
Integrating Action Calculi and AgentSpeak: Closing the Gap

Michael Thielscher∗

School of Computer Science and Engineering
The University of New South Wales

Sydney, NSW, 2052, Australia
mit@cse.unsw.edu.au

Abstract

Existing action calculi provide rich, declarative for-
malisms for reasoning about actions. BDI-based pro-
gramming languages like AgentSpeak, on the other
hand, are procedural and geared towards practical appli-
cations of cognitive agents. In this paper, we close the
gap between these two lines of research by integrating
action calculi and AgentSpeak programs. Specifically,
we develop a new and purely declarative semantics for
AgentSpeak, which paves the way for combining this
language with any suitable action calculus in a strictly
modular fashion. As the main technical result, we prove
that the new declarative semantics is correct wrt. the
standard operational semantics for AgentSpeak. This
provides the basis for a modular integration of a BDI-
based agent programming language with sophisticated
methods for reasoning about actions.

Introduction

For the design and implementation of cognitive agents, two
mostly independent directions have been taken in the past.
On the one hand, BDI-based programming languages (for
an overview see (Mascardi, Demergasso, and Ancona 2005))
are geared towards the practical deployment of agent tech-
nology. They allow programmers to directly specify the
intended behaviour of an agent in form of procedures to
be selected and executed under pre-defined circumstances.
In BDI-based AgentSpeak (Rao 1996), for example, agents
maintain an internal, symbolic world model (their beliefs)
and update this model upon perceiving the environment
and executing actions, but they do not employ a sophisti-
cated action theory for this purpose. Rather, the designer of
an AgentSpeak program specifies in a simple STRIPS-like
fashion (Fikes and Nilsson 1971) how the agent should re-
vise its beliefs at specific stages of the program.

On the other hand, there is a long tradition of research
in Knowledge Representation on the automation of reason-
ing about actions and their effects. The classical Situation
Calculus (McCarthy and Hayes 1969) and other, similarly
expressive action formalisms have evolved into high-level

∗The author acknowledges support by the Australian Research
Council under grant FT0991348.
Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

programming languages, such as GOLOG (Levesque et al.
1997) or FLUX (Thielscher 2005a; 2005b). However, their
focus is on complex, long-term strategies rather than collec-
tions of short-term behaviours, and they are much less used
in practise compared to BDI-based programming languages.

Surprisingly little has been done to exploit the advantages
of both lines of research in combination, where a BDI-style
language is used to specify the behaviour of an agent and
a separate, rich action theory is used to reason about the
agent’s actions and their effects. In this paper, we intend
to close this gap by integrating action theories into Agent-
Speak (Rao 1996), a language which has been highly influ-
ential in the development of BDI-based agent programming
languages (Bordini, Hübner, and Wooldridge 2007). Our
main goal is to achieve a clear and modular combination of
the two main aspects of cognitive agency: the procedural
knowledge, which concerns the behaviour of the agent and
is specified by a BDI-based program, and the action knowl-
edge, which is given by a domain theory in a rich action cal-
culus and concerns the use and update of the internal world
model according to the effects of actions and the agent’s per-
cepts.

Our combination of these two formalisms follows the
scheme depicted in Figure 1. We will show how a given
AgentSpeak program can be translated into a so-called
Agent Logic Program (AgentLP) (Drescher, Schiffel, and
Thielscher 2009). This will be combined with a generic
AgentLP that constitutes a declarative account of the general
execution strategy in AgentSpeak. The resulting AgentLP
admits a purely logical reading, which can then be straight-
forwardly combined with a background axiomatisation com-
posed of domain axioms and the foundational axioms for the
action calculus of one’s choice. The set of formulae thus ob-
tained provides a purely declarative semantics for the inte-
gration of the two sides.

Our result closes the gap between the two branches of
research on cognitive agents: on the one hand, it allows
to underpin a practical BDI-based language with sophisti-
cated methods for reasoning about actions and their effects,
thus aiding the programmer by allowing a much richer than
STRIPS-style specification. On the other hand, it provides
a way to augment elaborate action formalisms like the Situ-
ation Calculus with a practical method for specifying agent
behaviours using the BDI-model.

79

Proceedings of the Twelfth International Conference on the Principles of Knowledge Representation and Reasoning (KR 2010)

Declarative Semantics

Agent Logic

Program
�

�
�

���

logical
reading

Generic

AgentLP
�

AgentSpeak

Program

�
translation

Background

Axiomatisation
�

�
�

���

Foundational

Axioms
�

Action

Domain

�

Behavioural Knowledge Action Knowledge

Figure 1: Combining AgentSpeak programs with rich action domain axiomatisations.

The rest of the paper is organised as follows. In the next
section, we briefly recapitulate the basic syntax of Agent-
Speak and Agent Logic Programs, respectively. Thereafter,
we present a generic AgentLP for the general execution
strategy of a BDI-based agent and show how AgentSpeak
procedures can be translated into appropriate AgentLP clau-
ses. We then illustrate how this allows to combine arbitrary
action theories with AgentSpeak procedures. Finally, we
assess the declarative semantics thus obtained against the
standard operational semantics for AgentSpeak and prove
our main result, namely, that the former provides a correct
characterisation of the latter. The paper ends with a short
discussion.

Background

AgentSpeak

AgentSpeak (Rao 1996) is arguably the most influential
programming language for behaviour-based agents that fol-
lows the BDI-model. In this paper, we focus on the ba-
sic version of this language, which is often referred to as
AgentSpeak(L). This suffices for our purpose, and in fact
highlights a crucial feature of our intended separation of
the behaviour and the reasoning aspect in an agent: exist-
ing language extensions, e.g. speech-act based communica-
tion (Moreira, Vieira, and Bordini 2003), are a matter of how
the agent reasons about its beliefs and goals, and hence a
matter of the underlying action theory rather than the agent’s
procedural knowledge.

A world model in AgentSpeak is composed of belief
atoms representing the relevant properties of the environ-
ment in which the agent lives. Beliefs can be held on both
static as well as dynamic properties. Besides predicates for
beliefs, a domain signature contains predicates representing
the range of actions of the agent.

Definition 1. An AgentSpeak domain signature consists of
a finite set of belief predicates and a finite set of action pred-
icates. A belief literal is a belief predicate with arguments
(i.e., an atom) or its negation. �

As a simple example, consider the following scenario.

1 2

34

The task of the agent is to grab the gold (whose location
the agent does not know initially) and to take it to the
home square. Consider the following belief predicates as
means to describe the states of this environment: At(x, y),
where x ∈ {Agent, Gold} and y ∈ {1, . . . , 4}, along with
Has(Agent, Gold). The initial belief base of the agent may
then be given by the single atom At(Agent, 1). Let the pos-
sible actions of the agent be to move clockwise to the next
cell and to grab and drop the gold, respectively represented
by these action predicates: Go, Grab(Gold), Drop(Gold).
Finally, we assume a simple sensor that signals the agent
whenever it is in a cell with gold.

In order to keep the definition of individual behaviours
conceptually simple, behaviours in AgentSpeak are mere se-
quences of elementary program statements. Such a state-
ment can be an action of the agent like the aforementioned,
or the addition of a new goal. There are two kinds of goals:
achieving a specific property, written !f , where f is a be-
lief atom; or testing a property, written ?f . As an example,
consider the sequence

Grab(Gold), !At(Agent, 1), Drop(Gold) (1)

This behaviour causes the agent to first grab the gold, then
pursue the goal to be at the home location 1, and finally drop
the gold.

Each behaviour in AgentSpeak needs to be accompanied
by a condition under which it can be adopted. This includes
a triggering event and a context defining preconditions for
the applicability of the procedure. Triggering events can be
the addition or removal of a belief or goal.

80

Definition 2. If f is a belief atom, then !f and ?f are
goals. A triggering event is any of +f , −f , +g , −g ,
where f is a belief atom and g a goal. A procedure is an
expression of the form

e : b1, . . . , bm ← p1, . . . , pn

where e is a triggering event, b1, . . . , bm (the context) are
belief literals (m ≥ 0), and p1, . . . , pn (the body) is a se-
quence of action atoms or goals (n ≥ 0). An empty context
or body is denoted by True. �

Here is an example procedure for our gold mining agent:

+! Has(Agent, Gold) : True
← Go, ! Has(Agent, Gold)

(2)

The agent may adopt this procedure whenever its goal is to
get the gold (that is, to achieve Has(Agent, Gold)). The pro-
cedure body tells the agent to move to the next cell and to
establish the same goal from there. Another example is this
procedure, which uses sequence (1) from above:

+! Has(Agent, Gold) : At(Agent, x), At(Gold, x)
← Grab(Gold), ! At(Agent, 1), Drop(Gold)

(3)

This behaviour can be adopted if the goal is to get the gold in
a context where the agent happens to be at some location x
of which it knows that gold can be found there. Two final
procedures may be used to tell the agent what to do to reach
a specific location:

+! At(Agent, x) : At(Agent, x) ← True
+! At(Agent, x) : ¬At(Agent, x)

← Go, ! At(Agent, x)
(4)

The first procedure says that the goal to be at some location
is achieved if the agent is already there, while the second
one says that the same goal can be achieved by a behaviour
that first takes a single step to the adjacent cell and then to
pursue again the goal to reach x.

The execution principle for AgentSpeak programs fol-
lows the generic Procedural Reasoning System (Georgeff
and Lansky 1987), where the state of the agent at any time
is characterised by the following three sets.

Definition 3. Beliefs, desires, and intentions in AgentSpeak
can be defined as follows.

• B, the beliefs, is a set of variable-free belief atoms.

• I is a set of intentions, each of which is a stack

[P1; . . . ; Pk]

where k ≥ 0 and each Pi (1 ≤ i ≤ k) is a sequence of
actions or goals. The first procedure body, P1 , is the one
that can be executed next.1

1In the original definition of AgentSpeak, an intention is a se-
quence of (partially instantiated) procedures, including triggering
event and context (Rao 1996). Just taking (partially executed) pro-
cedure bodies leads to a conceptual simplification. We also remark
that we write the stack in reversed order, where the leftmost ele-
ment, P1 , denotes the top of the stack.

• D is a set of desires, each of which is of the form 〈e; i〉
where e is a triggering event and i an intention.2 �

In general, the second component, i, of a desire encodes
the remaining steps of the procedure which has generated
event e. For example, executing the second step in the body
of procedure (3) may yield the desire

〈+! At(Agent, 1); [Drop(Gold)]〉

This indicates that the agent desires At(Agent, 1) in or-
der to be able to continue with the remaining sequence
[Drop(Gold)]. So-called external desires are desires
of the form 〈e; []〉. These are generated as a result
of perceiving the environment. An example may be
〈+! Has(Agent, Gold); []〉, representing the initial request to
the agent to get the gold.

The three standard components of a BDI-agent are ac-
companied by three selection functions: one that selects an
element from the current desires; one that selects an element
from the current intentions; and one that selects an applica-
ble procedure instance for a triggering event in accordance
with the following definition.

Definition 4. Consider a set B of ground (i.e., variable-
free) belief atoms. Let e be a triggering event and p a
procedure d : b1, . . . , bm ← p1, . . . , pn. Then p is
relevant for e if dθ = eθ for some most general uni-
fier θ. If, furthermore, a substitution η exists such that
(∀) (b1 ∧ . . . ∧ bm)θη is true in B,3 then the procedure in-
stance pθη is applicable to e (wrt. B). �

For example, suppose the belief base of our gold min-
ing agent contains At(Agent, 3), and consider the triggering
event +! At(Agent, 1). While both procedures in (4) are rel-
evant in this case, only the second one is applicable, deter-
mining the substitution θ = {x/1} and η = {}. The result-
ing behaviour is then given by the instance of the procedure
body, viz. Go, ! At(Agent, 1).

The operational semantics of AgentSpeak can be sum-
marised as follows (Rao 1996). At any time, the state of
an agent is given by its current beliefs B, desires D, and in-
tentions I . The agent starts with a given set of beliefs while
both the set of desires and the set of intentions are initially
empty. The agent then runs through a sense-select-act cycle:
Sensing means to update B according to the agent’s per-
cepts and to augment D by all external desires thus sensed.
Selecting means to select one of the desires along with an
applicable procedure instance, whose body is then added to
the intentions. Acting means to choose an intention and to
execute its first step.

Agent Logic Programs

Agent Logic Programs, or short: AgentLPs, combine
reasoning about actions with the declarative program-
ming paradigm (Drescher, Schiffel, and Thielscher 2009).

2In the literature on AgentSpeak, what we call desires is often
called an event; we decided not to follow this convention to make
clear that a desire is something complex, namely, a triggering event
plus an intention.

3By definition, a negated belief atom ¬b is true in B iff no
ground instance of b occurs in B .

81

AgentLPs are logic programs (see, e.g., (Lloyd 1987)) that
can be combined with a rich background action theory and
that use two special predicates: one, written do(α), rep-
resents the execution of an action α by the agent, and the
other, written knows(ϕ), denotes a condition ϕ on the
state of the environment in which the agent lives.4

Definition 5. Consider an action theory signature Σ, in-
cluding the pre-defined sorts ACTION and FLUENT,5 and a
logic program signature Π.

• If p is an n-ary relation from Π and t1, ...,tn are terms
from Σ ∪ Π, then p(t1, ...,tn) is a program atom.

• do(α) is a program atom if α is an ACTION in Σ.

• knows(ϕ) and ¬knows(ϕ) are program atoms if ϕ
is a FLUENT in Σ.6

• Clauses, programs, and queries are then defined as usual
for definite logic programs, with the restriction that the
two special program atoms cannot occur in the head of a
clause. �

The interested reader may take a peek at Figure 2 at this
point to see an example AgentLP.

Agent Logic Programs are understood and executed with
the help of a background action theory, which provides the
agent with knowledge of its actions and their effects. Any
sufficiently expressive representation formalism for actions
can be used in combination with AgentLPs. The only pre-
requisite is that it provides a special sort TIME (which can
be linear, or branching as in the Situation Calculus) and the
atomic predicates Knows(f, s) and Poss(a, s, t), respec-
tively indicating that the agent knows FLUENT f to be true
at TIME s and that the execution of ACTION a is possi-
ble starting at TIME s and ending at TIME t. These two
predicates provide the connection of an AgentLP to the un-
derlying background theory (see also Figure 1): the special
atoms (¬)knows(ϕ) are evaluated on the basis of Knows,
and do(α) is understood on the basis of Poss. With this,
the semantics of an AgentLP is basically that of standard
logic programming augmented by the background theory on
the actions and the knowledge of the agent. However, since
logic programs are static in nature while reasoning about ac-
tions describes changes over time, an AgentLP needs to be
expanded into a set of axioms in which the temporal aspect
is made explicit; the formal details will be given later in the
context of the generic AgentLP for AgentSpeak, which will
be introduced next.

4For the latter predicate, the symbol “?” is used in (Drescher,
Schiffel, and Thielscher 2009). We opted to replace this in order to
avoid confusion with the syntax in AgentSpeak and to indicate that
conditions are evaluated against the knowledge of the agent.

5In action theories it is customary to use the name fluent for
individual state properties like At(x, y) or Has(Agent, Gold).

6The standard definition of AgentLPs is more general in that
ϕ may be an arbitrary formula (Drescher, Schiffel, and Thielscher
2009). The restricted definition used here suffices for the design of
an AgentLP as declarative semantics for AgentSpeak. Note also
that ¬knows(ϕ) is formally treated as a program atom and,
hence, that AgentLPs are definite (i.e., negation-free) logic pro-
grams.

An AgentLP for AgentSpeak

Because AgentSpeak borrows a number of notions from
logic programming, such as unification and sequences of
goals, Agent Logic Programs provide an ideal link between
this BDI-based language and action logics. In this section,
we present an AgentLP that, together with an underlying
background theory, provides an axiomatic, declarative de-
scription of the AgentSpeak execution process and that can
be readily used to combine a BDI-based control mechanism
with a rich theory for actions.

The basic elements of a domain axiomatisation in any ac-
tion calculus are the fluents and the actions. The former re-
place the belief predicates used in an AgentSpeak domain
signature. For the purpose of combining an action theory
with a BDI-based strategy, we assume the existence of an
extra fluent Goals(e), which in every situation defines the
externally given addition (or removal) of goals. To this end,
argument e is assumed to be a (possibly empty) list of trig-
gering events with exactly the same syntax as in Definition 2.

The terms for the actions in an underlying domain corre-
spond to the action predicates of an AgentSpeak program.
We assume that these include an extra action SenseAct,
which can always be executed and provides the agent with
sensing information, including information about new exter-
nal desires given by the special fluent Goals(e). A precise
example axiomatisation of Goals(e) and SenseAct will be
given in a later section.

The Generic AgentLP

We are now ready to present a generic Agent Logic Program
that encodes the execution principle of AgentSpeak; see Fig-
ure 2. The program defines the three predicates sense,
select, and act, which axiomatise the three steps in
the sense-select-act cycle that describes the operation of an
agent in AgentSpeak. Each of these predicates has as ar-
guments a list of the current desires and a list of the cur-
rent intentions.7 Each intention is itself a list of the form
[P1, . . . , Pk] as in Definition 3. The desires are expressions
of the form (e, i), where e is a triggering event and i an in-
tention, again as in Definition 3. Lists are defined as usual in
logic programming, that is, using a binary function, written
[h|t], concatenating a head h with a tail list t. The empty
list is denoted by the constant []. The clauses of the main
AgentLP for AgentSpeak can thus be interpreted as follows.

The first step in the cycle, sense(d, i), requires to do the
special action SenseAct. The external triggering events thus
sensed are added to the current desires. This is achieved with
the help of append, which is defined so as to have the side-
effect that each individual triggering event g is transformed
into an external desire of the form (g, []).

In the second step, select(d, i), if there are no desires
or intentions left, the cycle ends. If there are no desires but
an incompletely executed intention, the agent continues with
acting. Otherwise, a desire (x, j) is selected together with

7The current beliefs are missing because they will be supplied
by the background action theory that will accompany the generic
AgentLP.

82

agent speak ⇐ sense([],[])

sense(D,I) ⇐ do(sense act), knows(goals(E)), append(D,E,F), select(F,I)

select([],[]) ⇐
select([],[I|J]) ⇐ act([],[I|J])

select(D,I) ⇐ member((X,J),D,E), procedure(X,P), act(E,[[P|J]|I])

act(D,I) ⇐ member([], I,J), sense(D,J)

act(D,I) ⇐ member([[]|P],I,J), sense(D,[P|J])

act(D,I) ⇐ member([[A|P]|Q],I,J), do(A), sense(D,[[P|Q]|J])

act(D,I) ⇐ member([[?(F)|P]|Q],I,J), knows(F), sense(D,[[P|Q]|J])

act(D,I) ⇐ member([[!(F)|P]|Q],I,J), sense([(+(!(F)),[P|Q])|D],J)

append(D,[],D) ⇐
append(D,[G|H],[(G,[])|E]) ⇐ append(D,H,E)

member(X,[X|Xs],Xs) ⇐
member(X,[Y|Xs],[Y|Ys]) ⇐ member(X,Xs,Ys)

Figure 2: The generic Agent Logic Program for AgentSpeak.

an applicable procedure instance p, resulting in the new in-
tention [p|j]. To this end, the given AgentSpeak procedures
are assumed to be encoded by clauses defining the predicate
procedure as detailed below.

For the final step, the first and second clause for act(d, i)
are used to resolve, respectively, an empty intention or an
empty leading procedure body. The remaining clauses de-
fine the execution of the first element of the first procedure
body in a selected intention:

• If it is an action a, it is performed using the special
AgentLP predicate do(a).

• If it is a test goal ?f , then the special AgentLP predicate
knows(f) is used to test if the agent knows an instance
of f that currently holds.

• If it is an achievement goal !f , then a new de-
sire gets stipulated: Let the selected intention be
[[!f, p2, . . . , pn]; P2, . . . ; Pk], then the new desire is of
the form 〈+!f ; i〉 with the new intention i being
[[p2, . . . , pn]; P2; . . . ; Pk] (this is [P|Q] in the bottom-
most clause defining act(d, i)).

The selection of both a desire and an intention with which
to continue is encoded by the auxiliary predicate member.
For the sake of generality, its definition allows just any el-
ement to be selected in any step. This means, for example,
that any intention can be suspended indefinitely as long as
other intentions are present. This basic definition can easily
be replaced by a more restrictive selection strategy of one’s
choice.

AgentSpeak Procedures as AgentLPs

The main AgentLP for AgentSpeak needs to be accompa-
nied by specific clauses encoding the various procedures that
compose an actual AgentSpeak program. The mapping is
straightforward and modular.

Definition 6. A procedure e : b1, . . . , bm ← p1, . . . , pn

is interpreted as the AgentLP clause

procedure(e,[p1, . . .,pn]) ⇐ κ(b1), . . .,κ(bn)

where κ(bi) stands for knows(bi) if bi is positive and
for ¬knows(b) if bi = ¬b. �

In this way, a procedure is applicable to a given desire
if the latter matches the triggering event e and if the agent
knows that the context b1, . . . , bm holds. The body of a
procedure is then encoded as a list of actions and goals, as
required by the main AgentLP in Figure 2. As an example,
consider the following AgentLP clauses, which correspond
to the AgentSpeak procedures (2)–(4):

procedure(+(!(has(agent,gold))),

[go,!(has(agent,gold))]) ⇐

procedure(+(!(has(agent,gold))),

[grab(gold),

!(at(agent,1)),drop(gold)])

⇐ knows(at(agent,X)),

knows(at(gold,X))

procedure(+(!(at(agent,X))),[])

⇐ knows(at(agent,X))

procedure(+(!(at(agent,X))),

[go,!(at(agent,X))])

⇐ ¬knows(at(agent,X))

(5)

This encoding illustrates the elegance of using Agent Logic
Programs to encode the execution process of AgentSpeak:
the various notions related to the application of a proce-
dure, that is, relevance, applicability, and instance (cf. Defi-
nition 4), coincide with the usual declarative and procedural
semantics for logic programs.

To summarise, any given AgentSpeak program can be
mapped onto a set of AgentLP clauses together with the
generic AgentLP. The standard query to this program would
be ⇐ agent speak, which asks for a successful execu-
tion of the AgentSpeak program with initially empty desires
and intentions.

83

Declarative Semantics for AgentSpeak:

AgentLP + Action Theory

Agent Logic Programs are interpreted and executed with
the help of a background theory, which provides the agent
with knowledge of its actions and their effects (Drescher,
Schiffel, and Thielscher 2009). In principle, AgentLPs can
be combined with any underlying action representation for-
malism in which a time structure exists and which allows
to give meaning to the two predicates Knows(f, s) and
Poss(a, s, s′). On this basis, the AgentLP for an AgentSpeak
program can be understood as a purely logical axiomatisa-
tion with an underlying action theory.

Part 1: Logical Reading of the AgentLP

Because logic programs are static in nature while reason-
ing about actions describes changes over time, the declara-
tive reading of an AgentLP is obtained by expanding it into
a set of axioms in which the temporal aspect is made ex-
plicit. Two arguments of sort TIME are added to every “or-
dinary” program atom p(�x), and then p(�x, s, t) means the
restriction of the truth of the atom to the temporal interval
between (and including) s and t. The two “special” pro-
gram atoms receive special treatment: atom (¬)knows(ϕ)
is re-written to (¬)Knows(ϕ, s), with the intended meaning
that ϕ is known (respectively, not known) to be true at s;
and do(α) is mapped onto Poss(α, s1, s2), meaning that
action α can be executed at s1 and that its execution ends
in s2 .

Formally, an AgentLP is expanded by expanding each
of its clauses H ⇐ B1,...,Bn (n ≥ 0) as follows. Let
s1, . . . , sn+1 be variables of sort TIME.

• For i = 1, . . . , n, if Bi is of the form

– p(t1,...,tm), expand to P (t1, . . . , tm, si, si+1);

– do(α), expand to Poss(α, si, si+1);

– knows(ϕ), expand to Knows(ϕ, si) ∧ si = si+1 .

– ¬knows(ϕ), expand to ¬Knows(ϕ, si) ∧ si = si+1 .

• The head atom H=p(t1,...,tm) is expanded to
P (t1, . . . , tm, s1, sn+1).

• The resulting clauses are taken as universally quantified
implications as usual.

Applying this expansion to the AgentLP in Figure 2, the sec-
ond clause, for example, is understood as

(∀) Poss(SenseAct, s1, s2)∧
Knows(Goals(e), s2) ∧ s2 = s3 ∧
Append(d, e, f, s3, s4) ∧ Select(f, i, s4, s5)

⊃ Sense(d, i, s1, s5)

(6)

Thus, Sense(d, i) holds between s1 and s5 if SenseAct
is possible from s1 to s2 , if then fluent Goals(e) holds
in s2 , and if finally Append(d, e, f) holds from s3 (= s2)
to s4 and Select(f, i) from s4 to s5 . It is important to
realise that the order in which atoms occur in the body of
a clause needs to be respected when adding the time ar-
guments to the individual atoms. However, once time has
been incorporated the implication is a standard first-order
formula and as such purely declarative. In a similar fashion,

all other clauses of the main AgentLP are extended by TIME

arguments to reflect their dynamic nature. The resulting set
of formulae provides a purely declarative semantics for the
AgentLP. Due to space restrictions we omit the details and
just give the declarative reading of the AgentLP clauses for
the individual AgentSpeak procedures in (5):

(∀) Procedure(+! Has(Agent, Gold),
[Go, ! Has(Agent, Gold)], s, s)

(∀) Knows(At(Agent, x), s) ∧ Knows(At(Gold, x), s)
⊃ Procedure(+! Has(Agent, Gold),

[Grab(Gold), ! At(Agent, 1), Drop(Gold)], s, s)

(∀) Knows(At(Agent, x), s)
⊃ Procedure(+! At(Agent, x), [], s, s)

(∀) ¬Knows(At(Agent, x), s)
⊃ Procedure(+! At(Agent, x),

[Go, ! At(Agent, x)], s, s)

(7)

A query ⇐ B1,...,Bn is expanded just like a
clause but without the instruction for the missing head;
furthermore, all variables are existentially quantified and
the first temporal variable, s1 , is instantiated by the least
element, written S0 , of sort TIME (denoting the earli-
est time point in the underlying action theory). In this
way, the query ⇐ agent speak, say, is understood
as (∃s) Agent Speak(S0, s) and thus denotes the question
whether there exists a time point s such that this formula is
entailed by the AgentLP plus the underlying action theory.

With the TIME arguments incorporated, the logical
representation of procedures—together with the generic
AgentLP—provides a purely declarative reformulation of
the operational semantics of AgentSpeak. This completes
the branch on the left-hand side in Figure 1: for any Agent-
Speak program P , let Ax(P) denote the set of first-order
formulas obtained by mapping the procedures in P into
AgentLP clauses according to Definition 6, conjoining these
with the generic program of Figure 2, and taking the logical
reading of the resulting clause set. As an example, recall
our AgentSpeak program for gold mining. It can now be
understood as the formulae (7) augmented by (the temporal
expansion of) the AgentLP in Figure 2. As axiomatisation
with the two special predicates Knows and Poss, it can be
conjoined with a rich action theory that provides background
knowledge (using the same two predicates) about the dy-
namic environment in which the agent lives.

Part 2: Background Action Theory

The purpose of the background action theory is to allow the
agent to reason about what it knows and what actions are
possible. Pure AgentSpeak has but a very simplistic action
model (Rao 1996): the beliefs of an agent at any time are
characterised by a set of ground atoms, and action specifi-
cations are confined to STRIPS-style addition and removal
of atoms. This does not allow to express simple forms of
incomplete knowledge, like At(Gold, 3) ∨ At(Gold, 4) or
(∃x) At(Gold, x), nor is it suitable for domains where ac-
tions can have conditional or nondeterministic effects, ram-

84

ifications, etc. Our new, declarative interpretation of Agent-
Speak allows to combine it with just any expressive action
representation formalism—provided it is based on logic so
that it can simply be added to the logical reading of an
AgentLP. In the following we will take, as example, the clas-
sical Situation Calculus (McCarthy and Hayes 1969) aug-
mented by an axiomatisation of the agent’s knowledge ac-
cording to (Scherl and Levesque 2003).

The Situation Calculus is based on a branching time struc-
ture in which the elements of the basic sort TIME are called
situations. These are formed using the constant S0 , denot-
ing the initial situation, and the expression Do(a, s), denot-
ing the situation resulting from performing action a in situ-
ation s. Two standard predicates are Holds(f, s), denoting
that fluent f holds in situation s, and Poss(a, s) (carrying
just two arguments in the Situation Calculus), which means
that action a is possible in situation s.

The axiomatisation of a dynamic domain with the help
of the Situation Calculus is based on precondition and ef-
fect axioms. The former define the conditions on a situation
under which an action is possible. Taking our gold mining
domain as example again, these are suitable precondition ax-
ioms for the three actions of the agent:8

Poss(Go, s) ≡ True

Poss(Grab(x), s) ≡
x = Gold ∧ (∃y) (Holds(At(Agent, y), s)∧

Holds(At(x, y), s))

Poss(Drop(x), s) ≡
x = Gold ∧ Holds(Has(Agent, x), s)

(8)

Following (Reiter 1991), the effects of actions can be
described in the Situation Calculus by successor state ax-
ioms, one for each domain fluent F . Their general form is
Holds(F, Do(a, s)) ≡ γ+

F (a, s)∨(Holds(F, s)∧¬γ−

F (a, s)),

where γ+

F (a, s) are the conditions (on action a and situa-

tion s) under which fluent F becomes true, and γ−

F (a, s)
are the conditions under which fluent F becomes false.
This axiomatisation technique provides a simple solution
to the frame problem (McCarthy and Hayes 1969) because
Holds(F, Do(a, s)) is equivalent to Holds(F, s) whenever

neither γ+

F nor γ−

F applies (that is, whenever F is not
affected by the action). Coming back to our running exam-
ple, the effects of the actions on our two fluents are suitably
specified by the following two successor state axioms:9

Holds(At(x, y), Do(a, s)) ≡
x = Agent ∧ a = Go ∧ (∃z)(Holds(At(x, z), s)∧

y = (z mod 4) + 1)
∨
x = Gold ∧ a = Drop(x) ∧ Holds(At(Agent, y), s)
∨
(Holds(At(x, y), s) ∧ ¬ [x = Agent ∧ a = Go ∨

x = Gold ∧ a = Grab(x)])

8Here and in the following, all unbound variables are implicitly
assumed to be universally quantified in axioms.

9For the following we tacitly assume the standard so-called
unique name axioms for actions, that is, (∀x) Go �= Grab(x) etc.

Holds(Has(x, y), Do(a, s)) ≡
x = Agent ∧ y = Gold ∧ a = Grab(y)
∨
(Holds(Has(x, y), s)∧

¬ [x = Agent ∧ y = Gold ∧ a = Drop(y)])

The basic axiomatisation technique of the Situation Cal-
culus has been extended in (Scherl and Levesque 2003) by
an explicit formalisation of the knowledge of an agent and
how it evolves. This extension is based on the special epis-
temic predicate K(s′, s), which is to be read as: in the ac-
tual situation s, the agent considers it possible to be in situ-
ation s′ . This allows to form expressions about the knowl-
edge of the agent in specific situations in analogy to the usual
possible worlds semantics (Moore 1985). The following, for
example, says that our gold mining robot knows that it is ini-
tially at location 4 while it considers it possible that the gold
is in any of the four locations:

(∀s′) (K(s′, S0) ⊃ Holds(At(Agent, 4), s′))
∧
(∀y : 1 . . . 4) (∃s′) (K(s′, S0) ∧ Holds(At(Gold, y), s′))

(9)

The solution to the frame problem extends to knowledge by
the following successor state axiom for the special epistemic
predicate (Scherl and Levesque 2003):

K(s′′, Do(a, s)) ≡ (∃s′) (K(s′, s) ∧ Poss(a, s′)∧
s′′ = Do(a, s′)∧
SR(a, s) = SR(a, s′))

Here, the domain-dependent function SR(a, s) charac-
terises the sensing information the agent gets when perform-
ing action a in situation s. For non-sensing actions, this
can simply be set to an arbitrary unique constant; e.g.,

SR(Go, s) = �
SR(Grab(x), s) = �
SR(Drop(x), s) = �

This brings us to the last missing piece of a complete domain
axiomatisation in conjunction with an AgentSpeak program:
the special action SenseAct used in the generic AgentLP of
Figure 2 and how it affects the knowledge of the agent. This
includes the perception of new external triggers, formalised
by the special fluent Goals(e) in our generic AgentLP. We
begin by asserting

Poss(SenseAct, s) ≡ True

Now, recall that our example agent is assumed to be
equipped with a sensor that indicates whether gold is at the
current position of the agent. This, together with learning
about new goals, is suitably axiomatised as follows:

SR(SenseAct, s) = r ≡
(∃e, x) (Holds(Goals(e), s) ∧ Holds(At(Agent, x), s)∧

[r = (e,�) ∧ Holds(At(Gold, x), s)
∨
r = (e,⊥) ∧ ¬Holds(At(Gold, x), s)])

Put in words, the sensing result is formulated as a pair con-
sisting of the list of external goals that hold in the current
situation plus a constant symbol indicating whether or not

85

there is gold at the current location.10 Finally, we assert that
the special fluent Goals(e), which otherwise may change
arbitrarily between situations, is not affected by sensing:11

Holds(Goals(e), Do(SenseAct, s)) ≡ Holds(Goals(e), s)

As an example, consider a scenario where gold is actually
at 4 (but without the agent knowing this). Formally,

Holds(At(Gold, 4), S0) (10)

Furthermore, suppose that only once the agent is given an
external goal: Goals([+! Has(Agent, Gold)]) holds in S0 ,
and hence in Do(SenseAct, S0), while Goals([]) holds in
all later situations. From this and the initial knowledge given
in (9) along with the successor state axioms for, respectively,
the epistemic predicate and the other fluents, we can infer the
following about the effect of sensing in the initial situation:

(∀s′′) (K(s′′, Do(SenseAct, S0)) ⊃
Holds(At(Agent, 4), s′′)∧
Holds(At(Gold, 4), s′′)∧
Holds(Goals([+! Has(Agent, Gold)]), s′′))

(11)

Put in words, after sensing the agent knows that gold is at
the present location and that the goal is to get it. In turn, this
implies (cf. (8)) that the agent knows it can now pick up the
gold, then go forward to reach location 1, and finally drop
the gold there.

This concludes the domain axiomatisation for the gold
mining agent. The formulae in this section are completed
by the standard foundational axioms of the situation calcu-
lus, which provide a formal characterisation of the tree-like
structure of situations and which include a second-order in-
duction principle on situations. The details need not concern
us here; we refer the interested reader to (Reiter 2001). The
example axiomatisation illustrates some of the expressive
power of the Situation Calculus and how such action cal-
culi can be used to formulate rich and elaborate background
action theories.

Putting Part 1 and 2 Together

With its purely declarative interpretation Ax(P), any Agent-
Speak program P can simply be conjoined with any rich
theory of actions like the one just presented. Let AxD be
a set of action domain axioms plus the foundational ax-
ioms of the chosen calculus, then the combination of Agent-
Speak program and action theory is given by the union
Ax(P) ∪ AxD , where the two parts are linked by the special
predicates Knows(f, s) and Poss(a, s, t). For our example
of the Situation Calculus, this is provided by the following
definition, the first of which is identical to a macro used in
(Scherl and Levesque 2003):

Knows(f, s)
def
= (∀s′) (K(s′, s) ⊃ Holds(f, s′))

Poss(a, s, t)
def
= (∀s′) (K(s′, s) ⊃ Poss(a, s′))∧

t = Do(a, s)

10We remark that the axiom entails that both a unique instance of
Goals(e) and an instance of At(Agent, x) holds in every situation.

11For all other fluents this follows from their successor state ax-
ioms and uniqueness-of-names for actions.

This completes the combined semantics, with which we
have closed the gap between BDI-based agent programming
and action theories. Our result opens up a whole range of
potential applications. First, the semantics allows to ap-
ply logical inference to investigate properties of AgentSpeak
programs, like for example what execution traces they allow
under given circumstances, or whether they satisfy given for-
mal specifications. Second, thanks to the modularity of the
combined semantics, the AgentSpeak execution mechanism
can be coupled with any reasoner that implements a suitable
action calculus, thus allowing for much richer action theo-
ries than originally provided for AgentSpeak. Third, with
the declarative reformulation of the operational semantics
for AgentSpeak given by the generic AgentLP in Figure 2,
it is now possible to define and analyse modifications and
extensions of the basic BDI-model in a purely declarative
setting.

As a simple example for using the axiomatisation to infer
properties about an AgentSpeak program, recall the declara-
tive reading of the program for the gold mining agent along
with the action theory for this domain from above, includ-
ing the axioms about the initial state and knowledge, (9) and
(10). Let S1 = Do(SenseAct, S0), then from (11) and the
second formula in (7) we can conclude that

Procedure(+! Has(Agent, Gold),
[Grab(Gold), ! At(Agent, 1), Drop(Gold)],
S1, S1)

This forms the basis for a simple derivation using (the log-
ical reading of) the clauses in Figure 2 by which it can be
shown that the following “execution trace” is a logical con-
sequence of Ax(P) ∪ AxD (for the sake of brevity, we have
omitted all SenseAct except for the initial one):

Agent Speak(S0, Do(Drop(Gold),
Do(Go, Do(Grab(Gold),

Do(SenseAct, S0)))))

Declarative vs. Operational Semantics

As we have just shown, our new declarative semantics en-
tails possible execution traces of an AgentSpeak program.
In this section, we will formally prove, as the main technical
result of our work, that this provides a correct characterisa-
tion of the standard operational semantics for AgentSpeak.

The operational semantics for AgentSpeak (Rao 1996)
can be given by a system of transformation rules on the in-
ternal state of an agent, formalised as belief-desire-intention
triple (B,D, I) along with σ ∈ {sense,select,act}
to indicate the current stage in the sense-select-act cycle.
A successful derivation transforms an initial internal state
(B0,D0 = {}, I0 = {}, σ0 = sense)S0

(where S0

stands for the empty sequence of actions) into some final
state (Bn,Dn = {}, In = {}, σn = act)Sn

, where Sn is
the sequence of actions performed by the agent.

Before we present the individual transformation rules and
show the equivalence to the declarative semantics, we make
the following technical remarks and assumptions.

1. The transformation rules for AgentSpeak are defined rel-
ative to an underlying model for the evolution of the

86

agent’s belief base in the course of executing a program.
Our combined semantics allows to use any suitable back-
ground action theory to this end. For the purpose of re-
lating the operational to the declarative semantics, we of
course assume that both share the same background the-
ory. In order to do so, we identify each timepoint used
in the underlying action theory with the actions that have
been executed up to this point.12 In view of the opera-
tional semantics, this requires the further assumption that
the background theory gives a decidable account of what
the agent knows and does not know at any time.

2. As a set of definite clauses, Ax(P) is consistent for every
AgentSpeak program P . We assume the same of AxD ,
which then implies consistency of Ax(P)∪AxD since the
linking predicates, Poss and Knows, do not occur in the
head of a clause in P .

3. Since our AgentLP is a definite program and because we
assume that the background theory gives a complete and
decidable account of the special atoms Knows(f, s) and
Poss(a, s, t), standard SLD-resolution can be used as a
sound and complete derivation mechanism for queries to
the program (Drescher, Schiffel, and Thielscher 2009).
We will use the notation

Q =⇒ Q′θ

to denote a finite number of SLD-resolution steps from
Q to Q′θ. This also applies to resolving our two spe-
cial atoms against the background action theory to de-
termine some θ such that AxD |= Knows(f, s)θ or
AxD |= Poss(a, s, t)θ, respectively.

4. We assume that external desires are variable-free.13

5. We assume that an AgentSpeak program contains at least
one applicable procedure (cf. Definition 4) for every trig-
gering event that actually occurs.14

6. We assume that AxD entails

(∀s, t) (Poss(SenseAct, s, t) ≡ t = (s, SenseAct)) (12)

We also assume that an intention with a leading action can
only be selected if the action is possible according to what
the agent knows at the current stage.15

12This is obviously inherent in the time structure based on sit-
uations, but can also be defined if the action calculus chosen for
the background theory uses a linear time structure. To stress this
generality, we will write (α, a) to indicate the timepoint identified
with the sequence of actions α followed by a; see e.g. (12) below.

13This does not restrict the expressiveness of AgentSpeak, be-
cause a trigger like, say, +?p(�x) can always be replaced by a
ground trigger +?p along with the procedure p : True ← ?p(�x).

14With this assumption we avoid, for the sake of simplicity, hav-
ing to deal with deferring or ignoring desires; a triggering event
without a relevant procedure can never be acted upon anyway, and
deferring a triggering event in case a relevant but no applicable pro-
cedure exists can always be simulated by a recursive, i.e. cyclic,
procedure with empty context.

15The original operational semantics ignores action precondi-
tions.

7. Beliefs and intentions in AgentSpeak are modelled as sets
while they are represented as lists in the AgentLP of Fig-
ure 2. For the sake of simplicity, we will treat these two
representations as interchangeable. It is easy to prove that
this is justified from the clausal definition for predicate
Member in Figure 2.

8. The transformation rules given in the following are adap-
tations of the original operational semantics in view of the
simpler representation of intentions as stacks of (partially
executed) procedure bodies rather than of entire proce-
dures as in (Rao 1996) (cf. Definition 3).

With these preparatory remarks we are now ready to present
the transformation rules of the operational semantics and to
relate these to our new declarative semantics.

The Transformation Rules

The transformation rules can be grouped together for each
step in the sense-select-act cycle.

First Step There is only one derivation rule for the stage
in which the agent senses:

(B,D, I,sense)s �→ (B′,D′, I,select)s,SenseAct

where B′ is obtained by updating B according to the sens-
ing result and where D′ is D augmented by all external
desires sensed by the agent.

Lemma 1.

(B,D, I,sense)s �→ (B′,D′, I,select)s,SenseAct

if and only if

Sense(D, I, s, t) =⇒ Select(D′, I, (s, SenseAct), t)

Proof. The second clause in Figure 2 is the only one in
Ax(P) with head Sense. Recall its temporal extension,
(6). Assumption 6 from above implies Poss(SenseAct, s, s2)
iff s2 = (s, SenseAct). Furthermore, from the assumption
that AxD characterises precisely the evolution of the agent’s
knowledge, it follows that AxD |= Knows(Goals(e), s2) iff
e coincides with the external events sensed by the agent.
Moreover, the only two clauses with head Append in Fig-
ure 2 imply that Append(D, e, f, (s, SenseAct), s4) iff f
coincides with D′ (which is D augmented by e) and
s4 = (s, SenseAct). The claim then follows by (6) and
{s1/s, s5/t}.

Second Step For the selection of a desire, two cases are
distinguished: If there is no desire, the agent proceeds by
acting according to one of the current intentions; otherwise,
a desire is selected together with an applicable procedure,
which is added to the intentions.

1. If D = {} and I �= {} then

(B,D, I,select)s �→ (B,D, I,act)s

2. If 〈e; i〉 ∈ D and pθη is the body of an applicable (to e)
procedure instance in the AgentSpeak program P , then

(B,D, I,select)s

�→ (B,D \ {〈e; i〉}, I ∪ {[p; i]}θη,act)s

87

Lemma 2.

(B,D, I,select)s �→ (B,D′, I ′,act)s

if and only if

Select(D, I, s, t) =⇒ Act(D′, I′, s, t)

Proof. The second clause with head Select in Figure 2 is
obviously equivalent to the corresponding transformation
rule.

By the third clause, an element 〈x; j〉 ∈ D is selected
such that D′ is D \ {〈x; j〉} (according to the clauses
for Member) and such that an applicable procedure instance
with body pθη exists (according to Definition 6 and 4). Fur-
thermore, I ′ is the result of adding [p|j] to I and applying
substitution θη.

Third Step For the last step in the sense-select-act cycle,
if an empty intention is selected, the intention has been fully
achieved, and in case the first element of the selected inten-
tion is the empty sequence, the next element in the intention
becomes active. Otherwise, the first step of the first element
in the selected intention is executed. If it is an action, then
the actual execution of the action leads to an updated be-
lief base according to the effects of that action. If the first
element is an achievement goal !f , then a new desire is ob-
tained with this goal as triggering event. Finally, if the first
element is a test goal ?f , then this must be established from
the current belief base.

1. For [] ∈ I ,

(B,D, I,act)s �→ (B,D, I \ {[]},sense)s

2. For [True; P2; . . . ; Pk] ∈ I ,

(B,D, I,act)s �→ (B,D, I ′,sense)s

where I ′ = I \ {[True; P2; . . . ; Pk]} ∪ {[P2; . . . ; Pk]}.

3. For [a, P1; . . . ; Pk] ∈ I with a an action,

(B,D, I,act)s �→ (B′,D, I ′,sense)s,a

where I ′ = I \ {[a, P1; . . . ; Pk]} ∪ {[P1; . . . ; Pk] and
B′ is the result of updating B by the effects of action a.

4. For [!f, P1; . . . ; Pk] ∈ I ,

(B,D, I,act)s �→ (B,D′, I ′,sense)s

where D′ = D ∪ {〈+!f ; [P1; . . . ; Pk]〉} and I ′ = I \
{[!f, P1; . . . ; Pk]}.

5. For [?f, P1; . . . ; Pk] ∈ I and θ a substitution such that
B entails fθ,

(B,D, I,act)s �→ (B,D, I ′,sense)s

where I ′ = I \ {[?f, P1; . . . ; Pk]} ∪ {[P1; . . . ; Pk]θ}.

Lemma 3.

(B,D, I,act)s �→ (B′,D′, I ′,select)s′

if and only if

Act(D, I, s, t) =⇒ Sense(D′, I ′, s′, t)

Proof. It is straightforward to verify that the five AgentLP
clauses for Act in Figure 2 are equivalent to the respective
transformation rules.

Putting everything together leads to our main result.

Theorem 4. Under the assumptions made above,

(B0, {}, {},sense)S0
�→ . . . �→ (Bn, {}, {},act)Sn

if and only if

Ax(P) ∪ AxD |= Agent Speak(S0, Sn)

Proof. According to the first clause in Figure 2,

Agent Speak(S0, s) =⇒ Sense([], [], S0, s)

Moreover, the only fact in the program Ax(P) entails that
an SLD-derivation is successful if and only if it ends in

Select([], [], s, t) =⇒ �

with {t/s}. The claim follows by induction over the length
of a derivation using Lemma 1 to 3, and by soundness and
completeness of SLD-resolution for definite programs.

Conclusion

Since AgentSpeak uses many elements from logic program-
ming, Agent Logic Programs turned out to provide the ideal
link between knowledge representation formalisms for ac-
tions on the one hand, and a practically oriented agent pro-
gramming language based on the BDI-model on the other
hand. This can be seen, for example, by contrasting the
AgentLP in Figure 2 to the existing axiomatisation of Agent-
Speak using the Z specification language (d’Inverno and
Luck 1998), which is significantly more involved. Our work
also differs from other existing approaches to the formal se-
mantics of AgentSpeak, for instance (Moreira, Vieira, and
Bordini 2003; Bordini and Moreira 2004), in that the formu-
lation as an AgentLP allows to combine AgentSpeak-based
strategies with arbitrary theories for reasoning about actions.
An advantage of this is that agents can use much richer state
and action representations compared to the usual definition
of a belief base and its update in AgentSpeak. Moreover, ex-
isting language extensions (e.g., (Moreira, Vieira, and Bor-
dini 2003)) as well as new features can be realised in the
underlying background theory—by specifying how beliefs
and goals are affected by, say, speech-acts—in combination
with the fixed execution strategy of Figure 2. Conversely,
execution strategies that are more sophisticated can be de-
fined without affecting the reasoning module of an agent.

Existing approaches to the integration of beliefs, desires,
and intentions into action theories, such as (Lespérance,
Levesque, and Reiter 1999; Parra, Nayak, and Demolombe
2005), have a focus different from our work. There, be-
liefs, desires, and intentions are rigorously formalised as
state properties with the help of modal operators and by for-
malising the handling of desires and intentions as actions of
the agent, too. This results in comparatively complex ax-
iomatisations, lacking the simple elegance of practical pro-
gramming languages such as AgentSpeak. In contrast, our
semantics keeps the conceptual separation between desires

88

and intentions on the one hand, which are used to program
the agent’s behaviour, and the background action theory
on the other hand. Also related is the work of (Hindriks,
Lespérance, and Levesque 2000), where it is shown that the
GOLOG variant of (Giacomo, Lespérance, and Levesque
2000) can be embedded in the agent implementation lan-
guage 3APL (Hindriks et al. 1999). Abstracting away
from the specifics of the languages, this can be considered
the reversal of our investigation, but in order to exploit the
strengths of the two lines of research, it seems much more
interesting to use a practical BDI-language for behaviours in
combination with a rich theory for action knowledge.

Among the advantages of a purely declarative semantics
for AgentSpeak is to provide new ways of proving the cor-
rectness of an agent program wrt. stated requirements and
relative to a given specification of the underlying dynamic
environment. This is similar to the use of model checking for
AgentSpeak (Bordini et al. 2004) but allows to apply stan-
dard techniques like the induction principle of the Situation
Calculus (Reiter 2001), which is not restricted to finite state
spaces. In addition, our Agent Logic Program can be readily
used as the basis for an implementation in which—thanks
to the separation of behaviour and reasoning—BDI-based
programs for the intended agent behaviour can be combined
with any established system of reasoning about actions, such
as the basis for implementations of GOLOG (Reiter 2001)
or FLUX (Thielscher 2005a). It is worth noting that for this
purpose the background action theory need not include a for-
mal account of knowledge; instead it suffices to interpret the
special predicates Poss and Knows as derivability wrt. the
current world model of the agent. In this way our result
paves the way for a practical integration of the BDI-based
programming style with knowledge representation methods
for agents, and it can be considered a model case for combin-
ing the advantages of these two hitherto mostly independent
lines of research.

References

Bordini, R., and Moreira, Á. 2004. Proving BDI properties
of agent-oriented programming languages. Annals of Math-
ematics and Artificial Intelligence 42(1–3):197–226.

Bordini, R.; Fisher, M.; Visser, W.; and Wooldridge, M.
2004. Model checking rational agents. IEEE Intelligent Sys-
tems 19(5):46–52.

Bordini, R.; Hübner, J.; and Wooldridge, M. 2007. Pro-
gramming Multi-Agent Systems in AgentSpeak using Jason.

d’Inverno, M., and Luck, M. 1998. Engineering Agent-
Speak(L): A formal computational model. Journal of Logic
and Computation 8(3):233–260.

Drescher, C.; Schiffel, S.; and Thielscher, M. 2009. A
declarative agent programming language based on action
theories. In Proc. of the Int.’l Conf. on Frontiers of Com-
bining Systems, vol. 5749 of LNCS, 230–245. Springer.

Fikes, R., and Nilsson, N. 1971. STRIPS: A new approach
to the application of theorem proving to problem solving.
Artificial Intelligence 2:189–208.

Georgeff, M., and Lansky, A. 1987. Reactive reasoning and
planning. In Proc. of AAAI, 677–682.

Giacomo, G. D.; Lespérance, Y.; and Levesque, H. 2000.
ConGolog, a concurrent programming language based on
the situation calculus. Artificial Intelligence 121:109–169.

Hindriks, K.; Boer, F. D.; der Hoek, W. V.; and Meyer, J.-J.
1999. Agent programming in 3APL. Autonomous Agents
and Multi-Agent Systems 2(4):357–401.

Hindriks, K.; Lespérance, Y.; and Levesque, H. 2000. An
embedding of ConGolog in 3APL. In Proc. of ECAI, 558–
562.

Lespérance, Y.; Levesque, H.; and Reiter, R. 1999. A
situation calculus approach to modeling and programming
agents. In Rao, A., and Wooldridge, M., eds., Foundations
and Theories of Rational Agents.

Levesque, H.; Reiter, R.; Lespérance, Y.; Lin, F.; and Scherl,
R. 1997. GOLOG: A logic programming language for dy-
namic domains. Journal of Logic Programming 31(1–3):59–
83.

Lloyd, J. 1987. Foundations of Logic Programming.

Mascardi, V.; Demergasso, D.; and Ancona, D. 2005. Lan-
guages for programming BDI-style agents: an overview.
Proc. of the Workshop From Objects to Agents, 9–15.
Camerino, Italy: Pitagora Editrice Bologna.

McCarthy, J., and Hayes, P. 1969. Some philosophical prob-
lems from the standpoint of artificial intelligence. Machine
Intelligence 4:463–502.

Moore, R. 1985. A formal theory of knowledge and action.
In Formal Theories of the Commonsense World. 319–358.

Moreira, Á.; Vieira, R.; and Bordini, R. 2003. Extending the
operational semantics of a BDI agent-oriented programming
language for introducing speech-act based communication.
Proc. of the Int.’l Workshop on Declarative Agent Languages
and Technologies, vol. 2990 of LNCS, 135–154. Springer.

Parra, P. P.; Nayak, A.; and Demolombe, R. 2005. Theories
of intentions in the framework of situation calculus. Proc.
of the Int.’l Workshop on Declarative Agent Languages and
Technologies, vol. 3476 of LNAI, 19–34. Springer.

Rao, A. 1996. AgentSpeak(L): BDI agents speak out in
a logical language. In Agents Breaking Away, vol. 1038 of
LNAI, 42–55. Springer.

Reiter, R. 1991. The frame problem in the situation calculus:
A simple solution (sometimes) and a completeness result for
goal regression. In Artificial Intelligence and Mathematical
Theory of Computation, 359–380.

Reiter, R. 2001. Knowledge in Action. MIT Press.

Scherl, R., and Levesque, H. 2003. Knowledge, action, and
the frame problem. Artificial Intelligence 144(1):1–39.

Thielscher, M. 2005a. FLUX: A logic programming method
for reasoning agents. Theory and Practice of Logic Pro-
gramming 5(4–5):533–565.

Thielscher, M. 2005b. Reasoning Robots: The Art and Sci-
ence of Programming Robotic Agents, vol. 33 of Applied
Logic Series. Springer.

89

