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Abstract 

In this work, we perform experimental evaluation of different 
image parameters, from the perspective of large scale content
based discovery of solar phenomena in NASA images.  Many of 
the recently published papers, often from different areas of 
application (e.g. medical, military images), describe different 
parameters for image recognition and state high quality of the 
generated results. Overwhelmed with the number of proposed 
image parameters, and concerned with their practical applicability 
to large scale solar data analysis, we decided to perform our own 
comparative analysis of these parameters. Because of the lack of 
broadly accepted Solar Images benchmark data sets, in this paper 
we introduce our own benchmark created using solar images 
registered during the TRACE mission. Using the first solar 
domain specific benchmark data set that contains multiple types of 
phenomena, we investigate the correlation of different image 
parameters and their importance from the perspective of 
distinguishing between different types of solar phenomena. In this 
paper, we present recommendations on the image parameters that 
perform adequately for the solar data. 
 

1 Introduction 
 

In this work, we present the first step toward the ambitious 
goal of building a Content Based Image Retrieval (CBIR) 
system for the Solar Dynamics Observatory (SDO) mission 
[25]. Our motivation behind this work is that based on the 
amounts of data that the SDO mission will be transmitting. 
Hand labeling of these images would be an impossible task.    
     The SDO with its Atmospheric Imaging Assembly 
(AIA) is expected to generate at least one set of eight 4096 
pixels x 4096 pixels images every 10 seconds. This will 
lead to a data transmission rate of 2.1*108 bits per second 
(i.e. approx. 700 Gigabytes/day) only from the AIA 
component (the entire mission is expected to be sending 
about 1.5 Terabytes of data per day, for a minimum of 5 
years) [25].  There have been several successful CBIR 
systems for medical images [9] as well as in other domains 
[7]; none of them, however, have dealt with the volume of 
data that the SDO mission will generate. 
     We decided to take a systematic approach to our work 
and start with the creation of a benchmark data set that 
includes multiple types of solar phenomena images, all in a 
balanced distribution. Many of the benchmarks published in 
the solar physics community reflect interests of individual 
physicists, who tend to specialize in one type of 

phenomena. To our best knowledge, our benchmark data set 
is the first one that spans eight types of phenomena. Since 
the SDO mission has not launched yet, we used images 
from the TRACE repository to create our data set. These 
images feature a similar format to the ones the SDO 
mission will generate. 
     By segmenting our images we can better identify areas 
that present solar activity. Instead of analyzing the whole 
image, this will also make the recognition process more 
rotation-resistant. SDO images will have a resolution of 
4096 x 4096 pixels and will be “Full Disk” (a.k.a “Full 
Sun”), so we could not risk extracting the image parameters 
of the whole image without taking into consideration that 
the solar phenomena only occurs in part of the image and 
the rest of the image data will be very similar to images 
with no solar activity, labeled in our data set as “Empty 
Sun”.  
     We extract image parameters for individual grid cells 
believing that individual types of solar activity will present 
different values for them. The majority of our feature 
parameters are texture-based and selected based on 
previous work [1, 16] that showed promising results when 
they were applied to solar images. We are also testing other 
parameters that have been used in previous research [9], for 
images in other domains. One of the main goals of this 
work is to determine which image parameters we can safely 
remove while maintaining high quality parameter-based 
representation of original solar images.  
     We decided to start our work on the CBIR system by 
investigating the correlation of extracted image parameters.  
Our decision behind using a correlation comparison is 
based on the premise that we can achieve dimensionality 
reduction by finding strongly correlated (i.e redundant) 
image parameters. The use of statistical analysis seems to 
be more accepted within the astrophysics community than 
heuristics and supervised dimensionality reduction 
techniques. The correlation based approach was also a 
starting point in the development of CBIR systems for other 
domains [9]. 
     Our goal of publishing this work is to obtain valuable 
feedback from the community, especially from 
astrophysicists using image parameters other than the ones 
presented. We are looking forward to building new 
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collaborations with domain experts that are working on 
identifying individual solar phenomena, and see what else 
we can add to our benchmark data set and the CBIR system 
in order to better serve its purpose. 
 

2 Background 
 

2.1 Activity in the solar community 
Automatically detecting individual phenomena in solar 
images has become a popular topic in recent years. 
Zharkova et al. [32] discuss several methods for identifying 
phenomena in solar images including artificial neural 
networks, bayesian interference, and shape correlation and 
analize five different phenomena: sunspots, inference, 
plage, coronal mass ejections, and flares. Automatic 
identification of flares, on the SDO mission, will be 
performed by an algorithm created by Christe et al. [6] 
which works well for noisy and background-affected light 
curves. Filament detection for the SDO mission will be 
implemented using the “Advanced Automated Filament 
Detection and Characterization Code” [2]. This algorithm 
goes beyond the typical filament identification; it 
determines its spine and orientation angle, finds its 
magnetic chirality (sense of twist), and tracks it from image 
to image for as long as they are visible on the solar disk. As 
for the coronal jet detection and parameter determination 
algorithms, they will work on data cubes covering a box 
enclosing the bright point and extending forward in time. 
SDO methods for determining the coronal jet parameters 
are described in detail in [23]. Oscillations on the SDO 
pipeline will be detected using algorithms presented in [8] 
and [19] that consist of wavelet transform analysis. In order 
to detect active regions, the SDO pipeline will use the 
Spatial Possibilistic Clustering Algorithm (SPoCA). This 
algorithm produces a segmentation of EUV solar images 
into classes corresponding to active region, coronal hole 
and quiet sun.  
     As we can clearly see, the majority of currently popular 
approaches deal with the recognition of individual 
phenomena and a few of them have demanding 
computational costs. Not until recently, Lamb et al. [16] 
discussed creating an example based Image Retrieval 
System for the TRACE repository. This is the only attempt 
we are aware of that involves trying to find a variety of 
phenomena, with expectation of building a large-scale 
CBIR system for solar physicists. 
 

2.2 Image parameters  
Based on our literature review, we decided that we would 
analyze some of the most popular image parameters used in 
different fields such as medical images [4, 9, 13, 14], text 
recognition [31], natural scene images [5, 10, 15, 22], 
traffic images [30], and texture images [18, 20, 27]. As a 
common denominator, the usefulness of all these image 
parameters have shown to be very domain dependent. 
     The ten image parameters that we extracted are: the 
Mean intensity, the Standard Deviation of the intensity, the 

Third Moment and Fourth Moment, Uniformity, Entropy, 
and Relative Smoothness, Fractal Dimension [24], and two 
Tamura texture attributes: Contrast and Directionality [26]. 
All of the attributes above can be extracted from the images 
quickly - an important aspect when dealing with large sets 
of solar images.  
     Our decision on dropping computationally expensive 
image parameters comes our previous work [1] and the fact 
that we will have to process data in almost real time when 
the SDO mission is launched (i.e. the rate of eight 
4096x4096 images per every 10 seconds), so we will have a 
very small amount of time to be able to extract all the image 
parameters. 
 

3 Approach 
 

3.1 Benchmark data set creation 
Our data set was created using the Heliophysics Events 
Knowledgebase (HEK) portal [12] to find the event dates. 
Then we retrieved the actual images using the TRACE Data 
Analysis Center’s catalog search [28]. The search extends 
into the TRACE repository as well as other repositories. To 
make all images consistent, we filtered out all results that 
did not came from the TRACE mission. Table 1 provides 
an overview of our data set. All images selected have an 
extent label of “Partial Sun” (were taken from a section of 
the sun). 
      In the process of creating our data set to analyze 
parameters for image recognition, we stumbled upon 
several problems when trying to balance the number of 
images per class. First, we found that several phenomena do 
not occur as often as others, making it harder to balance the 
number of images between individual classes. The second 
issue is that several phenomena can be sighted and reported 
in different wavelengths, for our benchmark we selected the 
wavelengths that contained the largest number of hand 
labeled results provided by HEK [12] contributors. Finally, 
noticed that some of the retrieved had different (768x768) 
resolution than the most common 1024x1024. Since the 
resizing did not modify their histograms, we decided to 
increase the resolution of those few images, so our entire 
benchmark data set could be processed in the same manner. 
     All events retrieved were queried within the 99-11-03 to 
08-11-04 date ranges. As you can see from the table 1, for 
the 16 events searchable by HEK, we had to reduce the 
number of events to 8, due to the limited number of 
available occurrences of the remaining types of phenomena, 
and poor quality of images available in some of the data 
catalogs. The current selection of classes was solely based 
on the number of images available, and the wavelengths in 
which the images where available. We wanted to be sure 
that our benchmark data set has equally frequent classes in 
order to be sure that our results are not skewed towards the 
most frequent phenomena. For the events that occurred only 
a few times, but during a prolonged period of time, we have 
selected a few different images within that time range to 
complete our goal of 200 images per event class.  
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Table 1: Characteristics of our benchmark data set [33] 
Event 
Name 

# of 
images 
retrieved 

Wave
length 

Resolution (count) HEK 
reported 
events 

Active 
Region 

200 1600 768x768 (200) 200+ 

Coronal 
Jet 

200 171 1024x1024 (155) 
768x768 (45) 

25 

Emerging 
Flux 

200 1600 768x768 (200) 12 

Filament 200 171 1024x1024 (127) 
768x768 (73) 

45 

Filament 
Activation 

200 171 1024x1024 (200) 27 

Filament 
Eruption 

200 171 1024x1024 (49) 
768x768 (151) 

53 

Flare 200 171 1024x1024 (64) 
768x768 (136) 

200+ 

Oscillation 200 171 1024x1024 (50) 
768x768 (150) 

3 

     In the end of this step, we have a benchmark data set of 
1,600 images with 200 images per event class. The 
benchmark data set in its original format is available to the 
public via Montana State University’s Server [33]. Because 
of promising results obtained during our preliminary 
investigation [1] and the work of other members of our 
team [16], we chose to segment our images using an 8 by 8 
grid for our image parameter extraction and labeling, 
resulting in 102,400 cells. For the labeling of our images, 
we used the HER VOEvent XML data that indicate the 
regions within the images where the events occur. We only 
labeled the grid cells that overlap with that region with the 
event name. All other grid cells not included within the 
region where labeled as “Empty Sun”. Despite different 
frequencies of labeled cells, we used even sampling 
methods when conducting our experiments. 
 
3.2 Image parameter extraction: 
Once our data set was completely formed during our first 
experiments, we noticed that few of the parameters we 
obtained from the literature needed to be discarded due to 
their extensive computational costs.  

 
Figure 1: Time needed to generate popular texture 
parameters for 102,400 cells in the entire benchmark data 
set [33]. 
 

     Please note that these image parameters are not 
exhaustive and there are a very large number of other 
parameters that we could have tested. We have selected our 
image parameters based on previous work in solar images 
[17] and other works listed in section 2.2. Since almost 

every day new image parameters are being published by 
professionals working in the field of image processing, 
testing everything would be a daunting task. One of our 
future goals is to add more parameters, and we are looking 
forward to obtaining recommendations from the solar 
community. 
 
 

 
Figure 2: One-to-one comparison between the query image 
(ql) cells against images from the benchmark cells (Xn). Cell 
1,1 will only be compared to the cell 1,1 and so on. 
 

3.3 Correlation-based evaluation of image parameters 
Automatic methods for image parameter selection have 
been proposed in [21, 29]. However, these automatic 
methods do not directly explain why features are chosen. 
The method proposed in [9] analyzes correlations between 
the values of the parameters themselves, and instead of 
automatically selecting a set of features, provides the user 
with information to help them select an appropriate set of 
features. In order to determine the usefulness of our 
features, we decided to utilize this approach, allowing us to 
determine which features are redundant. 
 

     To analyze the correlation between different image 
parameters, we evaluate the correlation between the 
Euclidean distances d(q,X) obtained for each image 
parameter of each of the images X from our benchmark 
given any query image q. For each pair of query image q 
and benchmark image X, we create a vector (d1(q,X), 
d2(q,X),...dm(q,X),....dM(q,X)) where dm(q,X) is the distance 
of the query image q to the benchmark image X for the mth 
image parameter, and M is the total number of image 
parameters. Then we calculate the correlation between dm
over all queries q = {q1,..., ql,...qL} and all images X = 
{X1,...,Xn,...,XN}. The M×M covariance matrix, denoted as 
Σij, of the dm is calculated over all N database images and all 
L query images as: 

             (1) 

with                                            (2) 

     By segmenting each of our images into 64 grid cells, the 
number of queries we have is equal to the number of grid 
cells. The grid cells are compared based on an exact one to 
one match (query(r,c) vs imageN(r,c) where r is row and c 
is column) within the images for each image parameter. 
Comparing one to all is very computationally expensive, 
since we would have to compare 64 cells in the query (per 
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image parameter), against the 64 cells in the images from 
our benchmark doing 64x64 comparisons per image 
parameter times the number of parameters. Figure 2 shows 
how the one-to-one grid cell comparison was performed. 
     Given the covariance matrix ∑ ij, we calculate the 
correlation matrix Rij. A high value rij means a high 
similarity between features i and j. This correlation matrix 
can then be analyzed to find out which of our parameters 
have highly correlated values and which do not. 
 

4 Experimental Results 
Based on the image parameter evaluation method outlined 
on section 3.3, in one scenario we randomly selected a 
query image from each class and analyzed the correlation 
between this image and the rest of the images of the same 
class in order to observe which image parameters are 
strongly correlated and which ones are not within the same 
class. In the second scenario, we analyzed the correlation 
between the query images and the rest of the images of the 
same wavelength from all other classes in order to observe 
which image parameters feature similar correlation to the 
rest of the classes than to the same class. 
     We believe that the intra-class correlation (the first 
scenario above) should be of interest for astrophysics 
specializing in individual types of phenomena (allowing 
them to not be concerned with the extraction of image 
parameters that are highly correlated), whereas inter-class 
correlation (the second scenario) interested us the most. 
     Since Active Regions are some of the most 
distinguishable classes to discover in our benchmark data 
set and they are also one of the basic indicators of solar 
activity occurrence, we decided to start our investigation by 
analyzing the correlations between query images of this 
class.  

 
Figure 3: Average correlation map for the Active Region 
class in the one image as a query against the same class 
scenario (intra-class correlation). 
 

     From figure 3, we can clearly see two image parameters 
that are weakly correlated against pretty much every other 
parameter: Fractal Dimension and Tamura Directionality. 
In the strongly correlated section we have: Entropy, 3rd 
moment and 4th moment with Uniformity and RS, 
Uniformity with RS and Tamura Contrast with Standard 

Deviation and Mean. Due to the paper size limitations, we 
only present one correlation map for one of the 8 classes 
that we analyzed. More experimental results and an 
extended version of this work can be found at [33].  
     Since the correlation differences are not that visible from 
the correlation maps, we decided to use Multi Dimensional 
Scaling (MDS) [3] to better visualize our correlations. 
Close parameters in MDS maps indicate strong correlation 
and the more distant they are the weaker their correlation. 
For all the MDS maps we replaced the class name with its 
corresponding number (as seen in figure 3). 

 
Figure 4: Multi Dimensional Scaling of correlation map 
from Fig. 3. 
     As we can see from the multi dimensional scaling maps 
in figure 4, it is easier to identify clusters of highly 
correlated image parameters (their numbers are 
overlapping), and the less correlated parameters can be 
found on the edges of the map. 
     Based on the correlation maps and the multi dimensional 
scaling maps, we were able to perform a wide variety of 
experiments using classifiers in order to determine if we 
could attempt any dimensionality reduction to save our 
storage space and computing costs. Table 2 presents three 
different experimental scenarios that we performed for 
continuing our investigation on the Active Region class.  
 
Table 2: Name of the experiment and the settings used 

Name Experiment Settings 
Exp 1 Original ten image parameters 
Exp 2 Removing 3 uncorrelated parameters: Fractal 

Dimension, Tamura Directionality and 
Contrast (numbers 8,9,10 in figures 3 and 4) 

Exp 3 Removing 3 parameters that are highly 
correlated to others: Standard Deviation, 
Uniformity and Tamura Contrast (numbers 
3,6,10 in figures 3 and 4) 
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     We selected two linear classifiers, Support Vector 
Machines (SVM) and Naïve Bayes, as well as one decision 
tree based classifier, C4.5. We also used Adaboost on our 
best performing classifier in order to improve our results 
(denoted as ADA C45 in Tab. 3). For our experiments with 
the classifiers, we used the standard 10 fold cross 
validation, with an even distribution of labeled cells. In 
order to achieve this we took the minimum amount of 
labeled cells for all classes, in data set Emerging Flux has 
1,552 instances, and selecting randomly that amount of 
labeled cells from images of the other classes. This gave us 
a total of 13,968 instances to work on (exactly 1,552 per 
each of the 9 labels).  
 
Table 3: Percentages of correctly classified instances by our 
selected classifiers 

 
Naïve 
Bayes SVM C45 

ADA 
C45 

Exp 1 31.65% 40.45% 65.60% 72.41% 

Exp 2 28.59% 34.84% 59.26% 63.86% 

Exp 3 33.23% 39.50% 63.55% 69.49% 
 
     As you can see from table 3, the switch from linear 
function based classifiers (Naïve Bayes and SVM) to 
decision tree based classifiers provided a considerable 
improvement. Here we find that the behavior of our data 
from the image parameters is better modeled using a 
decision tree like structure rather than a linear combination 
of the features. 
     Exp 2, in table 3, shows the accuracy decreases when we 
remove uncorrelated image parameters, and that these 
parameters are probably some of the most useful ones for 
our Image Retrieval task. Since by removing the 
parameters: Fractal Dimension, Tamura Directionality and 
Contrast we decrease our classification percentage, we can 
conclude that we should leave them for future experiments. 
     Exp 3, on table 3, shows that if we remove the 3 
parameters that are strongly correlated to some of the other 
parameters that were kept in our data space we can almost 
maintain our original accuracy.  
 

5 Conclusions 
Because of the correlation analysis and the classification 
results, we can conclude that we can safely (i.e. without 
significant decrease in the quality of our image recognition 
system) remove up to 30% of our proposed image 
parameters and still achieve very similar classification 
results. This will let us reduce data dimensionality and 
storage space and computational costs for our system.  
     By analyzing both correlation maps and MDS maps for 
the rest of the classes (not presented here, but available on-
line [33]), we can determine which image parameters can 
be removed for each class. We believe that these results are 
very useful for solar researchers, who usually specialize in 
one type of phenomena. Publication of these maps will 
allow any specialists to determine which image parameters 

are more useful for them if they are trying to focus on 
recognition of a certain class.  
 

6 Future work 
In this work we presented results for one class of 
phenomena. However, exhaustive experimentation for this 
and the remaining classes contained in our data set has been 
performed, and the Correlation and MDS maps can be 
found on [33]. We are still working on adding more image 
parameters to our vector, and we plan to analyze them in 
the same manner as presented here in order to determine 
their importance to our task.  
     Like we mentioned before, by adding more image 
parameters to evaluate, we will be able to expand the work 
presented in this paper and will be able to provide better 
recommendations in selecting the best combination of 
image parameters for classification purposes.  
     Finally, we are working on adding more classes to our 
benchmark and increasing the number of images in 
different wavelengths. If there are any other repositories of 
benchmarks for a particular class not listed in this work we 
would gladly appreciate information about them from the 
readers, so we could incorporate them to our benchmark 
data set and run our experiments with the new data. This is 
an on-going process that we expect will help us achieve our 
goal of constructing a successful CBIR system for the SDO 
mission. We plan to publish updates on our work in [33]. 
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