
Learning Textual Graph Patterns to Detect Causal Event Relations

Bryan Rink, Cosmin Adrian Bejan, and Sanda Harabagiu
Human Language Technology Research Institute

The University of Texas at Dallas
Richardson, Texas 75080, USA

{bryan,ady,sanda}@hlt.utdallas.edu

Abstract

This paper presents a novel method for discovering causal re-
lations between events encoded in text. In order to determine
if two events from the same sentence are in a causal relation
or not, we first build a graph representation of the sentence
that encodes lexical, syntactic, and semantic information. In
a second step, we automatically extract multiple graph pat-
terns (or subgraphs) from such graph representations and sort
them according to their relevance in determining the causal-
ity between two events from the same sentence. Finally, in
order to decide if these events are causal or not, we train a bi-
nary classifier based on what graph patterns can be mapped to
the graph representation associated with the two events. Our
experimental results show that capturing the feature depen-
dencies of causal event relations using a graph representation
significantly outperforms an existing method that uses a flat
representation of features.

1. Introduction

Automatic discovery of causal relations between textual
events is a central task for various applications in Natural
Language Processing (NLP) that require some form of rea-
soning such as probabilistic reasoning (Narayanan 1997),
common sense reasoning (Mueller 2007), and question an-
swering (Girju 2003).

An example of a causal relation between two events is
expressed in the following sentence:

S1: We recognized the problem and took care of it.

This example encodes an ENABLEMENT relation, which is a
special type of causal relation (in S1, the event recognized
enables the event took to happen). Moreover, causal rela-
tions are closely related with temporal relations that hold
between two events. For example, the ENABLEMENT rela-
tion corresponds to a BEFORE temporal relation (the event
took happens only after the event recognized happened).

Most existing approaches for discovering causal relations
train machine learning classifiers based on a flat represen-
tation of linguistic features. In this work, we propose a
methodology that captures the contextual information of a
pair of events by exploring various lexical, syntactic, and

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

semantic features as well as the dependencies that exist be-
tween these features. For this purpose, we encode the fea-
tures into a graph representation and cast the problem of
causal relation discovery for a given pair of events from the
same sentence into finding relevant graph patterns that cap-
ture the contextual information of the two events. This ap-
proach involves (i) how to determine which graph patterns
are representative for expressing the causal information be-
tween the two events, and (ii) how to set up a machine learn-
ing framework that learns for each event pair which of these
graph patterns decide if the events are causal or not.

The remaining part of this paper is organized as follows.
Section 3 describes the methodology for building graph
structures from text. Section 4 presents how graph patterns
can be extracted from these graph representations. Section
5 describes how graph patterns map back to a graph rep-
resentation corresponding to a given event pair. Section 6
describes the learning framework that decides whether an
event is causal or not based on the the extracted graph pat-
terns, Section 7 presents our experimental results, and fi-
nally, Section 8 discusses the most frequent errors made by
our system.

2. Previous Work

Most approaches to causal relation detection have focused
on a subset of the full set of causal relations in text. Al-
though events can be expressed as verbs or as nouns in a
nominalization, many existing systems only focus on one
or the other. Work on nominal causal relation detection has
been performed by Girju and Moldovan (2002) who detected
verb expression patterns of the form “noun - verb - noun”
and used constraints from WordNet to filter ambiguous oc-
currences. The SemEval 2007 Task 4 evaluation (Girju et
al. 2007) contained nominal causal relations as a subset.
The top system for CAUSE-EFFECT relations used an SVM
classifier on several lexico-semantic features including the
word stems and part of speech sequences between the nom-
inals (Beamer et al. 2007). The work in (Khoo, Chan,
and Niu 2000) used manually constructed dependency tree
patterns to detect causal relations in medical domain doc-
uments. Their approach provides high precision extraction
but requires manual effort to identify the patterns.

The problem of detecting causal relations between events
has been studied by Bethard and Martin (2008). They con-

265

Proceedings of the Twenty-Third International Florida Artificial Intelligence Research Society Conference (FLAIRS 2010)

sider the task of classifying whether, given two events that
belong to the same sentence, one event can be considered a
cause of the other. They train a classifier using surface fea-
tures, WordNet hypernym and lexical files, as well as syntac-
tic paths, and a scoring feature for the events based on web
counts. We performed our evaluation on the same corpus
used by Bethard and Martin (2008) to compare our struc-
tured feature approach against their flat feature approach.

3. Textual Graphs
Patterns capable of simultaneously matching text on the lex-
ical, syntactic, and semantic level must utilize a represen-
tation that contains all of these types of information. Fur-
thermore, there must be a mechanism for matching those
patterns against an input text. To capture the syntactic and
semantic relationships encoded in text, we represent both the
text and the patterns in a graph representation as illustrated
in Figure 1(a). The textual graphs are built up from nodes
representing the tokens in a sentence, denoted :tok: in the
graph. The token nodes have links to other nodes represent-
ing linguistic features or relationships of that token, such as
the word, lemma, part-of-speech (POS), the root of its hy-
pernym hierarchy, and syntactic parse tree leaf for that to-
ken. In addition, the two events from the sentence that are to
be tested for a causal relationship, Event0 and Event1, have
links from the :tok: node to an Event node which links to ei-
ther Event0 or Event1. There are also next edges between the
POS nodes to enable capturing patterns that involve lexical
dependencies.

Semantic relationships can be added to the graphs as well.
For example, word sense disambiguation (WSD) can be in-
tegrated into the graphs by constructing a node for each
synset needed for each token. As can be seen in Figure 1(c),
each token node is then connected to the highest synset in
that token’s hypernymy chain. That node in turn is con-
nected to the next highest synset and so forth, with the node
for the exact sense detected coming last in the chain. This
allows for patterns that match on tokens at a high hypernym
level, or by including intermediate hypernyms, down to the
most specific sense level. The event nodes are arranged in a
similar general-to-specific structure for the same reason. We
can also assign to event nodes their corresponding semantic
roles. For instance, in Figure 1(a) we can add an edge rep-
resenting the semantic role AGENT between the node repre-
senting the textual expression We and the event recognized.

Although this work describes the automatic detection of
patterns, it is informative to examine the power of poten-
tial patterns. The text graph structure described above al-
lows for patterns that act as conjunctions on the features of
a token. For example, we could construct a pattern such
as [word:cause → :tok: → pos:VBP] to recognize the verb
form of the word cause rather than the noun form. This pat-
tern fragment could then be joined with others to form an
even more restrictive pattern. Looking at the patterns in this
way (i.e., as conjunctions of feature restrictions) is reminis-
cent of rule learning such as that in (Cohen 1996). One dif-
ference is that the patterns we propose can capture textual
dependencies (such as chains of POS) and also the structure
of syntactic trees.

The structure we chose for the graphs is influenced by
the patterns it enables, and also by the limitations of our
pattern finding approach. For example, to allow for more
generic and hence more powerful patterns, we could con-
nect the next edges between :tok: nodes rather than POS
nodes. However, increasing the powerfulness of the patterns
in this way significantly increases the search space of pos-
sible patterns, beyond the memory capacity of the machine
we ran the discovery algorithm on. Therefore connecting the
POS nodes with next edges is a compromise that still allows
some generality to be captured without generating too many
candidate patterns.

4. Pattern Discovery

This section describes how graph patterns (or subgraphs) are
extracted from a graph representation described in the previ-
ous section. Patterns are considered to match a target graph
if all nodes and edges in the pattern correspond to equiva-
lent nodes and edges in the target graph. Figure 1(b) shows
a possible pattern that could be matched against the sentence
in Figure 1(a). This pattern is in fact a subgraph of the graph
representation associated with the example previously pre-
sented in S1. This pattern will match in sentences whose
first event mention and the next token correspond to VBD
and DT part-of-speeches respectively. The knowledge of
whether or not this pattern matches a graph could be a useful
indicator of whether the event might be causal. We explain
in Section 6 how to use the presence of patterns within test
sentences as features for a classifier.

Patterns of the form described above could be derived in
several different ways, either manually constructed or au-
tomatically discovered. Many existing approaches, such as
(Hearst 1998) and (Khoo, Chan, and Niu 2000) use man-
ually constructed patterns. The textual graphs we describe
can encompass the patterns from these existing approaches.
For example, the use of sequences of words between named
entities could be accomplished by adding a next link be-
tween the word: nodes in the graph, and by adding named
entity nodes connected to the corresponding token nodes.
We consider our approach a generalization of the works that
automatically find patterns on sequences such as (Ravichan-
dran and Hovy 2002). Rather than matching only sequences
of words or paths in syntactic and dependency trees, we can
find patterns on full textual graphs.

In recent years there has been much research on effi-
cient detection of frequent subgraphs (Yan and Han 2002;
Nijssen and Kok 2005; Kuramochi and Karypis 2001).
While much of this research has focused on finding common
substructures among chemical compounds, the algorithms
can be used on arbitrary graphs, including the textual graphs
described above. We use an implementation of the gSpan
(Yan and Han 2002) frequent subgraph mining algorithm1

to find all subgraphs which occur in at least 5% of the causal
examples2 in the training corpus. This balances the number

1http://www2.informatik.uni-erlangen.de/

EN/research/ParSeMiS/index.html
2Using both causal and non-causal examples provides no sig-

nificant difference and increases run time.

266

(a) Graph example

(b) Basic pattern

tok

entity%1:03:00::

external body part%1:08:00::

body part%1:08:00::

part%1:17:00::

head%1:08:00::

(c) WSD graph example

Figure 1: An example text graph encoding syntactic information and a basic pattern, whose :tok: node matches the second :tok: node in the
graph. (c) shows how WordNet hypernymy information can be added to the graph structure.

of patterns discovered against the exponential growth in the
number of subgraphs. The CloseGraph (Yan and Han 2003)
algorithm is used to obtain only maximal patterns, where no
other pattern is a subgraph of any other pattern.

The gSpan algorithm finds all subgraphs which occur
in a collection of graphs more frequently than a thresh-
old called the minimum support. Since the total number
of subgraphs is exponentially large, gSpan uses a pruning
technique while searching the space of subgraphs. The al-
gorithm builds increasingly larger subgraphs from smaller
ones. The technique is based on the recognition that for any
subgraph which occurs frequently in a collection of graphs,
any larger graph containing that subgraph cannot occur more
frequently. This leads to an approach that first selects all the
subgraphs that have only one node and whose frequency is
above the minimum support. In the second step, these one-
node subgraphs are extended to 2-node subgraphs, while dis-
carding extensions whose frequency is below the minimum
support. This process continues iteratively until all the fre-
quent subgraphs are discovered.

Therefore, our approach for discovering patterns for
matching causal event relations consists of: (i) building
graph representations for all the sentences that contain
causal examples in the training set; and (ii) using gSpan to
detect the frequent patterns.

5. Pattern Matching

Since the frequent patterns were built from the training set,
we need to find a way for mapping those patterns onto the
graph representations from the test set. This is, in fact, the
graph homomorphism problem. Specifically, we need to test
for graph monomorphism (an injective homomorphism) be-
tween the extracted patterns and the test graphs, where each
node (and edge) in a pattern must map to a unique node (and
edge) in the test graph and two nodes (edges) in the pattern
cannot map to the same node (edge) in the test graph.

Although graph monomorphism is an NP-complete prob-
lem, for the size of the textual graphs considered this prob-
lem is computationally tractable. For pattern matching, we
cast the problem of graph monomorphism as a constraint sat-
isfaction problem and run a constraint satisfaction solver3to
determine satisfiability. As an optimization, we employ a
pre-filtering step to ensure that all the node and edge labels
from patterns are present in the test graphs.

6. Graph Classification

The approach to graph classification we use is based on rep-
resenting each sentence as a binary vector from the patterns
that match the sentence. Using the above pattern matching
technique, we are able to determine which patterns match
which sentences. For each sentence in the corpus, we con-
struct a binary vector in which the ith element of the vector
indicates whether the ith pattern matches that sentence or
not. These vectors then become the representation of each
sentence that we pass to an SVM classifier4, to detect causal
relations. Similar to Bethard and Martin (2008), we opti-
mize the F1 measure rather than accuracy by adjusting the
cost factor, j, of the SVM classifier. Using all the discovered
patterns generally leads to inferior results compared to rank-
ing the patterns first and only using the top k to construct the
binary vectors5.

Therefore, the patterns that come out of gSpan are ranked
according to their probability using the Fisher exact test of
how likely that pattern’s matches are given an assumption of
independence from the causal relation. For a 2x2 table this
probability is calculated as

p =
(a + b)!(c + d)!(a + c)!(b + d)!

n!a!b!c!d!

3
http://bach.istc.kobe-u.ac.jp/cream/

4SVMlight from http://svmlight.joachims.org/
5This effect is shown later in Figure 2

267

Match ¬ Match
Causal 18 189

¬ Causal 5 485

Table 1: Contingency table example for a pattern.

where the first row is <a, b>, the second row is <c, d>, and
n=a+b+c+d. Under this measure, lower scores are better
because they indicate that the counts were not likely to have
come from independent variables. Table 1 provides a con-
tingency table example for one of the discovered patterns.
As listed in the table, this pattern matches on causal sen-
tences 18 times and non-causal sentences only 5 times. Con-
sidering that there are more than twice as many non-causal
sentences than causal sentences in the training corpus, this
pattern is a significant indicator of a causal relation.

Since gSpan finds all patterns, many of the top patterns are
near-duplicates of each other. Patterns P1 and P2 provide a
simple example of this phenomenon.

P1: word:someone → :tok: → pos:NN

P2: word:someone → :tok: → lemma:someone

These patterns match on the exact same sentences and there-
fore using both of them in a classifier would not be produc-
tive. There are similar pairs of patterns where both match on
almost all of the same examples but with small differences.
To avoid these duplicate patterns, we employ a sequential
cover algorithm similar to the one described in (Thoma et
al. 2009). This is outlined in Algorithm 1.

Algorithm 1 Positive/Negative Sequential Cover

Input: Set of patterns P sorted by descending significance;
positive and negative training examples Tp and Tn, re-
spectively

Output: Ranked set of patterns R
R = ∅
while |Tp| ≥ 0 ∧ |Tn| ≥ 0 ∧ |P | > 0 do

p = first pattern in P
if p is causal and matches ≥ 1 graph in Tp then

Tp = Tp \ {g|g ∈ Tp is matched by p}
R = R ∪ {p}

else if p is non-causal and matches ≥ 1 graph in Tn

then
Tn = Tn \ {g|g ∈ Tn is matched by p}
R = R ∪ {p}

end if
P = P \ {p}

end while

In Algorithm 1, we consider a pattern to be either causal
or non-causal. Moreover, since approximately 30% of the
training sentences are causal, we consider a pattern to be
causal if more than 30% of its matches are causal. This al-
gorithm will discard those patterns that only match graphs
that have already been covered by at least one pattern pre-
viously ranked. To obtain a rank for the discarded patterns,
Algorithm 1 is run again on those patterns until all patterns
have been ranked. Once the patterns have been ranked, the
top k are used to create the binary vector assigned to each
sentence. Only these top k patterns are given to the classifier.

7. Experiments

We evaluated our system on a corpus annotated with event
causal relations described in (Bethard et al. 2008). This
corpus contains 1,000 sentences, where each sentence an-
notates two events in a causal or non-causal relation. The
event pairs from each sentence are expressed as verbs in
a conjunction since such occurrences are often temporally
or causally related. The experimental setup of our binary
classifier uses the same train/test split as used in (Bethard
and Martin 2008), which contains 697 and 303 sentences for
training and test splits respectively. To compare our system
with the system proposed by Bethard and Martin (2008), in
which the two major configurations of features correspond
to a syntactic and a semantic feature set, we also use a syn-
tactic and a semantic set of annotations in the graphs.

In our experiments, we build graph representations using
the following set of features:

– Word: The surface word (e.g., ran);

– POS: The part of speech (e.g., VBD);

– Parse: A syntactic parse tree as in Figure 1(a);

– Stem: The WordNet stem (e.g., run);

– VerbOcean: Semantic links between verbs taken
from VerbOcean (Chklovski and Pantel 2004), without
weights;

– Dep (Dependency parse)6: Each dependency link is repre-
sented by a node in the graph, with a directed edge coming
in to it from the source of the dependency, and a directed
edge leaving the node to the :tok: node for the destina-
tion of the dependency. An example can be seen from the
pattern in Figure 4;

– WSD: The hypernym chain for the senses from word
sense disambiguation (Mihalcea and Csomai 2005);

– FNType: Using the UTD-SRL semantic parser (Bejan and
Hathaway 2007), we extract for each event the semantic
frame it evokes;

– Tmp: Manually annotated temporal links from the corpus.

Configuration Patterns k j P R F1

Bethard & Martin Syntactic - - - 24 80 37.4
Bethard & Martin Semantic - - - 27 64 38.1

Word+POS+Parse 16377 1000 1.5 26 78 38.9
Word+POS+Parse+Stem 16415 1000 1.5 27 70 39.1

Word+POS+Dep 14800 200 5.0 26 70 38.3
Word+POS+Dep+VerbOcean 14811 200 3.0 29 59 38.8
Word+POS+Dep+FNType 14984 200 3.0 31 63 41.7
Word+POS+Dep+WSD 39341 400 3.0 33 61 42.9

Bethard & Martin All+Tmp - - - 47 59 52.4
Word+POS+Parse+Tmp 18464 10 1.5 51 66 57.5
Word+POS+Dep+WSD+Tmp 43275 10 1.5 52 66 57.9

Table 2: Comparison using different sets of annotations. k is the
number of top patterns passed to the classifier, and j is the cost ratio
used for the SVM. Patterns represents the total number of patterns
discovered.

As listed in Table 2, the system proposed by Bethard and
Martin (2008) achieves F-measures of 37.4 and 38.1 for the

6We use the Stanford dependency parser http://nlp.

stanford.edu/software/lex-parser.shtml

268

�
�j
k

10 100 200 300 400 500 1000 2000 5000 ∞

1 18.0 13.7 15.2 15.2 15.2 15.0 15.7 20.0 14.1 5.6
1.5 17.5 17.3 18.5 20.6 20.3 21.0 28.0 29.6 25.4 19.8

2 17.5 19.1 27.5 28.3 29.9 31.5 32.0 33.1 29.1 29.8
3 17.5 35.1 35.0 36.7 34.1 34.2 34.5 34.3 33.1 36.6
4 34.8 34.8 36.5 36.6 38.0 35.2 33.9 33.3 34.7 33.8
5 34.8 35.2 37.9 38.5 38.0 37.6 36.7 35.1 34.0 33.1
6 34.8 35.2 36.9 38.9 37.4 37.2 36.2 36.1 34.7 33.6
7 34.8 33.7 37.5 38.2 36.0 36.7 36.2 35.2 33.3 33.9
8 34.8 35.2 35.1 37.6 36.2 36.0 35.9 36.3 35.0 33.9

10 34.8 34.3 33.5 36.2 34.0 35.6 36.0 33.8 34.5 33.9
50 34.8 34.8 35.3 35.6 34.3 35.1 32.3 34.1 34.2 33.9

100k 34.8 34.8 35.3 35.6 34.3 35.1 32.3 34.1 34.2 33.9

Table 3: Values of F1 on the test set for various values j and k.

33

34

35

36

37

38

39

F
1−

m
ea

su
re

10 100 200 300 400 500 1000 2000 5000 ∞
k

j = 5
j = 6
j = 7
j = 8

Figure 2: F1 scores corresponding to Table 3.

syntactic and semantic feature sets respectively. We com-
pare these results against the results obtained by our sys-
tem using various sets of features. All the experiments per-
formed by our system use the automatic pattern discovery
and classification process outlined above. The scores shown
in Table 2 are the best scores achieved over a range of pa-
rameter choices. The two parameters are k, the number of
top patterns to use, and the cost factor j used by the SVM
to weight positive instances more. Training these parame-
ters using cross validation on the training set proved to be
difficult for several reasons. First, the distribution of causal
events is different between the training and test sets. The
training set consists of 29.7% causal relations, while only
21.5% of the relations in the test set are causal.

A further impediment is the amount of time required to
discover the patterns, especially across many folds where
the patterns have to be discovered for each fold. For these
reasons, we present the score for the best choice of pa-
rameters in Table 2 and show the full range of parame-
ter values and the scores obtained for those values on the
Word+POS+Parse model in Table 3. Figure 2 shows a
graphical representation of how the different parameter val-
ues affect the F1 score.

Table 2 compares the scores achieved for vari-
ous combinations of syntactic and semantic annotations

Figure 3: A highly ranked causal pattern that detects constructs
such as passive voice.

tok

pos: IN pos: DT

tok

dep:det

tok

abstraction%1:03:00:: relation%1:03:00

communication%1:03:00

social relation%1:03:00::

Figure 4: A semantic pattern detected by the system that looks for
a phrase involving some form of communication.

in the graph. We used the Word+POS+Parse and
Word+POS+Parse+Stem configurations as a comparison
against the syntactic and semantic feature sets used in
(Bethard and Martin 2008). These experiments indicate
that using an appropriate configuration of parameters, the
results achieved by our system outperform the results re-
ported in (Bethard and Martin 2008). When using only a
subset of their features in our graph representations, our sys-
tem achieves a higher score. The best results were obtained
by changing the parse tree with a dependency tree and us-
ing the word sense disambiguated hypernym chains, which
achieved an F1 score more than 4 points higher than the
existing system. The last three systems listed in Table 2
make additional use of a manually annotated temporal re-
lation type between the two events. The higher scores prove
that the temporal relations between causal events have a sig-
nificant role in discovering causal relations.

Figures 3 and 4 show some of the top discovered patterns.
These patterns are complex and detect structures in the text
that would be difficult for a human to choose a priori. The
pattern in Figure 3 shows a highly ranked pattern for the
Word+POS+Parse graphs. This pattern matches causal ex-
amples 14 times in the training set, but doesn’t match any
non-causal sentences. The most salient characteristic of this
pattern is that it will only match cases where a token with
the part of speech VBN (past participle) immediately fol-
lows a VBD token (past tense). The rest of the pattern posi-
tions this occurrence within three levels of VP nesting in the
parse tree. An example of a sentence from the training set
matched by this pattern is given in S2:

S2: Hells Angels was formed in 1948 and incorporated in
1966 .

For this sentence, the pattern captures the passive voice
verbal phrase, “was formed”, which is matched by

269

VBD→VBN.
Another high ranking pattern, taken from the

Word+POS+Dep+WSD graphs, is depicted in Figure 4.
One sentence on which this pattern can match is:

S3: Under the agreement, Westinghouse will be able to pur-
chase smaller combustion turbines from its Japanese part-
ner, and package and sell them with its own generators
and other equipment.

This is an example of an ENABLEMENT causal relation as
described in Section 1.. The pattern looks for a specific kind
of phrase containing a preposition followed by a determiner
followed by a word which is a hyponym of communication.
In the example, this matches on the expression “Under the
agreement”. Examples of other textual expressions this pat-
tern matched in the training set are: “[out] of the question”,
“In that decision”, “In the affidavits”, and “that the offer”.
These phrases might be indications that the sentence is re-
ferring to a chain of events, which would imply a causal
relation.

8. Error Analysis

A number of mistakes are made between statement events
and the things being stated. For instance, the best run incor-
rectly marks this sentence as causal: “Delmed said yester-
day that Fresenius USA would begin distributing the product
and that the company is investigating other possible distri-
bution channels.” The investigation is not causally related to
the fact that the company made a statement about it. A re-
lated sentence the system incorrectly marked as non-causal
is: “People have been seeing headline after headline after
headline and saying : ...” Here the event saying is caused
by the event seeing. The order of the saying events in these
two examples is different and is probably an important clue
for causality detection. We also hypothesize that there sim-
ply weren’t enough examples in the training set to learn this
order clue for saying events.

Another area of errors which could be alleviated with ad-
ditional data is cue phrases. As an example, the following
sentence was marked non-causal: “... they were not nec-
essary to prove historical points , failed the fair-use test
and therefore infringed copyright.” In this example, the
cue phrase therefore provides evidence that the events are
causally related. These cue phrases could either be learned
with additional training data or a list of such phrases could
be compiled and implemented as an additional annotation in
the graph structure to reduce the learning burden and amount
of training data needed.

9. Conclusion

This paper outlined a new approach for discovering causal
relations between events in text using graph patterns as fea-
tures to a classifier. This approach has the advantage that
feature combinations and textual structure are automatically
discovered rather than manually selected. This has the con-
sequence that adding a new feature to the textual graphs
could be equivalent to adding many flat features in a clas-
sical system, reducing the manual effort required to explore
various combinations. In addition, using a graph repre-
sentation to also capture the dependencies between features

shows that this approach achieves better results when com-
pared with a method that uses a flat representation on the
same set of features.

References
Beamer, B.; Bhat, S.; Chee, B.; Fister, A.; Rozovskaya, A.; and
Girju, R. 2007. UIUC: A knowledge-rich approach to identifying
semantic relations between nominals. In ACL SemEval07.

Bejan, C. A., and Hathaway, C. 2007. UTD-SRL: a pipeline ar-
chitecture for extracting frame semantic structures. In ACL Se-
mEval07, 460–463.

Bethard, S., and Martin, J. H. 2008. Learning semantic links from
a corpus of parallel temporal and causal relations. In ACL.

Bethard, S.; Corvey, W.; Klingenstein, S.; and Martin, J. H. 2008.
Building a corpus of temporal-causal structure. In LREC.

Chklovski, T., and Pantel, P. 2004. Verbocean: Mining the web for
fine-grained semantic verb relations. In EMNLP.

Cohen, W. 1996. Learning trees and rules with set-valued features.
In AAAI 1996, 709—716.

Girju, R., and Moldovan, D. 2002. Mining answers for causa-
tion questions. In Proc. The AAAI Spring Symposium on Mining
Answers from Texts and Knowledge Bases.

Girju, R.; Nakov, P.; Nastase, V.; Szpakowicz, S.; Turney, P.; and
Yuret, D. 2007. SemEval-2007 task 04: classification of semantic
relations between nominals. In SemEval07. ACL.

Girju, R. 2003. Automatic Detection of Causal Relations for Ques-
tion Answering. In ACL 2003 workshop on ”Multilingual Sum-
marization and Question Answering - Machine Learning and Be-
yond”.

Hearst, M. A. 1998. Automated discovery of wordnet relations.
WordNet: An electronic lexical database 131151.

Khoo, C. S. G.; Chan, S.; and Niu, Y. 2000. Extracting causal
knowledge from a medical database using graphical patterns. In
ACL, 336–343.

Kuramochi, M., and Karypis, G. 2001. Frequent subgraph discov-
ery. In IEEE International Conference on Data Mining.

Mihalcea, R., and Csomai, A. 2005. SenseLearner: Word sense
disambiguation for all words in unrestricted text. In ACL 2005.

Mueller, E. T. 2007. Modelling Space and Time in Narratives about
Restaurants. Literary and Linguistic Computing.

Narayanan, S. 1997. KARMA: Knowledge-based Action Represen-
tations for Metaphor and Aspect. Ph.D. Dissertation, University of
California, Berkeley.

Nijssen, S., and Kok, J. N. 2005. The gaston tool for frequent sub-
graph mining. Electronic Notes in Theoretical Computer Science
127(1):77–87.

Ravichandran, D., and Hovy, E. 2002. Learning surface text pat-
terns for a question answering system. In ACL.

Thoma, M.; Cheng, H.; Gretton, A.; Han, J.; Kriegel, H. P.; Smola,
A.; Philip, S. Y. L. S.; Yan, X.; and Borgwardt, K. 2009. Near-
optimal supervised feature selection among frequent subgraphs. In
SIAM Intl Conf. on Data Mining.

Yan, X., and Han, J. 2002. gSpan: graph-based substructure pattern
mining. In (ICDM’02).

Yan, X., and Han, J. 2003. CloseGraph: Mining closed frequent
graph patterns. In ACM SIGKDD, 286–295.

270

