
On the Classical Content of Monadic G
∼ and

Its Application to a Fuzzy Medical Expert System

Agata Ciabattoni
Institute of Computer Languages

Theory and Logic group
Technical University of Vienna

Favoritenstrasse 9-11, 1040 Wien, Austria
agata@logic.at

Pavel Rusnok
Section on Medical Expert and

Knowledge-Based Systems
Medical University of Vienna

Spitalgasse 23, 1090 Wien, Austria
pavel.rusnok@meduniwien.ac.at

Abstract

The satisfiability problem for monadic infinite-valued Gödel
logic is known to be undecidable. We identify a fragment of
this logic extended with strong negation whose satisfiability
is not only decidable but it is decidable within classical logic.
We use this fragment to formalize the rules of CADIAG-2, a
well performing fuzzy expert system assisting in the differen-
tial diagnosis in internal medicine. A (classical) satisfiability
check of the resulting formulas allowed the detection of some
errors in the rules of the system.

1. Introduction

Gödel logics are one of the oldest families of many-valued
logics. Introduced by Gödel in 1932 to show that Intuition-
istic logic does not have a characteristic finite matrix, they
naturally turn up in a number of different contexts; among
them relevance logics (Dunn and Meyer 1971), the prov-
ability logic of Heyting arithmetic (Visser 1982) and strong
equivalence in logic programming (Lifschitz et al. 2001).
Infinite-valued Gödel logic G was recognized as one of the
main formal systems for reasoning under vagueness, see
(Hájek 1998). In this context a special role is played by
its monadic fragment, i.e., the fragment of first-order G with
no function symbols and in which all predicates are unary.
This fragment provides indeed a formalization of the pop-
ular concept of a fuzzy IF-THEN rule, like: ”IF A(x) and
B(x) THEN C(x)”, where the predicates A, B, and C are
fuzzy, i.e., they apply to x possibly only to some degree.

The addition of a classical, involutive, negation ∼ to G

defines a more expressive logic denoted G∼. See, e.g., (Es-
teva et al. 2000; Flaminio and Marchioni 2006) for a math-
ematical investigation of G (and of t-norm1 based logics, in
general) extended with ∼.

In contrast to classical logic, the satisfiability problem for
monadic G is undecidable (Baaz et al. 2009). This makes
problematic the actual use of this logic (with and without ∼)
to formalize and reason about real-life systems.

In this paper we identify a non-trivial fragment of
monadic G∼ – we denote it by ΣG

∼

cl – whose satisfiabil-

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1T -norms are the main tool in fuzzy logic to combine vague
information.

ity is not only decidable but it is decidable within classi-
cal logic. ΣG

∼

cl is powerful enough to formalize interesting
features of certain fuzzy rule-based systems which seem to
lack answer set semantics in the style, e.g., of (Mateis 1999;
Straccia 2008; Łukasiewicz 2008; Janssen et al. 2009).
These systems can instead be analyzed within G∼ and some
of their properties can be checked using well established
tools for classical logic.

As a case study, we consider CADIAG-2 (Computer-
Assisted DIAGnosis), a large data-driven fuzzy medical ex-
pert system built for computer-based consultation in inter-
nal medicine. The system, designed and implemented at the
Medical University of Vienna, is integrated into the infor-
mation system of the Vienna General Hospital, see (Adlass-
nig et al. 1986; Adlassnig and Kolarz 1986a; Adlassnig et
al. 1985). CADIAG-2’s knowledge base contains more than
20.000 rules expressing relationships between medical enti-
ties, i.e., patient’s symptoms, signs, laboratory test results,
clinical findings and diagnoses. CADIAG-2’s rules are clas-
sified into four types: cd “confirming to the degree d”, me
“mutually exclusive”, ao “always occurring” and oc “oblig-
atory confirming”. These follow the general patterns below:

cd IF A THEN B with the degree c

me IF A THEN not B

ao IF not A THEN not B

oc IF A THEN B AND IF not A THEN not B

where c ∈ (0, 1], B is an atomic entity and A is built from
atomic entities using “not”, “and” and “or”. In contrast with
its predecessor system CADIAG-1, CADIAG-2 deals with
possibly graded entities, e.g., the symptoms having “strong
abdominal pain” or “suspicion of pancreatic tumor by CT”;
these are represented as suitable numbers in [0, 1] mostly
calculated using predefined fuzzy sets. As shown in (Cia-
battoni and Vetterlein 2010), the logic closest to the natural
interpretation of the entities and rules of CADIAG-2 is G

∼.
CADIAG-1’s entities and rules are boolean (crisp). A

translation of the binary rules of the system into suitable
formulas of monadic classical logic allowed the detection
of some errors. See (Moser and Adlassnig 1992) for details.

Here we perform a similar investigation for the fuzzy sys-
tem CADIAG-2. We first formalize its knowledge base as
formulas of G∼. By using the fragment ΣG

∼

cl of G∼ we show
that most of its rules, including all binary ones, can be ana-

373

Proceedings of the Twelfth International Conference on the Principles of Knowledge Representation and Reasoning (KR 2010)

lyzed within classical logic. The actual check is performed
using the (counter)model generator Mace4 and the theorem
prover Prover9 of (McCune). This allowed the identification
of some errors in the knowledge representation of various
rules of CADIAG-2.

2. Preliminaries on G
∼

Infinite-valued first-order Gödel logic G, sometimes also
called Intuitionistic fuzzy logic (Takeuti and Titani 1984),
arises from Intuitionistic logic by adding the axioms (A →
C)∨ (C → A) and ∀x(A∨Bx) → (∀xA)∨Bx, where Bx

means that the variable x does not occur free in B.
Since (Hájek 1998), G has been recognized to be one of

the main formalizations of Fuzzy Logic. See, e.g., (Baaz
et al. 2007) for more information about Gödel logic—its
winding history, importance and variants.

An interpretation v for Gödel logic maps constants and
object variables to elements of a domain D, n-ary function
symbols to functions from Dn into D, and n-ary predicate
symbols p to functions from Dn into [0, 1].

The interpretation v extends in the usual way to a function
mapping all the terms of the language to an element of the
domain. v evaluates atomic formulas q ≡ p(t1, . . . , tn) as

v(q) = v(p)(v(t1), . . . , v(tn))2

Extension to all formulas is given by

v(A → B) =

{
1 if v(A) ≤ v(B)

v(B) otherwise,

v(¬A) =

{
1 if v(A) = 0

0 otherwise,

v(A ∧ B) = min(v(A), v(B))

v(A ∨ B) = max(v(A), v(B))

To assist a concise formulation of the semantics of
quantifiers we define the distribution of a formula A and
a free variable x with respect to an interpretation v as
Distr(A(x)) = {v′(A(x)) : v′ ∼x v}, where v′ ∼x v
means that v′ is exactly as v with the possible exception of
the domain element assigned to x. The semantics of quan-
tifiers is given by the infimum and supremum of the corre-
sponding distribution, that is

v(∀xA(x)) = inf Distr(A(x))

v(∃xA(x)) = supDistr(A(x)).

Given any predicate p, in G we can express, that for each in-
terpretation there exists an element of the domain for which

(= 0) p is equal to 0: take the formula ∃x¬p(x),

(�= 0) p is different from 0: take the formula ∃x¬¬p(x)

while we cannot express that “p is equal to 1” (notice that
the formula ∃xp(x) can take value 1 in an interpretation v
even when for no element d of the domain v(p(d)) = 1).

Gödel logic was extended with a classical, involutive
negation ∼ in (Esteva et al. 2000; Flaminio and Marchioni

2To simplify the notation we will write v(p(d1, . . . , dn)) where
di stands for v(ti) for i = 1, . . . , n.

2006). An interpretation vG∼ in the resulting logic –we refer
to it as G∼– extends any G interpretation v with

vG∼(∼ A) = 1 − vG∼(A).

Clearly an interpretation in classical logic is a particular case
of a G∼ interpretation.

G∼ is strictly more expressive than G. E.g., in G∼ we can
express that given any predicate p, for each interpretation
there exists an element of the domain for which

(= 1) p is equal to 1: take the formula ∃x¬ ∼ p(x)

(�= 1) p is different from 1: take the formula ∃x¬¬ ∼ p(x)

The following laws hold in G∼ (X ↔ Y abbreviates the
formula X → Y ∧ Y → X):

Proposition 1 For every formulas A, B, C of G
∼ we have

1. ∼ (A ∧ B) ↔∼ A∨ ∼ B

2. ∼ (A ∨ B) ↔∼ A∧ ∼ B

3. ∼∼ A ↔ A

4. (A ∧ (B ∨ C)) ↔ ((A ∧ B) ∨ (A ∧ C))

As in the classical case, a formula A is satisfiable in G (resp.
G∼), if there is an interpretation v of G (resp. G∼) that sat-
isfies A, i.e., such that v(A) = 1. Let Γ be a set of formulas.
Γ is unsatisfiable in G (resp. G∼) if there is no interpretation
v of G (resp. of G∼) that satisfies A, for all A ∈ Γ.

Henceforth we will indicate with SAT the satisfiability
problem for a logic or a set of formulas.

3. A classical decidable fragment of G∼

As is well known, SAT in classical monadic logic is decid-
able. This does not hold anymore for monadic G that was
shown in (Baaz et al. 2009) to be undecidable in presence
of at least three different predicate symbols. The aim of this
section is to identify a useful fragment of monadic G∼

(dec) for which SAT is a decidable problem and

(satCL) with the property of being satisfiable in G∼

if and only if it is satisfiable in classical logic.

As shown in Section 4, the identified fragment is powerful
enough to formalize important features of the rules of an
existing fuzzy medical expert system.

First notice that in presence of the classical negation ∼,
the undecidability result for G can be strengthened as fol-
lows:

Proposition 2 SAT for monadic formulas of G∼ is undecid-
able in presence of at least two predicate symbols.

Proof: Proceeds as the proof in (Baaz et al. 2009) of the un-
decidability of SAT for monadic G extended with the modal-
ity Δ of (Baaz 1996), being Δ derivable in G∼.

The claim indeed follows by a faithful embedding in
monadic G∼ of the classical theory CE of two equiva-
lence relations (≡1 and ≡2), known to be undecidable since
(Rogers 1956). The idea is (∗) to translate each atomic CE
formula of the form x ≡i y into a formula ¬ ∼ (pi(x) ↔
pi(y)), i = 1, 2, of the monadic fragment of G∼, where p1

and p2 are different unary predicate symbols. Notice that for

374

each interpretation vG∼ of G∼ the above formula of G∼ can
only take value 0 or value 1. More precisely, for each G∼

interpretation v

v(¬ ∼ (pi(x) ↔ pi(y))) =

{
1 if v(pi(x)) = v(pi(y))

0 otherwise,

Let S be a generic formula in CE (that, without loss of
generality, we can assume to be prenex that is in which quan-
tifiers are always in front)

Q
∗
∧

(
∧
j

xj ≡ yj →
∨
k

x′

k ≡ y′

k),

where each occurrence of ≡ is either ≡1 or ≡2, and Q
∗

is a
string (Q1z1) . . . (Qnzn) of n quantifier occurrences. I.e.,
for all l = 1, . . . , n, Ql ∈ {∀, ∃}, and zl ∈ {xl, yl, x

′

l, y
′

l}.

Let S� be the formula in G∼ obtained by making in S the
replacement (∗) above. We show that S is satisfiable in clas-
sical logic if and only if S� is satisfiable in G∼.
(⇐) Assume that there exists an interpretation vG∼ in G∼

such that vG∼(S�) = 1. Define the interpretation vCL in
classical logic as (i = 1, 2)

vCL(x ≡i y) = 1 iff vG∼(pi(x)) = vG∼(pi(y))

It is easy to see that vCL(S) = 1.
(⇒) Assume that there exists an interpretation vCL in clas-
sical logic such that vCL(S) = 1. By the downwards
Löwenheim-Skolem theorem we can assume its domain D
to be countable. Therefore so is the set of equivalence
classes [x]i = {y | vCL(x ≡i y) = 1} with respect to
the two equivalence relations (i = 1, 2). An interpretation
vG∼ of G∼ that satisfies S� is hence defined as

vG∼(pi(x)) = λ([x]i),

where λ is an injective function indexing the equivalence
classes, i.e., λ : {[x]i : x ∈ D} → [0, 1]. Note indeed that
vG∼(¬ ∼ (pi(x) ↔ pi(y))) = 1 if and only if vCL(x ≡i

y) = 1, and that both are equal to 0, otherwise. �

The same undecidability result also holds for the prenex3

monadic fragment of G
∼.

Corollary 3 SAT for prenex monadic formulas of G
∼ is un-

decidable in presence of at least two predicate symbols.

Proof: Note that S� in the above proof is a prenex formula.
�

The identification of the fragment of monadic G∼, powerful
enough for formalizing real systems and at the same time
satisfying the properties (dec) and (satCL) above, is driven
by the following considerations: (a) the one variable frag-
ment of monadic logic is often enough to capture rule-based
systems. Though very simple, already in Gödel logic (with
no additional negation ∼) this fragment does not fulfill the
property (satCL) above. A simple counterexample is the for-
mula

¬∀xp(x) ∧ ∀x¬¬p(x)

3Note that G (and therefore G
∼) does not admit equivalent

prenex formulas as in classical logic, see e.g. (Baaz et al. 2007).

that has no model in classical logic while it is satisfiable in
G (any interpretation v which assigns to the predicate p(x)
a decreasing sequence to 0 satisfies the formula). Let us
therefore consider formulas built from conjunction and dis-
junction of one variable monadic formulas that are prenex.
(b) Note however that the prenex formula

∃x(¬¬ ∼ p(x) ∧ ¬¬p(x))

is satisfiable in G∼ while it is not in classical logic (any G∼

interpretation vG∼ in which 0 < vG∼(p(d)) < 1, for an
element d, satisfies the formula).

This leads to the following definition:

Definition 4 We call ΣG
∼

cl each set containing formulas of
monadic G∼ generated by the following BNF grammar

A := QixP (x) | Qjx¬P∼(x) | A ∨ A | A ∧ A

where Qi,Qj ∈ {∀, ∃} and P (x), P∼(x) are as follows
(pk(x) is atomic for all k ∈ N):

P (x) := pk(x) | P (x) ∨ P (x) | P (x) ∧ P (x) |
| P (x) → P (x) | ¬P (x)

P∼(x) := pk(x) |∼ pk(x) | P∼(x) ∨ P∼(x) |
| P∼(x) ∧ P∼(x) |∼ P∼(x)

For our decidability proof, we first need the following
technical lemma.

Lemma 5 Let P (x) and P∼(x) be as in Definition 4 and
vG∼ be any interpretation in G∼. We can find an interpreta-
tion vCL in classical logic such that

1. vG∼(P (x)) = 0 if and only if vCL(P (x)) = 0 and
vG∼(P (x)) > 0 if and only if vCL(P (x)) = 1.

2. If vG∼(P∼(x)) = 0 then vCL(P∼(x)) = 0.

Proof: Given any interpretation vG∼ in G∼, let vCL be the
interpretation of classical logic defined as follows: for each
atomic formula p(x)

vCL(p(x)) =

{
1 if vG∼(p(x)) > 0

0 otherwise.

The claims follow by induction on P (x) and P∼(x). Both
claims trivially hold when P (x) and P∼(x) are atomic.

Claim 1: we consider as an example the case when P (x)
is P1(x) → P2(x), other cases being very similar. By the
definition of interpretation in G∼, vG∼(P (x)) = 0 if and
only if vG∼(P2(x)) = 0 and vG∼(P1(x)) > 0. By the
i.h. vG∼(P2(x)) = 0 if and only if vCL(P2(x)) = 0 and
vG∼(P1(x)) > 0 if and only if vCL(P1(x)) = 1; it follows
that vG∼(P (x)) = 0 if and only if vCL(P (x)) = 0. The
case vG∼(P (x)) > 0 is similar.

Claim 2: assume P∼(x) =∼ pk(x). Then vG∼(P∼(x))=
0 if and only if vG∼(pk(x)) = 1 and this im-
plies vCL(pk(x)) = 1 (being pk(x) atomic); hence
vCL(P∼(x)) = 0. The cases P∼(x) := P∼

1 (x) ∨ P∼

2 (x)
or P∼(x) := P∼

1 (x) ∧ P∼

2 (x) are easy. When P∼(x) =∼
P∼

1 (x) we first push ∼ in front of the atoms using the laws of
De Morgan and double negation (Proposition 1); the claim
then follows by the previous cases. �

375

Remark 6 Claim 2 above does not hold for implicative for-
mulas. E.g., the interpretation that assigns vG∼(p(x)) = 0.5
and vG∼(q(x)) = 0 is such that vG∼(∼ p(x) → q(x)) = 0
while vCL(∼ p(x) → q(x)) = 1.

Theorem 7 ΣG
∼

cl is satisfiable in G∼ if and only if ΣG
∼

cl is
satisfiable in classical logic.

Proof: Let Q be any formula in ΣG
∼

cl . If Q is satisfiable
in monadic classical logic then Q is obviously satisfiable in
G∼. For the converse direction, consider any interpretation
vG∼ of G∼ such that vG∼(Q) = 1. Let vCL be the interpreta-
tion in classical logic defined as in the proof of the previous
lemma. By vG∼(Q) = 1 it follows that some (depending
on the nesting of the connectives ∧ and ∨, see Proposition
1.4) of the formulas QixP (x) and Qjx¬P∼(x) (cf. Defi-
nition 4) evaluate to 1 under vG∼ . We show that the same
formulas evaluate to 1 also under vCL, hence vCL(Q) = 1.
Consider indeed a formula of the kind QixP (x). If Qi = ∀
then for all elements d in the domain vG∼(P (d)) = 1 and
if Qi = ∃ then for at least one element d, vG∼(P (d)) > 0.
By Lemma 5.1 it follows that vCL(P (d)) = 1 and hence
vCL(QixP (x)) = 1.

Consider a formula of the kind Qjx¬P∼(x). By similar
considerations as above we have that vG∼(P∼(d)) = 0 (for
all d, when Qj = ∀ and for at least one d, when Qj = ∃).
The claim follows by Lemma 5.2. �

Corollary 8 SAT of ΣG
∼

cl in G∼ is decidable.

Proof: Trivially follows from the theorem above being for-
mulas in ΣG

∼

cl monadic. �

4. An application: CADIAG-2

The mathematical results in the previous section are applied
here to check the knowledge base in CADIAG-2, a large and
well performing fuzzy medical expert system.

The section is organized as follows: We first describe
CADIAG-2. Section 4.2 introduces a logical formalization
of CADIAG-2’s rules within the logic G∼. Section 4.3 ana-
lyzes them by checking the consistency of their logical for-
malization. By using the fragment ΣG

∼

cl of G∼ we show
that most of the logical formulas representing the system’s
rules are satisfiable in G∼ if and only if they are satisfiable
in classical logic. This allows us to perform a consistency
check on these formulas using the existing systems Prover9
and Mace4 that work for classical logic. Our analysis al-
lowed the detection of some errors among the 20.000 rules
of CADIAG-2.

4.1 System Description

CADIAG-2 is a fuzzy expert system assisting in the differen-
tial diagnosis in internal medicine. The system has been suc-
cessfully tested in rheumatology and gastroenterology over
470 patients; the overall accuracy for confirmation and hy-
potheses generation was calculated to be 90%, see (Adlass-
nig et al. 1985) for more details.

CADIAG-2 consists of two principal parts: a knowledge
base (KB for short) and an inference engine. The KB con-
tains more than 20.000 rules expressing causal relationships
between symptoms and/or diagnoses. The inference engine

proposes differential diagnoses on the basis of the patient
data and the KB.

Let S1, . . . , Si . . . S1781 denote the symptoms and
D1, . . . , Dj , . . .D342 the diagnoses appearing in the KB. A
symptom or a diagnose is called a basic entity. CADIAG-
2 considers all statements about symptoms to be graded.
Namely, to each symptom, there is associated a degree of
presence, expressed by an element of the real unit interval
[0, 1]. A real number in [0, 1] is also associated to diagnoses,
though its meaning is better understood in this case as a de-
gree of certainty. Compound entities are defined by means of
conjunction, disjunction, involutive negation and the deriv-
able connectives “at least n out of m” and “at most n out of
m”; conjunction, disjunction and negation are computed by
the system as minimum, maximum and the function 1 − x.

Let α stand for a possibly compound entity and β for a
basic entity. The general definition of a rule in CADIAG-2’s
KB is as follows:

Definition 9 A rule in CADIAG-2’s KB is a 4-tuple

R = 〈α, β, soc, foo〉,

where α (β) is the antecedent (the succedent) of the rule and
soc (strength of confirmation) and foo (frequency of occur-
rence) are numbers in the real unit interval [0, 1].

If α is a basic entity R is called binary.

The numbers soc and foo are used by the inference engine
to determine the value of β according to the value of α. The
interpretation of soc and foo proposed in (Adlassnig et al.
1986), is the following: given a set of patients P

soc =
Σa min{α(a), β(a)}

Σaα(a)
, (1)

foo =
Σa min{α(a), β(a)}

Σaβ(a)
, (2)

where α(a) and β(a) are the degrees to which the entities α
and β apply to a patient a and the sum Σa ranges over all
patients in P. The database associated with CADIAG-2 did
not contain enough patients for calculating all numbers soc
and foo by (1)-(2). For this reason most of these values were
estimated by different means, including clinical experience
of physicians and books.

CADIAG-2’s rules can be classified into four groups: cd,
standing for “confirming to the degree d”, me, standing for
“mutually exclusive”, ao, standing for “always occurring”
and oc, standing for “obligatory confirming”. The classifi-
cation is based on the possible values of foo and soc. The
following cases can arise:

• when 0 < soc = d ≤ 1 and 0 < foo < 1 then R = cd

• when soc = 0 and foo = 0 then R = me

• when 0 < soc < 1 and foo = 1 then R = ao

• when soc = 1 and foo = 1 then R = oc

Henceforth we will consider the particular case of rules cd

when d = 1 and denote it by c1.
Examples for each type of rules are:

376

cd: 〈S0641, D069, 0.3, 0.5〉, where S0641 stands for
“strongly reduced number of thrombocytes” and D069
for “systemic lupus erythematosus”. The rule can be
expressed in natural language as:

IF strongly reduced number of thrombocytes
THEN systemic lupus erythematosus
with the degree d = 0.3.

me: 〈S1483, D073, 0, 0〉, where S1483 stands for “positive
rheumatoid factor” and D073 for “seronegative rheuma-
toid arthritis”. The rule can be expressed in natural lan-
guage as:

IF positive rheumatoid factor
THEN NOT seronegative rheumatoid arthritis

ao: 〈S0601, D238, 0.001, 1〉, where S0601 stands for
“Waaler-Rose test, negative” and D238 for “juvenile
chronic arthritis, polyarticular form, seronegative”. The
rule can be expressed in natural language as:

IF NOT Waaler-Rose test, negative
THEN NOT juvenile chronic arthritis,

polyarticular form, seronegative

oc: 〈D001 AND S0293 AND S0645, D002, 1, 1〉, where
D001 stands for “rheumatoid arthritis”, S0293 for
“splenomegaly”, S0645 for “leukopenia under 4giga/l”
and D002 for “Felty’s syndrome”. The rule can be
expressed in natural language as:

IF (rheumatoid arthritis AND splenomegaly AND
leukopenia under 4giga/l)

THEN Felty’s syndrome
AND IF NOT (rheumatoid arthritis AND

splenomegaly AND leukopenia under 4giga/l)
THEN NOT Felty’s syndrome

We sketch below how CADIAG-2 determines the values
of diagnoses for a given patient. See (Adlassnig et al.
1986; Adlassnig and Kolarz 1986a; Ciabattoni and Vetter-
lein 2010) for more details. Firstly, the patient’s data are
transformed into degrees of presence for various symptoms.
This is done using the fuzzy and crisp sets defined in the
system. The values of compound entities are then calcu-
lated according to the system’s operations on the basis of
the available knowledge.

The rules in CADIAG-2’s KB are applied systematically
one by one, in an arbitrary order. As we will see, the used
rule changes the value of only one specific basic entity; the
values of the compound entities built over this one, are then
updated. The process is completed when, by the use of any
of the rules, there are no changes. The system eventually

stops. Let αp and βp denote the actual values of the entities
α and β before the application of a rule R = 〈α, β, soc, foo〉.
Note that, in contrast with αp, βp might not be defined. R
proposes a new value b for its consequent β, according to
the rule’s type:

• If R=cd and αp > 0 then b = min{αp, soc}

• If R=me and αp = 1 then b = 0

• If R=ao and αp = 0 then b = 0

• If R=oc then b = min{αp, 1}

Notice that a rule oc behaves as a rule cd or a rule ao, de-
pending on the value αp.

If βp is undefined then the value assigned to β, denoted
by βp+1, is b. Otherwise, the following function is used to
calculate βp+1:

βp+1 = max∗(βp, b) =

⎧⎨
⎩

βp if 0 < b ≤ βp ≤ 1

or 0 < b < 1 and βp = 0

b otherwise,

Observe that both 0 and 1 are maximal in this context. The
situations when (βp = 0 and b = 1) or (βb = 1 and b = 0)
are called runtime inconsistencies. They cause a stop of the
system with an error message.

CADIAG-2 is written in Java programming language.
Some numbers about its KB: there are over 600 predefined
fuzzy sets, 20036 rules of type cd, 948 rules of type me and
486 rules of type ao. Among the rules, 21407 are binary.

4.2 From rules to G∼ formulas

We formalize the rules of CADIAG-2 as suitable formulas
in G∼. Our formalization is mainly based on the intended
interpretation of the two numbers foo and soc (cf. the equa-
tions (1) and (2)) that characterize the rule types in the sys-
tem. Ideally those numbers should be determined by statis-
tical means on a sufficiently large number of patients. As
mentioned before, only some of them have been determined
in this way. Intuitively, the actual numbers foo and soc in the
system are correct if there can be a set of patients that ful-
fills them. This notion of ”experimental consistency” leads
to the following definition.

Definition 10 Let SP be a set of patients. We say that SP
models a rule R = 〈α, β, soc, foo〉 of CADIAG-2 if soc and
foo are calculated according to the equations (1) and (2).

SP models CADIAG-2’s KB if SP models all its rules.

The insufficiency of propositional logic for formalizing the
system’s rules is in this context clear. The remaining ques-
tion is: in which logic should we formalize them? In the case
of CADIAG-1’s rules, classical first-order logic was enough
as the basic entities of the system were boolean (crisp): ei-
ther true or false. For CADIAG-2’s rules we have to take
into account that the involved entities take their values in
[0, 1]. This suggests the use of a many-valued logic (fuzzy
logic, in the sense of (Hájek 1998)). As observed in (Ciabat-
toni and Vetterlein 2010), the many-valued logic closest to
the natural interpretation of CADIAG-2’s entities and rules
is G∼.

377

Notice that in this logic, statements of the form α(a) ≤
β(a) can be modeled in a natural way by using the implica-
tion. Moreover given two formulas P and Q, we can express
that there exists an element of the domain for which

(<) the value of Q is strictly less than the value of P ; take
the formula

∃x((P (x) → Q(x)) → Q(x)) ∧ ¬¬ ∼ Q(x)),

denoted by
∃x(Q(x) ≺ P (x));

indeed v((P (x) → Q(x)) → Q(x)) = 1 iff either
v(Q(x)) < v(P (x)), or v(Q(x)) = v(P (x)) = 1. Hence
the need of excluding that v(Q(x)) = 1 with the formula
¬¬ ∼ Q(x).

These facts, together with the formulas (= 0), (�= 0), (= 1)
and (�= 1) in Section 2, are the main ingredients to trans-
form the rules of CADIAG-2 into suitable formulas of G∼.
These formulas are then used to check the existence of a set
of patients modeling CADIAG-2’s KB (”experimental con-
sistency”).

Formula Representation

We define below the formulas formalizing CADIAG-2’s KB.
CADIAG-2’s basic entities can be seen as unary predi-

cates in G∼ and we shall identify Si(a) with the proposition
“the symptom Si is present in a patient a” and, similarly, we
will identify Dj(a) with the proposition “the diagnosis Dj

applies to a patient a”.
Let R = 〈α, β, soc, foo〉 be any rule. Henceforth A (resp.

B) will denote the formula representation of the compound
entity α (resp. of the basic entity β) in G∼. For every rule
R of CADIAG-2, the equations (1)-(2) imply that α(a) and
β(a) are different from zero at least for one patient, other-
wise soc and foo would be undefined. This is expressed by
the G∼ formulas

(DEFsoc) ∃x¬¬A(x) and (DEFfoo) ∃x¬¬B(x).

Rule me
From soc = foo = 0 we conclude that Σa min{α(a), β(a)}
= 0, i.e., for each patient a either α(a) or β(a) is equal to
0. This can be expressed by the G∼ formula ∀x(¬A(x) ∨
¬B(x)). Hence the formula representing a rule me is of the
form:
∀x(¬A(x) ∨ ¬B(x)) ∧ ∃x¬¬A(x) ∧ ∃x¬¬B(x).

Rule cd

In the general case, we know that in a cd rule foo, soc > 0,
i.e., Σa min{α(a), β(a)} > 0. This means that there is at
least one patient for whom both α(a) and β(a) are different
from zero; this is accounted by the formula

(POS) ∃x(¬¬A(x) ∧ ¬¬B(x)).

We distinguish two cases:

• d = soc < 1. Then Σa min{α(a), β(a)} < Σaα(a),
which means that there exists a patient a such that β(a) <
α(a). This can be expressed by the formula ∃x(B(x) ≺
A(x)). Similarly from foo < 1 follows that there exists a
patient a such that α(a) < β(a) and this is expressed by

the formula ∃x(A(x) ≺ B(x)). Observe, that (DEFsoc)
and (DEFfoo) are implied by (POS). Therefore the for-
mula representation of a rule cd is:
∃x(¬¬A(x) ∧ ¬¬B(x)) ∧
∃x(((A(x) → B(x)) → B(x)) ∧ ¬¬ ∼ B(x)) ∧
∃x(((B(x) → A(x)) → A(x)) ∧ ¬¬ ∼ A(x))

• d = soc = 1. Here we know that Σa min{α(a), β(a)} =
Σaα(a), which means α(a) ≤ β(a) for all patients in
the database. This is accounted by the implicative for-
mula (I) ∀x(A(x) → B(x)). We add the formula (II)
∃x(A(x) ≺ B(x)), which arises from foo < 1. In this
case the formulas (POS) and (DEFfoo) are implied by (I)
and (DEFsoc). This leads to the following formula repre-
sentation of a rule c1:
∀x(A(x)→B(x)) ∧ ∃x¬¬A(x)∧
∃x(((B(x) → A(x)) → A(x)) ∧ ¬¬ ∼ A(x)).

Rule ao
From foo = 1 we have Σa min{α(a), β(a)} = Σaβ(a),
which implies that for all patients a, β(a) ≤ α(a). This
is accounted by the formula (I) ∀x(B(x) → A(x)). From
1 > soc > 0 we have, (II) ∃x(¬¬A(x)∧¬¬B(x)) and (III)
∃x(B(x) ≺ A(x)). Note that the formulas (I) and (DEFfoo)
imply (II) and (DEFsoc). These considerations lead to the
following formula representation of a rule ao:
∀x(B(x)→A(x)) ∧ ∃x¬¬B(x)∧
∃x(((A(x) → B(x)) → B(x)) ∧ ¬¬ ∼ B(x)).

Rule oc
The formulas (I) ∀x(B(x) → A(x)) and (II) ∀x(A(x) →
B(x)) formalize foo = 1 and soc = 1, respectively (see
the cases ao and c1 above). Note that (I), (II) and (DEFsoc)
imply (DEFfoo). Therefore the formula representation of a
rule oc is:
∀x(B(x)→A(x)) ∧ ∀x(A(x)→B(x)) ∧ ∃x¬¬A(x).

Let ΣKB be the set of formulas of G∼ obtained by instantiat-
ing the schemata below with the (formula representation of
the) entities of CADIAG-2’s, according to the system’s KB:

(cd) ∃x(¬¬A(x) ∧ ¬¬B(x)) ∧
∃x(((A(x) → B(x)) → B(x)) ∧ ¬¬ ∼ B(x)) ∧
∃x(((B(x) → A(x)) → A(x)) ∧ ¬¬ ∼ A(x))

(c1) ∀x(A(x)→B(x)) ∧ ∃x¬¬A(x) ∧
∃x(((B(x) → A(x)) → A(x)) ∧ ¬¬ ∼ A(x))

(me) ∀x(¬A(x) ∨ ¬B(x)) ∧ ∃x¬¬A(x) ∧ ∃x¬¬B(x)

(ao) ∀x(B(x)→A(x)) ∧ ∃x¬¬B(x) ∧
∃x(((A(x) → B(x)) → B(x)) ∧ ¬¬ ∼ B(x))

(oc) ∀x(B(x)→A(x)) ∧ ∀x(A(x)→B(x))∧
∃x¬¬A(x)

where B(x), Bi(x) are atomic and A(x) is a formula gen-
erated by the following BNF grammar:
A(x) := Bi(x) |∼ Bi(x) | A(x) ∨ A(x) | A(x) ∧ A(x).

378

Proposition 11 If there exists a set of patients that models
CADIAG-2’s KB then ΣKB is satisfiable in G∼.

Proof: Let SP be such a set of patients (cf. Definition 10).
We define an interpretation vSP in G∼ that satisfies ΣKB .
We set the domain D of this interpretation to be SP . We de-
note with S̄1(a), . . . , S̄1781(a), D̄1(a), . . . , D̄342(a) the de-
grees to which the basic entities of CADIAG-2 hold for a pa-
tient a ∈ SP . For every patient a ∈ SP and every basic en-
tity Si we set vSP (Si(a)) = S̄i(a) and analogously for ev-
ery basic entity Di. vSP is extended to compound formulas
by the truth functions of G∼. We have vSP (A(a)) = α(a)
for all a ∈ D. From this and the fact that SP models
CADIAG-2’s KB, for every rule R = 〈α, β, soc, foo〉 the
following equations hold:

soc =
Σa min{vSP (A(a)), vSP (B(a))}

ΣavSP (A(a))
,

foo =
Σa min{vSP (A(a)), vSP (B(a))}

ΣavSP (B(a))
,

where Σa ranges over all elements in SP . It is easy to see
that vSP satisfies ΣKB . We consider as an example the cases
of the formulas (me) and (cd) representing the rules of type
me and cd (d < 1), the other cases being similar.

If the set of patients SP models a rule of type me then
Σa min{vSP (A(a)), vSP (B(a))} = 0, i.e., for each patient
a either vSP (A(a)) = 0 or vSP (B(a)) = 0. The exis-
tence of patients a and b such that vSP (A(a)) > 0 and
vSP (B(b)) > 0 follows from the fact that soc and foo are
defined. Hence vSP satisfies the formula (me).

If SP models a rule of type cd (d = soc < 1) then
Σa min{vSP (A(a)), vSP (B(a))} < ΣavSP (A(a))
and hence there exists a patient a1 such that
vSP (B(a1)) < vSP (A(a1)). Analogously from
foo < 1 we conclude the existence of a patient a2

such that vSP (B(a2)) > vSP (A(a2)). Finally, from
Σa min{vSP (A(a)), vSP (B(a))} > 0 we conclude that
there exists a patient a3 such that vSP (A(a3)) > 0 and
vSP (B(a3)) > 0. Hence vSP satisfies the formula (cd). �

Remark 12 The converse direction of the above proposition
does not hold. The reason being that the formulas (cd) rep-
resenting the cd rules, with d < 1, do not take into account
the actual value d = soc. This way, rules that assign, e.g.,
two different numbers 0 < n, m < 1 to a same diagnosis
are considered ”correct”, in accordance with the intended
interpretation of CADIAG-2. Recall, indeed, that the value
t ∈ (0, 1) of any entity in the system is any time improvable
to a larger one t′ ∈ (0, 1], in which case the former value is
no longer used.

4.3 Rules Checking

In this section we analyze CADIAG-2’s KB by checking the
satisfiability of large subsets of its formula representation.
Our analysis allowed the identification of some errors in the
system’s KB.

To actually do the check using existing tools for classical
logic we first manipulate the rules of ΣKB to make them
fitting into the fragment ΣG

∼

cl of G∼ (cf. Section 3). To

this aim we perform the following surgery to the formulas in
ΣKB by removing:

(res1) all formulas (cd), (c1), (ao) and (oc) in which A(x)
contains ∼

(res2) the conjunct ∃x¬¬A(x) from (me) and the formulas
¬¬ ∼ A(x) and ¬¬ ∼ B(x), if any, from (cd), (c1) and
(ao).

We call ΣKB
−

the resulting set of formulas. More pre-

cisely, ΣKB
−

consists of the formulas of G
∼ obtained by

instantiating the schemata below with the (formula repre-
sentation of the) entities of CADIAG-2’s, according to the
KB\{R = 〈α, β, soc, foo〉 | α contains ∼ and soc �= 0}.

(cd)
′ ∃x(¬¬C(x) ∧ ¬¬B(x)) ∧

∃x((C(x) → B(x)) → B(x)) ∧
∃x((B(x) → C(x)) → C(x))

(c1)
′ ∀x(C(x) → B(x)) ∧ ∃x¬¬C(x) ∧

∃x((B(x) → C(x)) → C(x))

(me)′ ∀x(¬A(x) ∨ ¬B(x)) ∧ ∃x¬¬B(x)

(ao)′ ∀x(B(x) → C(x)) ∧ ∃x¬¬B(x) ∧
∃x((C(x) → B(x)) → B(x))

(oc)′ ∀x(B(x)→C(x)) ∧ ∀x(C(x)→B(x)) ∧
∃x¬¬C(x)

where B(x), Bi(x) are atomic while C(x) and A(x) are
formulas generated by the following BNF grammars:

• C(x) := Bi(x) | C(x) ∧ C(x) | C(x) ∨ C(x).

• A(x) := Bi(x) |∼ Bi(x) | A(x) ∧ A(x) | A(x) ∨ A(x).

It is easy to see that ΣKB
−

⊂ ΣG
∼

cl . Moreover

Proposition 13 If ΣKB
−

is unsatisfiable in classical logic
then there is no set of patients that models CADIAG-2’s KB.

Proof: If ΣKB
−

is unsatisfiable in G∼ then so is ΣKB . The
claim follows by Theorem 7 and Proposition 11. �

Though ΣKB
−

is a reduced version of the formulas repre-
senting CADIAG-2’s KB, and therefore it can express only
some features of the system’s rules, ΣKB

−
turned out to be

unsatisfiable in classical logic. The satisfiability check of
ΣKB

−
was implemented using the theorem prover Prover9

and the (counter)model generator Mace4, developed at the
University of New Mexico (McCune).

Prover9 identifies unsatisfiable formulas by proving the
negation of their conjunction. In the case of ΣKB

−
such input

would have been too large for Prover9. We therefore made
a step-wise selection of the input formulas. We first repre-
sented CADIAG-2’s KB as a graph, whose vertices are the
basic entities of the system and whose edges connect two
entities if there is a rule in the KB in which they both ap-
pear. We say that two entities are connected by a k-path
when there is a path between them containing at most k
edges. For each basic entity X and k ∈ N we gave as in-
put to Prover9 the formulas of ΣKB

−
containing at least one

predicate representing an entity connected to X by a k-path.

379

For k = 1 Prover9 detected one set of unsatisfiable formu-
las that turned out to be the only one present in ΣKB

−
, as

Mace4 found a model for the remaining formulas. The rules
of CADIAG-2 responsible for that are:

〈S0118, D025, 0, 0〉,
〈D025, D049, 0.001, 1〉,
〈S0118, D049, 0.99, 0.01〉,

where S0118 stands for “Present difficulties, Nerves,
Chorea Minor” D025 for “Reactive arthritis” and D049 for
“Rheumatic fever”. A natural language representation of
these rules is:

me, IF Present difficulties, Nerves, Chorea Minor
THEN NOT Reactive arthritis

ao, IF NOT Reactive arthritis
THEN NOT Rheumatic fever

cd, IF Present difficulties, Nerves, Chorea Minor
THEN Rheumatic fever
with the degree 0.99.

Though these rules cannot produce a runtime inconsistency,
from the same fact (S0118 with degree 1) they derive two
almost opposite conclusions, i.e., the diagnose “Rheumatic
fever” applies with degree of certainty 0 (meaning that it is
excluded) and 0.99 (meaning that it is almost sure). The
consulted physicians asserted that, in fact, the first and the
third rules above cannot be confirmed (e.g. 0.99 is a too high
degree) and therefore they have to be corrected or deleted
from the system.

Binary Rules

Most of the rules in CADIAG-2’s KB are binary (cf. Defi-
nition 9). By using the fragment ΣG

∼

cl of G∼ we show here
that SAT for the formalization of such rules can be checked
within classical logic.

Henceforth we denote by (ΣKB)at the formula represen-
tation for the binary rules of CADIAG-2. More precisely
(ΣKB)at consists of all formulas (cd), (c1), (me), (ao), (oc)
of ΣKB in which both A(x) and B(x) are atomic.

Lemma 14 (ΣKB)at is satisfiable in G∼ if and only if it is
satisfiable in classical logic.

Proof: If (ΣKB)at is classically satisfiable then it is satisfi-
able in G∼. For the converse direction, let vG∼ be an inter-
pretation in G∼ satisfying (ΣKB)at. We denote by {X ≺
Y } the set of all conjuncts of the form ∃x(A(x) ≺ B(x))
in (ΣKB)at. Assume that there are n such conjuncts. Let
(ΣKB)at \ {X ≺ Y } be (ΣKB)at in which we remove all

of them. (ΣKB)at \ {X ≺ Y } is in ΣG
∼

cl and therefore is
classically satisfiable by Theorem 7. Let vCL be an interpre-
tation in classical logic that satisfies (ΣKB)at \ {X ≺ Y }
and let D be its domain. By stepwise extending D with a
new domain element for each formula in {X ≺ Y } we con-
struct a classical interpretation vn

CL that satisfies (ΣKB)at.
Let v0

CL = vCL and

(ΣKB)at
0 = (ΣKB)at \ {X ≺ Y }

Assume to fix ideas that at step i (i = 1, . . . , n) we are deal-
ing with the conjunct ∃x(A(x) ≺ B(x)). Let

(ΣKB)at
i = (ΣKB)at

i−1 ∪ {∃x(A(x) ≺ B(x))}.

Consider the interpretation vG∼ of G∼ that satisfies (ΣKB)at

and take an element d∼ in the domain of vG∼ that makes
true the formula ∃x(A(x) ≺ B(x)), that is for which
vG∼(A(d∼)) < vG∼(B(d∼)). vi

CL is defined as follows:

1. we add a new element di to the domain D ∪
{d1, . . . , di−1} of the classical interpretation vi−1

CL satis-

fying (ΣKB)at
i−1

2. we assign the following values to each atomic formula F
in (ΣKB)at:

vi
CL(F (d)) = vi−1

CL (F (d)) for all d ∈ D∪{d1, . . . , di−1}

(i.e., vi
CL and vi−1

CL coincide for the domain elements in
common) and

vi
CL(F (di)) =

{
0 if vG∼(F (d∼)) ≤ vG∼(A(d∼))

1 otherwise,

Clearly vi
CL satisfies ∃x(A(x) ≺ B(x)). Observe, that for

all atomic formulas C and D, if vG∼(C(d∼)→D(d∼)) = 1
then also vi

CL(C(di)→D(di)) = 1 and if vG∼(¬C(d∼) ∨
¬D(d∼)) = 1 then also vi

CL(¬C(di)∨¬D(di)). It is there-

fore easy to see that vi
CL satisfies (ΣKB)at

i .
The interpretation vn

CL obtained at the final step satisfies

(ΣKB)at
n , that coincides with (ΣKB)at.

�

Proposition 15 If (ΣKB)at is unsatisfiable in classical
logic then there is no set of patients that models CADIAG-2’s
KB.

The satisfiability check of (ΣKB)at was implemented using
Prover9 and Mace4, as in the case of ΣKB

−
. We found ten

groups of inconsistent rules (one of them was already found
while checking the satisfiability of ΣKB

−
). As an example

we present here a group of unsatisfiable rules:

〈S1017, D013, 1.0, 0.0010〉
〈D013, D011, 1.0, 0.0010〉
〈S1017, D011, 0.1, 0.2〉

If we assign the value 1 to S1017 then, using the first two
rules, the system infers the value 1 for both D013 and
D011. The third rule proposes instead the value 0.1 for
D011. Though the third rule does not influence the final
result (max{1, 0.1} = 1), its soc does not seem to be cor-
rect. Indeed the consulted physicians asserted that the right
value for soc in this rule should be 1; it is very likely that a
typing error occurred.

Final Remark

The satisfiability check performed over the two sets of for-
mulas ΣKB

−
and (ΣKB)at representing CADIAG-2’s KB al-

lowed the detection of 10 groups of erroneous rules. Notice
that

380

• The restriction (res1) in ΣKB
−

leaves out from our inves-
tigation 25 rules, out of the (more than) 20.000 rules in
CADIAG-2’s KB. Moreover, due to the restriction (res2)
ΣKB

−
does not capture all the features of CADIAG-2’s

rules.

• By restricting to binary rules (i.e. considering (ΣKB)at),
63 rules are left out from our investigation. Observe that
due to the use of the (derivable) connectives ”at least n
out of m” and ”at most n out of m”, some of the re-
maining rules turn out to be rather complex. Indeed when
expressed in disjunctive normal form, the antecedents of
these rules can contain up to 30.000.000 disjuncts and
each disjunct consists of 16 literals.

We believe that a satisfiability check of ΣKB might allow the
discovery of further errors in the knowledge representation
of CADIAG-2. This check should be feasible, in view of our
conjecture that SAT in G

∼ of formulas of the form

∧
∃xPi(x) ∧

∧
∀xPj(x)

is decidable, where Pi(x) and Pj(x) are monadic and
quantifier-free formulas of G∼; our future work include the
design of suitable tools to perform this check. Alternative
formalizations of CADIAG-2’s rules will be also consid-
ered. E.g., based on a suitable adaptation (generalization)
of the Kripke-Kleene semantics as, e.g., in (Straccia 2006).
Such formalizations might capture different aspects of the
system’s rules.

5. Acknowledgments

This research was supported by the Vienna Science and
Technology Fund (WWTF) Grant MA07-016.

References

Adlassnig, K.-P.; Kolarz, G.; Scheithauer, W.; and Grabner,
G. 1986. Approach to a hospital-based application of a med-
ical expert system, Med. Inform. 11: 205–223.

Adlassnig, K.-P.; and Kolarz, G. 1986. Representation
and semiautomatic acquisition of medical knowledge in
CADIAG-1 and CADIAG-2, Computers and Biomedical
Research 19: 63–79.

Adlassnig, K.-P.; Kolarz, G.; Scheithauer, W.; Effen-
berger, H.; and Grabner, G. 1985. CADIAG: Approaches to
computer-assisted medical diagnosis, Comput. Biol. Med.
15(5): 315–335.

Baaz, M. 1996. Infinite-valued Gödel logics with 0-1-
projections and relativizations. In Proceedings Gödel 96.
Kurt Gödel’s Legacy. LNL 6, 23–33, Berlin: Springer-
Verlag.

Baaz, M.; Ciabattoni, A.; and Preining, N. 2009. SAT in
Monadic Gödel Logics: a borderline between decidability
and undecidability. In Proceedings of WOLLIC 2009. LNAI
5514: 113–123.

Baaz, M.; Preining, N.; and Zach, R. 2007. First-order Gdel
logics. Annals of Pure and Applied Logic 147: 23–47.

Ciabattoni, A.; and Vetterlein, T. 2010. On the (fuzzy) logi-
cal content of CADIAG-2. Fuzzy Sets and Systems. To ap-
pear; online doi: 10.1016/j.fss.2009.09.011

Dunn, J.M.; Meyer, R.K. 1971. Algebraic completeness re-
sults for Dummett’s LC and its extensions. Z. Math. Logik
Grundlagen Math 17: 225–230.

Esteva, F.; Godo, L.; Hájek, P.; and Navara. M. 2000. Resid-
uated fuzzy logics with an involutive negation. Archive for
Mathematical Logic 39(2): 103–124.

Flaminio, T.; and Marchioni, E. 2006. T-norm-based log-
ics with an independent involutive negation. Fuzzy Sets and
Systems 157(24): 3125–3144.

Hájek, P. 1998. “Methamatematics of Fuzzy Logic”,
Kluwer.

Janssen, J.; Schockaert, S.; Vermeir, D.; De Cock, M. 2009.
General Fuzzy Answer Set Programs. In Proceedings of
WILF 2009, LNCS 5571: 352–359.

Lifschitz, V.; Pearce, D.; and Valverde, A. 2001. Strongly
Equivalent Logic Programs. ACM Transaction on Compu-
tational Logic 2(4): 526–541.

Łukasiewicz, T. 2008. Fuzzy Description Logic Programs
under the Answer Set Semantics for the Semantic Web. Fun-
damenta Informaticae 82(3): 289–310.

Mateis, C. 1999. Extending Disjunctive Logic Programming
by T-norms. In Proceedings of LPNMR 1999. LNCS 1730:
290–304.

McCune, W. Prover9 and Mace4. http://www.cs.

unm.edu/˜mccune/prover9/. (Accessed 9th of Sept.,
2009)

Moser, W.; and Adlassnig, K.-P. 1992. Consistency check-
ing of binary categorical relationships in a medical knowl-
edge base, Artificial Intelligence in Medicine 8: 389–407.

Rogers, H. 1956. Certain logical reduction and decision
problems. Annals of Mathematics 64: 264–284.

Straccia, U. 2006. Query Answering under the Any-World
Assumption for Normal Logic Programs. In Proceedings of
KR-06, 329–339, AAAI Press.

Straccia, U. 2008. Managing Uncertainty and Vagueness in
Description Logics, Logic Programs and Description Logic
Programs. In Reasoning Web, 4th International Summer
School, Tutorial Lectures. LNCS 5224: 54–103.

Takeuti, G.; and Titani, T. 1984. Intuitionistic fuzzy logic
and intuitionistic fuzzy set theory. J. of Symbolic Logic 49:
851–866.

Visser, A. 1982. On the completeness principle: a study of
provability in Heyting’s Arithmetic. Annals of Math. Logic
22: 263–295.

381

