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Abstract

Reactive methods for controlling intelligent agents have
proven to be a very strong alternative to planning meth-
ods, especially in areas such as robotics and game agents,
where real-time performance is critical. Despite this suc-
cess, coordinating teams of reactive agents can be a non-
trivial problem. In this work, we present our initial devel-
opment of a novel method for coordinating reactive agents
using behavior-based control by transferring layers between
different agents.

Introduction

Reactive control methods provide efficient and robust alter-
natives to planning for agent control. Behavior generated
by reactive methods is generally less optimal than what can
be achieved through planning, but in many cases, speed is
more important than optimality. Unfortunately, coordinat-
ing teams of reactive agents can still be difficult.

Several qualities of game agents makes the use of light-
weight reactive methods appealing. First, the action space of
the capabilities of a particular agent at a particular moment
in time may differ based on the objects available to it (the
agent’s inventory). Second, agents have a relatively short
life-span, making mistakes in task allocation less expensive.
Finally, while game agents must follow the dynamics of their
particular game environment, they are not physically em-
bodied, and generally are executed on the same computer
and must share system resources with each other.

Our method of transferring individual components of a
behavior specification from one agent to another has been
successful in initial tests in our game environment. In this
paper we describe the basics of our reactive teaming ap-
proach and briefly discuss the complexity of our teams.

Background

Much of the research in multi-agent planning focuses on
providing near-optimal task assignments for teams. Many
different approaches have been taken to finding near-optimal
solutions for team coordination, including planning, auc-
tions, and free-market methods (Brumitt and Stentz 1996;
Gerkey and Matarić 2002; Kalra et al. 2005).
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Several different reactive architectures are commonly
used in games, including finite state machines, behav-
ior trees, and subsumption architecture (Isla 2005; Brooks
1986). We focus on behavior-based control due to the sim-
plicity of the representation and its inherent parallelism.
Behavior-based control is a generalization of the subsump-
tion architecture with a less restrictive model (Matarić
1992). Subsumption-based agents are composed of multi-
ple behavior layers organized in a prioritized list, with rules
governing how layers interact. We use BEHAVEngine, a
behavior-based control AI engine for game agent control
(Heckel, Youngblood, and Hale 2009). BEHAVEngine pro-
vides a hierarchical behavior-based control framework, in-
cluding a library of pre-defined behaviors that can be com-
posed into agent controllers at run-time through agent spec-
ification files.

Method

Our method allows the AI designer to specify teaming
agents as normal standalone agents with minimal additional
information required. Layers in the behavior-based con-
trol specification must be tagged as transferable or non-
transferable. Additional information can be added, such as
a normalized priority to be used when deciding where the
layer should be placed. Behaviors must also be tagged with
some basic metadata specifying the requirements for the be-
havior to run successfully, such as items that the receiving
agent must possess and actions it must be able to perform.
In addition, only one high-level layer may be transferred at
a time, though this may be a complex hierarchical layer in-
ternally composed of multiple layers.

Agents must request a layer transfer from another agent.
If one agent, Alice, is seeking an additional layer from Bob,
it requests that Bob send it a layer. Bob then may either
reject the request because it has no transferable layers avail-
able, or send a behavior layer. Alice then must confirm the
transfer, either accepting or rejecting the layer.

Receiving a layer involves three major steps: locating
the appropriate place in the behavior hierarchy to place the
layer, moving the other layers and changing priorities as nec-
essary to accommodate the new layer, and finally inserting
the new layer and determining the new subsumption policy
for the layer.

Our current implementation uses a normalized priority

471

Proceedings of the Twenty-Third International Florida Artificial Intelligence Research Society Conference (FLAIRS 2010)



value to help determine where new layers should be placed.
The normalized priority defines the percent of layers that
should be below the new layer; for example, a priority of 0
means it should be the base layer, while 1.0 should be the
top layer.

If the new layer is to be placed somewhere other than the
base or top, the priorities of other layers must be adjusted
to avoid conflicts. We assume that adjacent layers will not
have identical priorities; this is not a substantial limitation
as such a situation is still allowable with a hierarchical layer.
The priorities of each layer then are evenly spaced, and the
new layer is placed in the appropriate position.

Finally, the new layer is inserted in the correct position
with a valid priority, and the subsumption policy is adjusted
automatically. For this work, we assume that the layer will
subsume any lower layers that have the same output effector
type, and allow others to run.

Reactive teaming requires the addition of a special meta-
layer to each agent; this layer monitors the activity of lower
layers. The control layer is placed as the highest priority
layer of the agent, but runs before other layers rather than
simultaneously. The output of the layer is limited to re-
quests for transfers, behavior transfer offers, and transfer re-
sult confirmation.

Evaluation

The system described above was implemented as an exten-
sion for BEHAVEngine, and evaluated with simple scenar-
ios as case studies. The scenario included four blank agents
and a fully specified agent with behaviors describing a num-
ber of patrol routes in the game environment. The blank
agents started up, requested behaviors from different agents
until the fully specified patrol agent transferred patrol routes.
They then activated the given behavior. Communication was
treated as independent of distance, so the agents were able
to immediately receive behaviors without finding the fully
specified agent initially.

An additional test scenario created a single garbage-
cleaning robot with behaviors to wander through the world
and pick up objects. Several blank agents (from 4 to 50)
were added that wandered the world, and in this case, would
request behavior transfers only when within range of one
another. Once a blank agent received the garbage-cleaning
behavior, it would continue to wander, and transfer this be-
havior to other agents if requested.

For a set of n agents that can perform m behaviors, the
overall complexity of the team specification is n ∗ m for
fully specified agents, instead of n+m for reactive teaming.
This reduces the memory requirements per-agent. Runtime
complexity is also reduced, as agents have a fewer behaviors
to choose from.

Centralized methods for task assignment require that
agents estimate their ability to perform a task. This gener-
ates n∗m scores to be considered. In contrast, reactive team-
ing requires only constant time interactions between pairs of
agents. The task assignment procedure only delays the agent
that is requesting a behavior, rather than all agents. In the
worst case, it will take O(n) game ticks to assign viable be-

haviors to all agents, as some agents may only find a viable
behavior on their final transfer request.

Agent design complexity will also be minimal. Reactive
teaming allows the creation of a small number of agents with
all behaviors, which are combined in a scenario with blank
agents. The few fully specified agents need no additional in-
formation added apart from a single bit per layer specifying
whether or not it may be transferred. Additional options are
not required, but can be used to adjust how often layers can
be transferred.

Conclusions and Future Work

For many applications, including games, reactive methods
provide robust, efficient techniques for controlling agents.
Team coordination can benefit from reactive methods as
well, and we have presented a viable approach for reactive
teaming using behavior-based control. Our technique has
been implemented as part of the BEHAVEngine AI engine,
and initial tests have proven successful.

Though the initial work is promising, the presented tech-
nique is limited in its scope. Several choices were deliber-
ately kept simple, using naı̈ve approaches. Having created
a proof of concept for layer transfers, further work will ad-
dress these shortcomings. We plan to improve the process
that chooses when to request a new layer, where it should be
placed, and what layer should be transferred when a request
is received. All of these will take into account more about
the current status of the agent, as well as user-definable pa-
rameters to adjust how the agent should behave in a team.
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