALC with a “typicality”
operator T, thus allows preferential subsumption which is
similar to our default subsumption and the preferential sub-
sumption given in (Britz, Heidema, and Meyer 2008). This
work is also related to the work on nonmonotonic reasoning
in description logics (Baader and Hollunder 1995a; 1995b;
Bonatti, Lutz, and Wolter 2006; Donini, Nardi, and Rosati
2002; Governatori 2004). In (Baader and Hollunder 1995a),
an extension of DL with Reiter’s default logic is given and
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this work is further extended with priority in (Baader and
Hollunder 1995b). The semantics of their logic given in
(Baader and Hollunder 1995a) is a restricted semantics for
open default theories where default rules are only applied to
individuals that are explicitly mentioned in the ABox. The
authors of the paper (Bonatti, Lutz, and Wolter 2006) pro-
pose nonmonotonic description logics by extending expres-
sive DLs ALCIO and ALCQO with circumscription. In
their work, some predicates (i.e. concept and role names) are
identified as “abnormality predicates” that should be min-
imized, i.e., the extension of these predicates is required
to be minimal w.r.t. set inclusion. Thus, the semantics of
their logics are different from ours. The work presented in
(Donini, Nardi, and Rosati 2002) extends DL ALCK with
two modal operators. Their logics can capture default rules
and other features in frame-based systems. Defeasible de-
scription logics are proposed in (Governatori 2004) by com-
bining description logics and defeasible logic. They add to
a DL knowledge base a set of defeasible logic rules and a
preference relation over the rules.

This work is inspired from the work on applying pos-
sibilistic logic (Dubois, Lang, and Prade 1994) to deal
with exceptional-tainted rules (Benferhat, Dubois, and Prade
1997; 1998). Our default subsumption and hard subsump-
tion correspond to default rule and hard rule defined over
propositional symbols in (Benferhat, Dubois, and Prade
1998). This work is different from the work on extending
description logic with possibilistic logic (see, for example,
(Qi, Pan, and Ji 2007)), where classical DL axioms are at-
tached with weights. Unlike our logics, possibilistic descrip-
tion logics are mainly applied to deal with logical inconsis-
tencies and uncertainty in description logics.

Conclusion and Future Work
This paper deals with the problem of preferential reasoning
in description logics. Four preferential subsumption rela-
tions were defined and their relationships were discussed.
The relationship between our preferential subsumption rela-
tions and preferential subsumption relations given in (Britz,
Heidema, and Meyer 2008) was drawn. We also consid-
ered entailment of our preferential subsumption statements
relative to a DL knowledge base extended with preferen-
tial subsumption statements and a special kind of role as-
sertions. Two examples were given to illustrate these no-
tions and show their potential application in practice. We
provided a method for translating entailment of TBox state-
ments (including classical subsumption statements and all
preferential subsumption statements) and ABox statements
(including classical ABox statements and statements of the
a � b) relative to an extended knowledge base to entailment
of classical TBox statements and classical ABox statements
relative to a DL knowledge respectively.

As a future work, we will extend this work by considering
preferential subsumption statements attached with uncer-
tainty degrees. This topic is interesting because the problem
of dealing with uncertainty is closely related to the problem
of nonmonotonic reasoning and possibility theory has been
widely accepted as an important formalism to deal with both
nonmonotonic reasoning and uncertainty (see (de Saint-Cyr

and Prade 2006) for example). In (Benferhat, Dubois, and
Prade 1997) and (Benferhat, Dubois, and Prade 1998), the
authors argue that the possibilistic entailment defined by the
default rules is too cautious and propose several more ad-
venturous entailment relations. We will consider adapting
these entailment relations to improve our default preferen-
tial subsumption. For example, when defining a plausible
subsumption entailment, we may consider a single possibil-
ity distribution over the domain of a DL interpretation. We
will also consider translating the new plausible subsumption
entailment to a DL entailment. Another future work is to
consider extending our preferential semantics by plausibility
measures (Friedman and Halpern 2001). We have not con-
sidered the algorithmic aspects and complexity analysis of
the entailment of our preferential semantics but leave them
as future work.
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