
Finding the Next Solution in Constraint- and
Preference-Based Knowledge Representation Formalisms

R. Brafman
Department of Computer Science

Ben Gurion University
Negev, Beer-Sheva, Israel

Email: brafman@cs.bgu.ac.il

F. Rossi and D. Salvagnin and K. B. Venable
Dipartimento di Matematica

Pura ed Applicata
University of Padova, Italy

Email: {frossi,kvenable,salvagni}@math.unipd.it

T. Walsh
NICTA and UNSW Sydney, Australia

Email: Toby.Walsh@nicta.com.au

Abstract

In constraint or preference reasoning, a typical task is to com-
pute a solution, or an optimal solution. However, when one
has already a solution, it may be important to produce the
next solution following the given one in a linearization of the
solution ordering where more preferred solutions are ordered
first. In this paper, we study the computational complexity of
finding the next solution in some common preference-based
representation formalisms. We show that this problem is hard
in general CSPs, but it can be easy in tree-shaped CSPs and
tree-shaped fuzzy CSPs. However, it is difficult in weighted
CSPs, even if we restrict the shape of the constraint graph.
We also consider CP-nets, showing that the problem is easy
in acyclic CP-nets, as well as in constrained acyclic CP-nets
where the (soft) constraints are tree-shaped and topologically
compatible with the CP-net.

Introduction and motivation

In combinatorial satisfaction and optimization problems, the
main task is finding a satisfying or optimal solution. There
have been many efforts to develop efficient algorithms to
perform such tasks, to study the computational complexity
of this problem in general, and to find islands of tractabil-
ity (Dechter 2003). Another important task is to be able to
compare two solutions and to say if one dominates another
(Boutilier et al. 2004a). In this paper, we address another
task that is crucial in many scenarios. When one has already
a solution, it can be useful to be able to produce the next so-
lution following the given one in the solution ordering where
more preferred solutions are ordered first. If the solution or-
dering has ties or incomparability, the next solution could be
any solution which is tied or incomparable to the given one.
In general, however, the next solution is the solution follow-
ing the given one in a linearization of the solution ordering.

In this paper we study the computational complexity of
the problem of computing the next solution in some con-
straint and preference-based formalisms. We show that this
is a hard problem in constraint satisfaction problems (CSPs)
(Rossi, Beek, and Walsh 2006), but it can be easy in tree-
shaped CSPs (Dechter 2003) and tree-shaped fuzzy CSPs
(Bistarelli, Montanari, and Rossi 1997). However, it is dif-
ficult in weighted CSPs, even if we restrict the shape of the

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

constraint graph. Moreover, we also show that it is easy in
acyclic CP-nets (Boutilier et al. 2004a), as well as in con-
strained acyclic CP-nets (Boutilier et al. 2004b) where the
(soft) constraints are tree-shaped and topologically compat-
ible with the CP-net graph.

We came across the problem of computing the next so-
lution when studying the stable marriage problem (Gusfield
and Irving 1989). The stable marriage problem is a well-
known problem of matching men to women so that no man
and woman who are not married to each other both prefer
each other. Practical applications range from matching res-
ident doctors to hospitals, to matching students to schools,
to matching applicants to job offers, to any two-sided mar-
ket. Stable marriage problems are usually solved with the
Gale-Shapley algorithm. One of the main operations in this
algorithm is computing the next solution in a preference or-
dering. However, the ability to compute the next solution is
useful in many other scenarios. For instance, when we want
to determine the k best solutions in an auction winner de-
termination problem (Kelly and Byde 2006), or also when
we look for the top k solutions in a web search, we want to
find the optimal solution and the next k − 1 solutions in the
ordering. As a second example, suppose we are configuring
a product, and the user doesn’t like the first configuration
we compute as we only know their preferences partially. We
might choose to compute the next most preferred solution
according to the preferences that we do know.

Formal background

Hard and soft constraints

A soft constraint (Bistarelli, Montanari, and Rossi 1997) is
a constraint (Dechter 2003) where each instantiation of its
variables has an associated value from a (totally or partially
ordered) set coming from a c-semiring. A c-semiring is de-
fined by 〈A,+,×, 0, 1〉 where A is this set of values, + is
a commutative, associative, and idempotent operator, × is
used to combine preference values and is associative, com-
mutative, and distributes over +, 0 is the worst element, and
1 is the best element. The c-semiring induces a partial or to-
tal order ≤ over preference values where a ≤ b iff a+b = b.

A classical CSP (Dechter 2003) is just a soft CSP where
the chosen c-semiring is SCSP = 〈{false, true}, ∨,∧,
false, true〉. Fuzzy CSPs (Bistarelli, Montanari, and

425

Proceedings of the Twelfth International Conference on the Principles of Knowledge Representation and Reasoning (KR 2010)

Rossi 1997) are instead modeled with SFCSP = 〈[0, 1],
max, min, 0, 1〉. That is, we maximize the minimum prefer-
ence. For weighted CSPs, the c-semiring is SWCSP = 〈R+,
min,+, +∞, 0〉: preferences are interpreted as costs from
0 to +∞, and we minimize the sum of costs.

Given an assignment s to all the variables of an SCSP
(soft CSP) P , its preference, written pref(P, s), is obtained
by combining the preferences associated by each constraint
to the subtuples of s referring to the variables of the con-
straint. For example, in fuzzy CSPs, the preference of
a complete assignment is the minimum preference given
by the constraints. In weighted constraints, it is instead
the sum of the costs given by the constraints. An opti-
mal solution of an SCSP P is then a complete assignment
s such that there is no other complete assignment s′ with
pref(P, s) <S pref(P, s′).

Classical CSPs are usually solved via a backtracking
search interleaved with constraint propagation (Dechter
2003). Soft constraints need instead to find an optimal solu-
tion, so they employ usually branch and bound techniques,
where the bound computation exploits properties of the con-
sidered constraint class (Bistarelli, Montanari, and Rossi
1997).

Constraint propagation in classical CSPs reduces variable
domains, and thus improves search performance. For some
classes of constraints, constraint propagation is enough to
solve the problem (Dechter 2003). This is the case for tree-
shaped CSPs, where directional arc-consistency, applied
bottom-up on the tree shape of the problem, is enough to
make the search for a solution backtrack-free. Given a vari-
able ordering o, a CSP is directional arc-consistent (DAC)
if, for any two variables x and y linked by a constraint cxy ,
such that x precedes y in the ordering o, we have that, for
every value a in the domain of x there is a value b in the
domain of y such that (a, b) satisfies cxy .

Constraint propagation can be applied also to soft CSPs,
and it maintains the usual properties, as in classical CSPs, if
the soft constraint class is based on an idempotent semiring
(that is, one where the combination operator is idempotent).
This is the case for fuzzy CSPs, for example. As for clas-
sical CSPs, DAC is enough to find the optimal solution to
a fuzzy CSP when the problem has a tree shape (Bistarelli,
Montanari, and Rossi 1997).

Fuzzy CSPs can also be solved via the well known cut-
based approach. Given a fuzzy CSP P , an α-cut of P , where
α is between 0 and 1, is a classical CSP with the same vari-
ables, domains, and constraint topology as the given fuzzy
CSP, and where each constraint allows only the tuples that
have preference above α in the fuzzy CSP. We will denote
such a problem by cut(P, α). The set of solutions of P with
preference greater than or equal to α coincides with the set
of solutions of cut(P, α).

CP-nets

CP-nets (Boutilier et al. 2004a) are a graphical model for
compactly representing conditional and qualitative prefer-
ence relations. CP-nets are sets of ceteris paribus (cp) pref-
erence statements. For instance, the statement “I prefer red
wine to white wine if meat is served.” asserts that, given two

meals that differ only in the kind of wine served and both
containing meat, the meal with red wine is preferable to
the meal with white wine. A CP-net has a set of features
F = {x1, . . . , xn} with finite domains D(x1), . . . ,D(xn).
For each feature xi, we are given a set of parent features
Pa(xi) that can affect the preferences over the values of
xi. This defines a dependency graph in which each node xi

has Pa(xi) as its immediate predecessors. Given this struc-
tural information, the agent explicitly specifies her prefer-
ence over the values of xi for each complete assignment on
Pa(xi). This preference is assumed to take the form of to-
tal or partial order over D(xi). An acyclic CP-net is one in
which the dependency graph is acyclic.

Consider a CP-net whose features are A, B, C, and D,
with binary domains containing f and f if F is the name of
the feature, and with the preference statements as follows:
a � a, b � b, (a∧b)∨(a∧b) : c � c, (a∧b)∨(a∧b) : c � c,
c : d � d, c : d � d. Here, statement a � a represents the
unconditional preference for A=a over A=a, while statement
c : d � d states that D=d is preferred to D=d, given that C=c.

The semantics of CP-nets depends on the notion of a
worsening flip. A worsening flip is a change in the value of
a variable to a less preferred value according to the cp state-
ment for that variable. For example, in the CP-net above,
passing from abcd to abcd is a worsening flip since c is better
than c given a and b. One outcome α is better than another
outcome β (written α � β) iff there is a chain of worsening
flips from α to β. This definition induces a preorder over the
outcomes, which is a partial order if the CP-net is acyclic.

In general, finding the optimal outcome of a CP-net is NP-
hard. However, in acyclic CP-nets, there is only one optimal
outcome and this can be found in linear time by sweeping
through the CP-net, assigning the most preferred values in
the preference tables. For instance, in the CP-net above, we
would choose A=a and B=b, then C=c, and then D=d.

Determining if one outcome is better than another (a dom-
inance query) is NP-hard even for acyclic CP-nets. Whilst
tractable special cases exist, there are also acyclic CP-nets
in which there are exponentially long chains of worsening
flips between two outcomes. In the CP-net of the example,
abcd is worse than abcd.

Solution orderings and linearizations

Each of the constraint or preference-based formalisms re-
called in the previous section generate a solution ordering
over the variable assignments, where solutions dominate
non-solutions, and more preferred solutions dominate less
preferred ones. This solution ordering can be a total order, a
total order with ties, or even a partial order with ties. How-
ever, the problem of finding the next solution needs a strict
linear order over the variable assignments, thus we will need
to consider a linearization of the solution ordering.

CSPs generate a solution ordering which is total order
with ties: all the solutions are in a tie (that is, they are
equally preferred), and dominate in the ordering all the non-
solutions, which again are in a tie. In soft constraints, the
solution ordering is in general a partial order with ties: some
assignments are equally preferred, others are incomparable,

426

and others dominate each other. If we consider fuzzy or
weighted CSPs, there can be no incomparability (since the
set of preference values is totally ordered), so again we have
a total order with ties, and a solution dominates another one
if its preference value is higher. In this context of a solu-
tion ordering which is a total order with ties (no matter how
many levels there are), linearizing the solution ordering just
means giving an order over the elements in each tie.

In acyclic CP-nets, the solution ordering is a partial order.
In this scenario, any linearization of the solution ordering
has to respect the existing dominance, while it can give an
order between assignments that are incomparable.

In the following, given a problem P and a linearization l
of its solution ordering, we will denote with Next(P,s,l) the
problem of finding the solution just after s in the lineariza-
tion l. Note that, while there is only one solution ordering
for a problem P, there may be several linearizations of such
a solution ordering.

It is not tractable to compute l explicitely, since it has an
exponential length and it would mean knowing all the so-
lutions and their relative order. For these reasons, we will
assumpe the linearization is implicitly given to the Next pro-
cedure. For example, a lexicographic order on the variable
assignments induces a linearization of the solution ordering
of a problem, yet it is polynomially describable.

Finding the next solution in CSPs

Let P be a CSP with n variables, and let us consider any
variable ordering o = (x1, . . . , xn) and any value orderings
o1, . . . , on, where oi is an ordering over the values in the
domain of variable xi. We will denote with O the set of
orderings {o, o1, . . . , on}. These orderings naturally induce
a lexicographical linearization of the solution ordering, that
we call lex(O), where, given two variable assignments, say
s and s′, we write s ≺lex(O) s′ (that is, s preceds s′) if
either s is a solution and s′ is not, or s precedes s′ in the
lexicographic order induced by O (that is, s = (s1, . . . , sn),
s′ = (s′1, . . . , s

′
n), and there exists iin[1, n] such that si ≺oi

s′i and sj = s′j for all j < i).
We will now show that, if the linearization given by

lex(O) is used, the problem of finding the next solution is
NP-hard.

Theorem 1 Computing Next(P,s,lex(O)), where P is a CSP
and s is one of its solutions, is NP-hard.

Proof We give a reduction from SAT. We shall compute
Next on a Boolean CSP, which is a special case of CSPs
with only two values in each variable domain (0 and 1). Let
us assume 0 ≺oi 1 for all i. Consider a set of SAT clauses φ.
To build the corresponding CSP, we add the two new literals
X and Ȳ to each clause, and we position them as the first
and second variables in the order o. These new clauses are
then modelled as constraints for the CSP. We then ask for
the next solution to the one in which X = Y = 0 and every
other variable is set to 1. Notice that this is a solution. If φ
is satisfiable, the next best solution of the CSP has X = 0, Y
= 1 (and the first lexicographical solution of φ for the other
variables). If φ is unsatisfiable, the next solution of the CSP

has X = 1, Y = 0, and 0 for all other variables, since Y = 0
will satisfy all the constraints of the CSP. Hence a single call
to Next determines the satisfiability of φ. �

Thus, given a CSP, there is at least a linearization of its
solution ordering, and a solution s, such that finding the Next
solution in l after s is difficult. The result of the previous
theorem can be extended to a wider class of orderings, as
the following theorem states.

Theorem 2 For each total order ω such that

• ω defines an ordering on the complete variable assign-
ments;

• ω is polynomially describable, that is, given any CSP, it
can be specified in time polynomial with respect to the size
of the CSP;

• computing the top element of ω is polynomial;
• the top element of ω does not depend on the constraints of

the CSP;

let us consider the linearization of the solution ordering in-
duced by ω, say l(ω). Then there exists a solution s such
that computing Next(p,s,l(ω)), where p is a CSP, is NP-hard.

Proof We give a reduction from SAT. Consider a formula
ϕ. Let s be the first assignment in the total order ω (by
hyphotesis, s can be computed in polynomial time). Let ψ
be a formula asserting the truth of s (e.g., if s is x1 = true
and x2 = false, then ψ could be x1 ∧¬x2). Let p = ϕ∨ ψ
and t = Next(p, s, l(ω)). If s or t satisfies ϕ, then ϕ is
satisfiable, otherwise it is not. Hence a single call to Next
determines the satisfiability of ϕ. �

Next on tree-shaped CSPs

We know that finding an optimal solution becomes easy if
we restrict the constraint graph of the problem to have the
shape of a tree. It is therefore natural to consider this class
to see whether also the Next problem becomes easy under
this condition. We will see that this is indeed so: if the CSP
is tree-shaped, that is, its underlying constraint graph has no
cycles, it can be easy to find the next solution.

In this section we focus on tree-shaped binary CSPs.
However, the same results hold for (binary or non-binary)
CSPs with a bounded tree-width.

For a tree-shaped CSP with variable set X =
{x1, · · · , xn}, let us consider the linearization tlex(O),
which is the same as lex(O) defined in the previous section,
with the restriction that the variable ordering o respects the
tree shape: each nodes comes before its children. For exam-
ple, let us consider the tree-shaped CSP shown in Figure 1,
and assume that o = (x1, x2, x3, x4, x5) and that in all do-
mains a ≺oi b ≺oi c. The solutions of the CSP are then or-
dered by tlex(O) as follows: (a, b, a, b, b) ≺ (a, b, a, c, b) ≺
(b, a, b, a, a) ≺ (b, a, b, a, b) ≺ (b, a, b, c, a) ≺
(b, a, b, c, b) ≺ (b, b, b, b, b) ≺ (b, b, b, c, b).

We will now describe an algorithm that, given as input a
DAC tree-shaped CSP P and a solution s for P , it either
returns the consistent assignment following s according to

427

x1

{a b}

x2

{a b}
x3 {a b c}

x4{a b c} x5 {a b c}

x1 x2

a b

b a

b b

x1 x3

a a

b bx2 x4

a a
a c

b b

b c

x2 x5

a a

a b

b b

Figure 1: A tree-shaped CSP.

Algorithm 1: CSP-Next
Input: tree-shaped and DAC CSP P , orderings
o, o1, . . . , on, assignment s
Output: an assignment s′, or “no more solutions”
for i=n to 1 do

Search D(xi) for the next value w.r.t. oi which is
consistent with sf(i), say v′;
if v′ exists then

si ← v′
Reset-succ(s,i)
return s

return “no more solutions”

tlex(O), or it detects that s is the last consistent assignment
in such an ordering.

The algorithm works bottom-up in the tree, looking for
new variable values that are consistent with the value as-
signed to their father (denoted by f(i) in Algorithm 1) and
successive to the ones assigned in s in the domain orderings.
As soon as it finds a variable for which such a value exists,
it resets all the following variables (according to the variable
ordering o) to their smallest compatible values w.r.t. the do-
main orderings (via procedure Reset-succ).

For example, if we run CSP-Next giving in input the CSP
of Figure 1 and solution s=(b,a,b,a,b), the algorithm first
tries to find a value for x5 consistent with x2 = a and fol-
lowing b in the domain ordering of x5. Since no such value
exists, it moves to x4 and performs a similar search, that
yields x4 = c. Procedure Reset-succ then sets x5 = a, the
first value in the ordering for x5 consistent with x2 = a.

Theorem 3 Consider a tree-shaped and DAC CSP P and
the ordering tlex(O) defined above. If s is not the last solu-
tion in ordering tlex(O), the output of CSP-next(P,s) is the
successor of s according to tlex(O); otherwise, the output
of CSP-next(P,s) is “no more solutions”.

Proof If s is not the last solution, then it has successor s′
which is also a solution. Assume s = (s1, · · · , sn) and
s′ = (s′1, · · · , s′n). Since s and s′ are both solutions, it must
be that s′ is lexicographically greater than s: there must be
a variable xj such that, ∀i < j si = s′i and sj ≺oj

s′j . This
means that CSP-next will not terminate returning “no more

solutions”, since there is at least an iteration of the for-loop
(with i = j), where the if condition will be satisfied and an
assignment will be returned. Moreover, it easy to see that
this assignment must be a solution, since it coincides with
s up to variable xi−1, it assigns a value to xi which is con-
sistent with previous values, and all variables following xi

are set to their smallest compatible values (w.r.t. the domain
orderings). Such values must exist due to the fact that P is
DAC and tree-shaped.

Let s′′ be the solution returned by CSP-next. From the
reasoning above, we have that CSP-next must have termi-
nated when i = j or before. If it has terminated when
i = k > j, we would have that s and s′′ coincide up to
the value for the k-th variable and sk ≺ok

s′′k . Since k > j,
s′′ would precede s′ lexicographically. This is not possible
since s′ is the successor of s. We can thus conclude that
CSP-next must have stopped with i = j. Thus it must be
that s′ and s′′ coincide up to variable j. Let, xk, with k > j
be the first variable on which they differ. By the definition
of function Reset-succ it must be that s′′k ≺ok

s′k. But in
such a case we would have s ≺tlex(O) s′′ ≺tlex(O) s′ which
contradicts that s′ is the successor of s. This allows us to
conclude that s′ = s′′.

If s is the last solution in the ordering, then, for every
variable v, there is no larger value in the domain ordering
than the one assigned in s that is consistent with the values
assigned by s to v’s father. This means that the if condition
is never satisfied. Thus, CSP-Next returns “no more solu-
tions”. �

If |D| is the cardinality of the largest domain, it easy to
see that the worst case complexity of CSP-next is O(n|D|),
since both looking for consistent assignments and resetting
to the earliest consistent assignment takes O(|D|), and such
operations are done O(n) times.

From Theorem 3 we can thus conclude that
Next(P,s,tlex(O)) is polynomial, since it can be com-
puted by applying DAC to P and then CSP-Next to P and s,
both of which are polynomial-time algorithms.

Note that the choice of the linearization is crucial for the
complexity of the algorithm. Indeed, a different choice for l
may turn Next(P,s,l) into an NP-hard problem, even on tree-
shaped CSP, as proved in the following theorem.

Theorem 4 Computing Next(P,s,l), where P is a tree-
shaped CSP, s is one of its solutions, and l is any lineariza-
tion of its solution ordering, is NP-hard.

Proof We give a reduction from the subset sum problem.
Given a set C of integer elements {t1, . . . , tn} and an in-
teger t, the subset sum problem consists in finding a sub-
set C ′ of elements of C such that their sum equals t, or
show that no such subset exists. Given a subset sum prob-
lem {t1, . . . , tn, t}, let P be a CSP with n + 1 variables
{x0, x1, . . . , xn}, whose domains are follows: x0 ∈ {t −
1/2, 0}, xi ∈ {ti, 0} ∀i ∈ {1, . . . , n}, and an empty con-
straint set. Then, we consider the total order l that ranks
the solutions by increasing sum of their values, using a
lexicographic order to break ties. Consider the solution
s = {t − 1/2, 0, . . . , 0} and take s′ = Next(P, s, l). If the

428

sum of the values of s′ is t, we have found a feasible solu-
tion for our subset sum problem (note that in such a solution
x0 = 0, otherwise the sum would be fractional), otherwise
we have proven that there is none. �

A problem similar to that of finding the next solution in
a CSP has been considered in (Bulatov et al. 2009), where
the computational complexity of the problem of enumerat-
ing all solutions of a CSP (including the first one) has been
studied, and some classes of CSPs (including tree-like CSPs)
are shown to have a polynomial delay algorithm to solve this
problem. For such classes, it is therefore tractable to find the
next solution. However, they do not provide any concrete
polynomial algorithm to find the next solution to a given one,
in a given ordering.

Next on weighted CSPs

We will show that Next on weighted CSPs is always a diffi-
cult problem.

Theorem 5 Computing Next(P,s,l), where P is a weighted
CSP and s is one of its solutions, is NP-hard, for any lin-
earization l.

Proof The proof of Theorem 4 can be easily adapted for the
purpose. Let P be a weighted CSP, with n + 1 binary vari-
ables {x0, x1, . . . , xn} and unary constraints ci on the vari-
able domains as follows: c0(1) = t − 1/2, ci(1) = ti ∀i ∈
{1, . . . , n}, ci(0) = 0 ∀i ∈ {0, . . . , n}. Consider the solu-
tion s = {1, 0, . . . , 0} with cost t − 1/2. For any lineariza-
tion l, if s′ = Next(P, s, l) has cost t, we have found a
feasible solution for our subset sum problem, otherwise we
have proven that there is none. �

Note that theorems 4 and 5, while very similar in proof,
have quite a different implication. Indeed, while for tree-
shaped CSPs computing Next is NP-hard only for some
choices of the linearization l, for weighted CSPs computing
Next is always NP-hard, irrespective of the linearization.

Next on tree-shaped fuzzy CSPs

Turning our attention to fuzzy CSPs, we will show that Next
on tree-like fuzzy CSPs can be easy.

Let P be a fuzzy tree-shaped CSP with variable set X =
{x1, . . . , xn} and set of constraints C, and let us consider a
variable ordering o = {x1, . . . , xn} which respects the tree
shape. Moreover, let oi be a total order over the values in the
domain of xi, for i = 1, . . . , n.

We will consider set T = {t = (xi = vi, xj = vj)|i <
j,∃c ∈ C, t ∈ c, prefc(t) > 0}, where prefc(t) denotes the
preference assigned to t by constraint c that is, the set of all
pairs of variables assignments appearing in P with prefer-
ence greater than 0. The preferences assigned to tuples by
the constraints in C and the orderings o, oi, · · · , on induce
the following ordering oT over T : (xi = v, xj = w) ≺oT

(xh = z, xk = u) if

• the preference associated to tuple (xi = v, xj = w) by its
constraint is higher than the preference associated to tuple
(xh = z, xk = u) by its constraint, or

• they have the same preference, and the variable pair
(xi, xj) lexicographically preceeds the variable pair
(xh, xk) according to o, or

• they have the same preference, i = h, j = k and the
value pair (v, w) lexicographically preceeds the value pair
(z, u) according to domain orderings oi and oj .

We will now use this strict total order over the set of tuples
of P to define a strict total order over the set of solutions of
P . Given two complete assignments to X , say s and s′, let
ts = minoT

{t tuple of s with preference pref(P, s)} and
t′s = minoT

{t tuple of s′ with preference pref(P, s′)}. We
write s ≺f s′ (that is, s preceeds s′ in ordering ≺f), if

• pref(P, s) > pref(P, s′), or

• pref(P, s) = pref(P, s′) = opt(P) and s precedes s′
in the lexicographic order induced by o and the domain
orderings o1, . . . , on, or

• pref(P, s) = pref(P, s′) < opt(P) and ts ≺oT
t′s,

• pref(P, s) = pref(P, s′) < opt(P), ts = t′s and s pre-
ceeds s′ in the lexicographic order induced by o and the
domain orderings o1, . . . , on.

It is possible to show that ≺f is a linearization of the so-
lution ordering.

Lemma 6 Ordering ≺f it a strict total order over the set of
solutions, which linearizes the solution ordering.

Proof The fact that ≺f is a strict total order derives directly
from the fact that o, o1, . . . , on and oT are strict total or-
ders by definition and, thus, so are the lexicographic orders
they induce. This implies that all solutions having the same
preference are strictly ordered according to ≺f . Moreover,
by definition of ≺f , if two solutions have a different prefer-
ence, the one with higher preference preceeds the other one
according to ≺f . �

x1

x2

x3 x4

a → 1

b → 0.5

a → 1

b → 0.5

a → 1

b → 1

a → 1

b → 1

x1 x2

a a → 1

a b → 0.8

b a → 0.5

b b → 0.2

x2 x3

a a → 0.5

a b → 1

b a → 0.2

b b → 0.5

x2 x4

a a → 0.2

a b → 1

b a → 1

b b → 0.8

Figure 2: A tree-shaped DAC fuzzy CSP.

For example, let us consider the tree-shaped DAC Fuzzy
CSP shown in Figure 2. Assume that o = (x1, x2, x3, x4)
and that a ≺oi

b for i = 1, . . . , 4. Then, if we consider
solutions s = (b, a, a, b) and s′ = (a, b, b, b), we have that
s ≺f s′ since pref(P, s) = pref(P, s′) = 0.5 < 1 =

429

opt(P), ts = (x1 = b, x2 = a), ts′ = (x2 = b, x3 = b),
and thus ts ≺oT

ts′ ; If instead we consider solutions s =
(b, b, a, a) and s′ = (b, b, a, b), we have again that s ≺f s′,
since pref(P, s) = pref(P, s′) = 0.2 < 1 = opt(P), ts =
(x1 = b, x2 = b) = t′s, and s precedes s′ lexicographically.

As with CSPs, we provide a polynomial time algorithm
that solves the Next problem for tree-shaped fuzzy CSPs.
The main idea that we exploit is that, in a fuzzy CSP, a solu-
tion can have preference p only if it includes a tuple that has
preference p.

Algorithm 2: FuzzyCSP-Next
Input: tree-shaped and DAC Fuzzy CSP P , orderings
o, o1, . . . , on, oT , assignment s with preference p
Output: an assignment s′, or “no more solutions”
if p = opt(P) then

P ′ ← cut(P, p)
if CSP-next(P’,s) �= “no more solutions” then

return CSP-next(P’,s)
if p �= opt(P) then

compute tuple ts
t∗ = ts

else
let t∗ be the first tuple s.t. pref(t∗) = next(p)

p∗ = pref(t∗)
P ′ ← cut((fix(P, t∗)), p∗)
if CSP-next(P’,s) �= “no more solutions” then

return CSP-next(P’,s)
pref(t) ← 0, ∀t ∈ T such that pref(t) = p∗ and
t ≤oT

t∗
cpref ← p∗
for each tuple t >oT

t∗ following order oT with
pref(t) > 0 do

if pref(t) < cpref then
reset all preferences, previously set to 0, to their
original values

if pref(Solve (cut(fix(P,t),pref(t)))) = pref(t) then
return Solve(cut(fix(P,t),pref(t)))

cpref ← pref(t)
pref(t) ← 0

return “no more solutions”

In Algorithm 2:

• opt(P) denotes the optimal preference of a fuzzy CSP P ;

• next(p) is the preference value, among those appearing
in P , following p in decreasing order;

• procedure fix(P,t) takes in input a fuzzy CSP P and one
of its tuples, t = (xi = v, xj = w) and returns the fuzzy
CSP obtained from P by removing from the domains of
variables xi and xj all values except v and w;

• procedure cut(P,p) takes in input a fuzzy CSP P and a
preference p and returns the CSP corresponding to the p−
cut of P as defined in the background section;

• procedure Solve(P) takes in input a CSP P and returns the
first solution in a lexicographic order given the variable
and the domain orderings.

Intuitively, when solution s with preference p is given in
input, if s is optimal, we look for the next solution in the CSP
obtained from P by performing a cut at level p and running
CSP-next. If no solution is returned, then s must have been
the last solution with optimal preference in the ordering and
its successor must be sought for at lower preference levels.

If s is not optimal, we consider its tuples and we iden-
tify the smallest tuple of s, say ts, according to ordering oT ,
that has preference p in the corresponding constraint. We fix
such a tuple, via fix(P, ts), and we cut the obtained fuzzy
CSP at level p. We then look for the solution lexicographi-
cally following s in such a CSP by calling CSP-next. If no
such solution exists, s must be the last solution with prefer-
ence p among those that get their preference from ts.

The next solution may have preference p or lower. How-
ever, if it does have preference p, such a preference must
come from a tuple with preference p which follows ts in the
ordering oT . In order to avoid finding solutions with pref-
erence equal to p that come from tuples with preference p
preceding ts according to oT , we set the preference of all
such tuples to 0. If none of the tuples with preference p
following ts generate solutions with preference p, we move
down one preference level, restoring all modified preference
values to their original values. This search continues until a
solution is found or all tuples with preference greater than 0
have been considered.

Theorem 7 Given a tree-shaped DAC fuzzy CSP P and a
solution s, algorithm FuzzyCSP-Next computes the succes-
sor of s according to ≺f if s is not the last solution with
preference greater than 0, and outputs “no more solutions”
otherwise. The worst case time complexity of algorithm
FuzzyCSP-Next is O(|T ||D|n), where |T | is the number of
tuples of P , |D| is the cardinality of the largest domain, and
n is the number of variables.

Proof (Sketch) The correctness of FuzzyCSP-Next follows
directly from the description of the algorithm. For the com-
plexity, we notice that the complexity of FuzzyCSP-Next is
bounded by that of running |T | times the CSP-next algo-
rithm. �

Therefore, the next solution can be computed in polyno-
mial time.

Theorem 8 Given a tree-shaped fuzzy CSP P , one of its so-
lutions s, and the solution ordering ≺f , Next(P, s,≺f) can
be computed in polynomial time.

Proof Follows directly from Theorem 7 and from the fact
that applying DAC is polynomial. �

Again, it is not difficult to prove that the choice of the
order is crucial for the complexity of the algorithm, and
that Next(P,s,l) is in general NP-hard even on tree-shaped
fuzzy CSPs. Indeed, since tree-shaped fuzzy CSPs admit
tree-shaped CSPs as a special case, the result is a direct con-
sequence of Theorem 4.

430

Next on acyclic CP-nets

As noticed above, the solution ordering in an acyclic CP-net
is a partial order with one top element. The acyclic nature of
the CP-net makes it easy to find the unique optimal solution
(by sweeping forward in the CP-net DAG). We now consider
the complexity of the Next operation in acyclic CP-nets. It
turns out that Next is easy on such CP-nets, if we consider a
certain linearization of the solution ordering.

We first define the concept of contextual lexicographical
linearization of the solution ordering. Let us consider any
ordering of the variables where, for any variable, its parents
are preceding it in the ordering (this condition is necessary
to obtain a linearization of the solution ordering). Let us
also consider an arbitrary total ordering of the elements in
the variable domains. For sake of simplicity, let us consider
Boolean domains. Given an acyclic CP-net with n variables,
we can associate a Boolean vector of length n to each com-
plete assignment, where element in position i corresponds
to variable i (in the variable ordering), and it is a 0 if this
variable has its most preferred value, given the values of the
parents, and 1 otherwise. Therefore, for example, the opti-
mal solution will correspond to a vector of n zeros.

To compute such a vector from a complete assignment,
we just need to read the variable values in the variable or-
dering, and for each variable we need to check if its value
is the most preferred or not, considering the assignment of
its parents. This is polynomial if the number of parents of
all variables is bounded. Given a vector, it is also easy to
compute the corresponding assignment: for each variable in
the given ordering, the values of the vector corresponding
to its parents tell us the row of the CP-table to consider for
that variable, and the value of the vector corresponding to
the variable tells us which value to choose.

Let us now consider a linearization of the ordering of the
solutions where incomparability is linearized by a lexico-
graphical ordering over the vectors associated to the assign-
ments. We will call such a linearization a contexual lexico-
graphical linearization. Note that there is at least one such
linearizations for every acyclic CP-net.

Theorem 9 Computing Next(N,s,l), where N is an acyclic
CP-net, s is one of its solutions, and l is any contextual lex-
icographical linearization of its solution ordering, is in P.

Proof Given any solution s and its associated vector, as de-
fined above, the vector of the next solution in l can be easily
obtained by a standard Boolean vector increment operation.
Therefore, given any solution s, it is possible to obtain the
next solution by 1) computing the vector associated to s, 2)
incrementing it, and 3) computing the solution associated to
the new vector. Since each of these steps is polynomial, the
overall process is polynomial. �

Figure 3 shows an acyclic CP-net, with features A, B, and
C, and its solution ordering. It is assumed that the variables
each have two values: for A we have a and ā, and similarly
for B and C. Also, the variable ordering is A ≺ B ≺ C.
Given solution abc (that is, A=a, B=b, C=c), the associated
Boolean vector (as described above) is 000, since a is the

most preferred value for A, b is the most preferred value for
B given A=a, and c is the most preferred value for C. In-
stead, the vector associated to solution āb̄c is 100, and the
vector associated to ābc̄ is 111. Given vector 101, the asso-
ciated solution is āb̄c̄. In Figure 3 it is possible to see the
CP-net, the solution ordering, and the vector for each solu-
tion. Also, if we order the solutions according to a standard
lexicographical order over their vectors, we get a lineariza-
tion of the partial solution ordering.

A

B

Ca > a

a : b > b

a : b > b

c > c

abc

abc

abc

abc

abc

abc

abc

abc

000

001

011

101

010

100

110

111

Figure 3: An acyclic CP-net and its solution ordering.

Next on constrained CP-nets

Some statements are better expressed via constraints, oth-
ers via preferences. Moreover, some preferences are better
modelled via soft CSPs, others via CP-nets. However, usu-
ally in a real-life problem we may have statements of all
these kinds, thus requiring to use all the above considered
formalisms in the same problem. It is therefore useful to
consider problems where CP-nets and CSPs, or soft CSPs,
coexist (Boutilier et al. 2004b).

We thus consider here the notion of a constrained CP-net,
which is just a CP-net plus some (soft) constraints (Boutilier
et al. 2004b). Given a CP-net N and a constraint prob-
lem P , we will write (N,P) to denote the constrained CP-net
given by N and P. For sake of simplicity, in the following we
will assume that the CP-net and the CSP involve the same
variables. Nevertheless, our results hold also for the more
general setting.

Given a constrained CP-net (N,P), its solution ordering,
written ≺np, is the one given by the (soft) constraints, where
ties can be broken by the CP-net preferences. More pre-
cisely, in the solution ordering of a constrained CP-net, so-
lution s dominates solution s′ (that is, s ≺np s′) if

• s dominates s′ according to the constraints in P, or

• s and s′ are equally preferred according to the constraints
in P, but s dominates s′ according to the CP-net N.

If, given two solutions, no one dominates the other one ac-
cording to this definition, they are considered in a tie. No-
tice that, in such an ordering, solutions that are in a tie are
incomparable for the CP-net N. Notice also that, when we
consider classical CSPs, the notion of dominance between s
and s′ means that s is a solution and s′ is not.

We now consider the complexity of computing the next
solution in a linearization of this ordering. The first results

431

says that the problem is difficult if we take the lexicographi-
cal linearization (given o, which is an ordering over the vari-
ables) of ≺np, denoted with lex(o,≺np).

Theorem 10 Computing Next((N, P), s, lex(o,≺np)),
where (N, P) is a constrained CP-net and s is one of its
solutions, is NP-hard.

Proof The statement can be proven by reducing Next on a
CSP to Next on a constrained CP-net. Given a CSP P, we can
consider a constrained CP-net where the CP-net has just one
variable, say x, and the CSP is obtained from P by adding the
unconstrained variable x. In such a constrained CP-net, take
a solution s, and assume it is not the last one in the order-
ing lex(o,≺np). Then, let s′ be the next solution according
to lex(o,≺np). Now, if s and s′ have the same variable as-
signment for x, then t′ = Next(P, t, lex(o)), where t and
t′ are obtained from s and s′ by deleting the assignment to
x. If s is the last solution or s and s′ have a different value
for x, then t (as defined above) is the last one in the order-
ing lex(o). Thus, computing Next in the constrained CP-net
would also compute Next on the CSP. Since Next on generic
CSPs is difficult, as shown in in Theorem 1, also Next on
constrained CP-nets is so. �

The same proof applies also to constrained CP-nets where
the CP-net is acyclic.

Acyclicity and compatibility

In the previous section we have see that finding the next so-
lution in a constrained CP-net, even an acyclic one, is diffi-
cult. However, in this section we show that Next becomes
easy if we consider acyclic CP-nets, tree-shaped CSPs, and
we add a compatibility condition between the acyclic CP-net
and the constraints. This compatibility condition is related
to the topology of the CP-net dependency graph and of the
constraint graph.

Consider two variables in an acyclic CP-net, say x and y.
We say that x depends on y if there is a dependency path
from y to x in the acyclic DAG of the CP-net.

Given an acyclic CP-net N and a tree-shaped CSP P , we
say that N and P are compatible if there exists a variable of
the CSP, say r, such that: for any two variables x and y such
that x is the father of y in the r-rooted tree, we have that x
does not depend on y in the CP-net. Informally, this means
that it is possible to take a tree of the constraints where the
top-down father-child links, together with the CP-net depen-
dency structure, do not create cycles. If the compatibility
holds for any root taken from a set S, then we will write that
N and P are S-compatible.

Figure 4 shows an example of a CP-net directed acyclic
graph (DAG) and two trees, of which the one in Fig. 4 (b) is
compatible with the CP-net: if we choose A as the root, the
father-child relationship is not contradicted by the CP-net
dependencies. Instead, the tree in Fig. 4 (c) is incompatible
with the CP-net: whatever root is chosen, some tree links are
contradicted by the CP-net dependencies.

Theorem 11 Consider an acyclic CP-net N and a tree-
shaped CSP P , and assume that N and P are S-compatible,

A

B C

D

CP-net
(a)

A

B

C

D

P1
(b)

A B

C

D

P2
(c)

Figure 4: A CP-net dependency graph and two trees.

where S is a subset of the variables of P. Taken a solution s
for (N, P), and a variable ordering o which respects the
tree shape of P with root an element of S, we have that
Next((N, P), s, lex(o,≺np)) is in P.

Proof To compute Next((N, P), s, lex(o,≺np)), we use
algorithm CSP-Next, except that we dynamically order each
variable domains according the CP-net: for any variable, we
order its domain according to the row of its CP table associ-
ated to the fixed assignment to the parent variables. In this
way, when we choose the next value for a variable which is
compatible with the father variable (in order to find the next
solution), we take the next most preferred one according to
the CP-net preference statements. Thus, we find a new so-
lution (if it exists) and, among the solutions not considered
so far, we take the most preferred according to the CP-net.
This models exactly the solution ordering lex(o,≺np) de-
fined for constrained CP-nets in the previous section: if the
algorithm returns a new solution s′, it means that s is not the
last solution and s′ is the next solution to s in the ordering.
�

Under these same conditions, Next remains easy even if
we consider CP-nets constrained by fuzzy CSPs rather than
hard CSPs. We just need to adapt in a similar way algorithm
FuzzyCSP-Next.

Theorem 12 Given an acyclic CP-net N , a tree-
shaped fuzzy CSP P , and a solution s for (N, P),
Next((N, P), s, lex(o,≺np)) is tractable if N and P are
compatible.

Proof As in the proof of the previous theorem, we can
adapt in a similar way the algorithm to compute Next on
fuzzy CSPs in order to compute Next on constrained CP-
nets where the constraints are fuzzy. Since FuzzyCSP-Next
uses CSP-Next, this can be simply done by instead using the
modified version of CSP-Next as described in the proof of
the previous theorem. �

The above compatibility condition between the CP-net
and the (soft) constraints is naturally satisfied in some sce-
narios. Consider for example the situation in which we first
identify the topology of the problem to be modelled (that is,
variables and links among them) and then we decide if such
links are constraints or conditional dependencies a la CP-
net. If the topology is acyclic, then the constraint graph and
the dependency graph are both acyclic and are compatible.

432

Conclusions and future work

Finding the next solution in a solution ordering of a con-
straint or preference problem can be very useful in many
settings. It is therefore important to understand the compu-
tational cost of this operation. We considered some well-
known knowledge representation formalisms and we identi-
fied several islands of tractability for the problem of finding
the next solution, such as acyclic CSPs, acyclic fuzzy CSPs,
acyclic CP-nets, and acyclic constrained CP-nets where the
constraints and the CP-net are topological compatible. We
also showed that the problem is NP-hard for CSPs and lin-
earizations with certain features, as well as for weighted
CSPs (no matter which linearization is chosen). In the fu-
ture, we intend to look for other tractable cases, and to in-
vestigate scenarios where the compatibility conditions con-
sidered in this paper naturally hold. We also plan to test
experimentally how difficult it is in practice to find the next
solution.

References

Bistarelli; Montanari; and Rossi. 1997. Semiring-based con-
straint satisfaction and optimization. Journal of the ACM
44:201–236.
Boutilier, C.; Brafman, R. I.; Domshlak, C.; Hoos, H. H.;
and Poole, D. 2004a. CP-nets: A tool for representing and
reasoning with conditional ceteris paribus preference state-
ments. Journal of Artificial Intelligence Research 21:135–
191.
Boutilier, C.; Brafman, R. I.; Hoos, H. H.; and Poole, D.
2004b. Preference-based constrained optimization with CP-
nets. Computational Intelligence 20(2):137–157.
Bulatov, A. A.; Dalmau, V.; Grohe, M.; and Marx, D. 2009.
Enumerating homomorphisms. In Proc. STACS 2009.
Dechter, R. 2003. Constraint Processing. Morgan Kauf-
mann.
Gusfield, D., and Irving, R. W. 1989. The Stable Marriage
Problem: Structure and Algorithms. MIT Press.
Kelly, T., and Byde, A. 2006. Generating k-best solutions
to auction winner determination problems. SIGecom Exch.
6(1):23–34.
Rossi, F.; Beek, P. V.; and Walsh, T. 2006. Handbook of
Constraint Programming. Elsevier.

433

