
Understanding Ontological Levels

Claudio Masolo
Laboratory for Applied Ontology, ISTC-CNR

email: masolo@loa-cnr.it

Abstract

In this paper, I defend a multiplicative approach that distin-
guishes statues from amounts of matter, political entities from
physical ones, qua entities (e.g. John qua Alitalia passenger)
from players (e.g. John), etc. I develop a theory of levels
which is based on the primitive notions of level, parthood,
and grounding (a kind of existential dependence) and that is
used to characterize more specific relations like constitution,
inherence, and abstraction. I neither aim to propose a ‘defini-
tive’ theory of levels nor to commit to their ontological or
conceptual nature. Hence, the adjective ‘ontological’ used in
the title does not qualify the nature of the entities that belong
to levels but the way the notion of level is characterized, i.e.
in terms of general and philosophically well-founded notions.
By keeping away from a purely realist attitude, I can then dis-
cuss the adequacy of some alternative first-order theories to
account for three puzzling scenarios.

Introduction

Three examples will guide my formal analysis of the notion
of ontological level. The first one concerns the problem of
constitution that is discussed mainly in philosophy (Baker
2007; Rea 1996; Wasserman 2009) but also in knowledge
representation (Guizzardi 2005; Vieu, Borgo, and Masolo
2008). The additional two examples are quite well known
by knowledge engineers. One regards the representation of
roles (Loebe 2007; Guizzardi 2005; Masolo et al. 2004;
Steimann 2000), the other the representation of different lev-
els of details (Giunchiglia and Walsh 1992; Hobbs 1985;
Keet 2008; Zucker 2003).

Example 1. A sculptor creates the statue of the infant Go-
liath – hereby named ‘Goliath’ – by sculpting a lump of clay
– hereby named ‘Lumpl’. Lumpl, but not Goliath, would
survive a squeezing; Goliath, but not Lumpl, would survive
the loss of some parts, e.g. a tiny piece of the finger. Lumpl
already existed before the sculptor bought it, while Goliath
comes into existence only once the sculptor has completed
his/her work.1 Goliath, by a continuous and complete reno-
vation of the clay it is made of, could survive the destruction
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1In the original example (Gibbard 1976), Goliath is instanta-
neously created by assembling the upper body with the lower body.

of all parts of Lumpl. Goliath, but not Lumpl, has been cre-
ated by an artist (by means of an intentional act), it costs
2000 euros, it causes you to pay a ticket to see it. One tends
to conclude that Lumpl and Goliath are unquestionably two
different objects that, during a period of time, are spatially
co-located. More generally, ‘being a statue’ and ‘being a
lump of clay’ are different properties that classify objects
with different persistence conditions (e.g. parts are essential
to lumps of clay while shape is essential to statues), different
causal powers, etc. The example can be generalized to other
cases, e.g. collection of cells vs. organ, body vs. person,
piece of paper vs. money, piece of metal vs. traffic sign.

Example 2. Let us suppose that, in 2009, Alitalia carried a
million passengers. If, in 2009, some persons flew Alitalia
more than once, which is plausible even for Alitalia, then
Alitalia served less than a million persons. The counting
problem (Gupta 1980) states that to count the passengers of
an airline one cannot simply count the persons that flew it.
Passengers but not persons have a flight number and specific
rights and obligations. The same person can fly different
airlines or (s)he can fly several times the same airline with
different destinations or simply in different days. The same
schema applies in general to roles (e.g. ‘being president’,
‘being student’, ‘being catalyst’) the representation of which
faces another challenging difficulty. Let us consider the fol-
lowing situation: Luc as passenger of Air France has the
right of checking in online, while, as passenger of Alitalia,
has the obligation of checking in at the airport.2 The conflict
properties paradox shows that if passengers reduce to per-
sons then one obtains a contradiction: Luc cannot have both
the right of checking in online and the obligation of check-
ing in at the airport (assuming a standard view on rights and
obligations).

Example 3. Parsimony is a principle that no-one, philoso-
pher or computer scientist, renounces to. However, let us

2This is a reformulation of the classical example ‘Nixon as a
Quaker is a pacifist, while Nixon as a republican is not’ introduced
in (Reiter and Criscuolo 1981) (that indeed considers ‘John’ instead
of ‘Nixon’) and widely analyzed in the fields of non-monotonic
logics and inheritance networks. Note that it is possible to find
examples where the properties apply at the same time as in ‘Luc as
customer of Fiat spent 15K euros, while as customer of Sony just
2K euros’ (assuming that the two transactions are synchronous).
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suppose to “re-express truths about the global political con-
sequences of a decline in the GNP [Gross National Prod-
uct] of Eastern Europe in terms of interactions among fun-
damental particles” ((Heil 2005), p.31) or to plan a trip by
conceiving roads as three dimensional objects composed by
amount of matters that can change parts across time (Hobbs
1985). Some reductions can be so complex to make high-
level patterns and relations, e.g. political decisions or social
interactions, “invisible at the level of physics” (Heil 2005)
or at least non manageable in reasoning terms. Humans are
able to choose the relevant information necessary for a spe-
cific task and to hide (but preserve for different tasks) irrele-
vant details. Some properties can then apply only to objects
at a given level of abstraction and abstraction hierarchies
(see for example (Bisantz and Vicente 1994)) can be used to
accommodate descriptions of complex systems at different
levels of detail. For example, higher levels represent the sys-
tems in terms of purposes and functions while lower levels
in terms of physical implementations. The ability to move
along the abstraction hierarchy reduce complexity (saving
cognitive efforts) or add detail (providing a more accurate
picture of the system). High-level objects are then the result
of an abstraction process that starts from basic (often phys-
ical) objects. In particular, domain aggregation is “a trans-
formation that corresponds to abstraction where objects are
composed to build new ones” ((Zucker 2003), p.1296).

In this paper, I will present a multiplicative approach that
distinguishes statues from amounts of matter, qua entities
from players, political entities from physical ones, etc. I will
argue that, in knowledge representation, this multiplicative
approach has some advantages with respect a purely reduc-
tionist approach.

According to a strong realist position, only amounts of
matter exist in the strict ontological sense, and ‘being a
statue’ is a contingent (non-necessary) property of amounts
of matter. Goliath is then the result of a conceptual con-
struction that collects different amounts of clay on the ba-
sis of cognitive criteria that can be founded on the shape of
the amounts of matter, on spatio-temporal continuity, etc.
Roles too are contingent properties of players while syntac-
tic approaches to abstraction, e.g. (Giunchiglia and Walsh
1992), just provide links between formal languages without
addressing the way the objects in the domains of quantifica-
tion are connected.

Vice versa, there are philosophers and knowledge engi-
neers that accept (spatio-temporally) co-located objects. The
constitution view (see (Baker 2007; Wasserman 2009)) is a
non-reductionist approach claiming that Lumpl constitutes,
but is different from, Goliath. Constitution is a factive (and
asymmetric) relation that, at a specific time, holds between
two objects. It does not reduce to parthood or co-location, it
just allows the constituted entity to inherit some properties
from the constituting one and vice versa, i.e. it provides a
sort of unity.3 In addition to players (e.g. John) of roles (e.g.

3Using the terminology of Baker, they can have properties
derivatively. However, the properties of objects belonging to a
higher level are not always reducible to the ones of their con-
stituents, i.e. emergent or supervenient properties are possible (see

being an Alitalia passenger of flight 123 on day D) (Masolo
et al. 2004) introduces qua entitites4 (e.g. John qua Alitalia
passenger of flight 123 on day D) that inhere in the players.
To solve the counting problem and the conflicting properties
paradox it is then enough to count qua entities and to apply
conflicting properties to them.5 Differently from constituted
entities, a qua entity inheres, during its whole existence, in
the same player, i.e. it cannot change host. Semantic ap-
proaches to abstraction, e.g. (Nayak and Levy 1995), link
the objects in the domain of the ground theory with the ones
in the domain of the abstract theory. The same mechanism is
at the basis of some theories of granularity (see (Keet 2008)
for a good overview).

For most philosophers it is fundamental to establish
whether the nature of a given kind of entities is ontological,
i.e. whether these entities exist in the reality, or conceptual,
i.e. whether they are the result of cognitive processes on on-
tological entities to which, ultimately, they can be reduced.
I think that, in knowledge representation, a more pragmatic
position that does not commit neither to reductionism nor
to anti-reductionim is possible. If the introduction of a new
kind of entities produces a better model (in terms of con-
ceptual clarity, reasoning performance, etc.) then, indepen-
dently of the nature of these entities, the model deserves
some attention. For example, if qua or constituted entities
help in solving some modeling problems that are very dif-
ficult to manage otherwise, I don’t see why these entities
ought to be rejected because of their conceptual nature. The
clarification of what characterize different kinds of entities
and how they are related seems to me more important than
establishing their nature that, indeed, is a very hard task. On
the other hand, the general (and foundational) point of view
of philosophers is a very important input to avoid ad-hoc
solutions that are difficult to generalize, re-use, and share.
In this perspective, the expression ‘ontological level’ used
in the title concerns the way levels are characterized (i.e.
in terms of general and (philosophically) well-founded no-
tions) and not the ontological nature of the entities that be-
long to them. Therefore, in this paper, ‘exist’ simply means
‘included in the domain of quantification’ without commit-
ting to the nature of existence.

Given these premises, in the following, I will introduce a

(Kim 2003) for a good review on this topic).
4(Fine 1982) commits to qua entities to solve the problem of

constitution too.
5(Guizzardi 2005) proposes an alternative approach for rela-

tional roles, i.e. roles defined on the basis of a relation involving
the players. For example, ‘being a student’ is defined on the basis
of ‘enrollment’ because, to be a student, John has to be enrolled
in a university. This approach relies on the existence of relational
tropes, i.e. individualizations of relationships. If John is enrolled
in the University of Trento, then there exists a relational trope, ‘the
John’s being enrolled in the University of Trento’, that depends on
both John and the University of Trento and that exists when the en-
rollment relation holds. It is then possible to count relational tropes
and assign conflicting properties to them or the the sums of players
and tropes. I think that the two approaches are quite close. How-
ever, here I prefer to consider qua entities because it is intuitively
easier to establish a parallel with constituted entities.

259



multiplicative framework based on the primitive notions of
level, parthood, and grounding (a kind of existential depen-
dence). These notions will be used to characterize the rela-
tions involved in the previous examples: constitution, inher-
ence, and abstraction. I do not aim at proposing a ‘defini-
tive’ theory, instead I will discuss the conceptual and formal
consequences of axioms that characterize different points of
view on the primitives.

The multiplicative approach I adopt is called entity stak-
ing (Vieu, Borgo, and Masolo 2008). In this approach, con-
stitution, inherence, and abstraction can be seen as special
cases of existential dependence: at a specific time, Goliath
depends on Lumpl, John qua passenger depends on John,
the abstract entity depends on the grounding entities.6 This
dependence can be generalized to kinds. While statues, to
exist, require amounts of matter, amounts of matter can exist
without any statue. Passengers require persons but not vice
versa and similarly in the case of abstract entities. How-
ever constitution, inherence, and abstraction do not collapse
to the same relation. For example, the constituent of Go-
liath can change through time while John qua passenger is
always anchored to John (similarly for abstract entities). Or,
abstract entities are grounded on a ‘plurality’ of (similar) en-
tities while constituents and hosts can be ‘singular’.

The grounding primitive introduced in (Correia 2002) –
more specifically, a temporally qualified version of it – is
a good candidate to represent existential dependence. Intu-
itively, an object a is grounded on a (different) object b at t if
the existence of b at t makes possible the existence of a at t,
i.e., a owes its existence at t to b’s existence at t.7 Following
Husserl and Fine8, Correia founds his theory of dependence
on the factual primitive of grounding. The majority of ap-
proaches to dependence has a modal nature. By defining the
existential dependence of x on y by �(Ex → Ey) (where Ex
stands for “x exists”), modal-existential approaches can get
rid of grounding. (Correia 2002) shows that purely modal
approaches are inadequate to represent existential depen-
dence (see in particular chapter 2).9 Here I’m interested in
the fact that, according to the modal definition, the existen-
tial dependence of x on y “amounts to the necessary truth of
a material conditional whose antecedent is about x only and
whose consequent is about y only; and given that any such
material conditional fails to express any ‘real’ relation be-
tween the two objects, it is hard to see how prefixing it with

6The opposite holds for none of the previous examples.
7This ‘synchronic’ grounding is a special case of the di-

achronic one introduced in (Correia 2002). Clearly, the ‘syn-
chronic’ grounding does not allow to account for historical depen-
dence (Thomasson 1999), e.g. the dependence between an event
and its causes, or between a son and his parents. From a techni-
cal viewpoint, ‘synchronic’ grounding is enough to account for the
three relations considered in the examples and, in any case, it can
be, I think, quite easily extended to the diachronic case. From a
more conceptual viewpoint, I find diachronic grounding as more
complex because it involves the very difficult notion of causation.

8Fine’s theory can be found in (Simons 1987), p.310-314.
9The previous definition has been largely modified to answer

criticisms, see (Simons 1987) and (Correia 2002) for exhaustive
discussions.

a necessary operator could change anything in this connec-
tion” ((Correia 2002), p.58). This remark is still more rel-
evant to ‘non-rigid’ dependences, like constitution. Goliath
does not depend on Lumpl in this strong sense because Go-
liath can exist without Lumpl. An entity can then generically
depend on a kind F of entities. This generic dependence is
often defined by �(Ex → ∃y(Ey∧Fy)). But this definition
faces the same problems than the previous one. In particu-
lar, it does not allow to represent on which specific entity an
entity depends at a given time. These observations motivate
my choice to start from a temporary and factual primitive,
choice that, indeed, is similar to the one of the majority of
the approaches to constitution.10

As already suggested, two additional notions are funda-
mental to characterize the differences between constitution,
inherence, and aggregation: time and parthood. My analy-
sis does not rely on any specific theory of time. I will thus
consider time just as a non-structured set of indexes. Things
are different for parthood. How parthood and constitution
are related is a highly debated issue (see (Rea 1996)). This
debate is complicated by the fact that there is no consen-
sus about the core properties of parthood (see (Casati and
Varzi 1999)). In the following, I will carefully differentiate
grounding from parthood by assuming a purely formal view
on mereology. In this view, mereology just aims at referring
to ‘pluralities’ of entities without committing to sets (this
will be clearer later).

Once one can stack entities on the basis of grounding,
then nothing prevents the existence of chains of more than
two objects. For instance, at the same time, a pebble can be
grounded on an amount of matter and it can ground a pa-
perweight (an artifact with persistence properties different
from the ones of the pebble). The notion of level is a funda-
mental tool to analyze and represent the world that has been
used in different disciplines, e.g. cognitive science, philoso-
phy, mathematics, computer science, engineering (see (Yao
2009) for a review). As stated in (Yao 2009), “levels and hi-
erarchies are the result of both separation and integration”.
Separation allows to concentrate on a particular level, while
integration allows to understand how levels interact and are
organized. While integration will be analyzed in terms of
grounding, separation requires a notion of ‘being at the same
level as’. A recursive definition of this relation on the basis
of grounding is possible but it requires bottom-level entities
to stop the recursion. In addition, assuming a unique bottom
level, hierarchies of levels are necessarily linear.11 I prefer
to reject this definition for two main reasons. The first one
is purely technical. First-order logic with identity, the for-
malism adopted here, does not allow to express recursion.
The second reason is more conceptual. From an applicative
perspective, I don’t consider the existence of bottom levels
as very restrictive (infinite (down) chains of objects are im-
practical). Instead, the idea of reducing the notion of level to

10(Baker 2007) defines the constitution relation at a given time
on the basis of more basic primitives. Admittedly I find some prim-
itives very hard to understand and not well characterized.

11Assuming different bottoms one can build different linear
chains of levels.
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the one of ‘distance’ from the bottom (in terms of ‘ground-
ing steps’) rules out some interesting cases. As in the case
of existence, I want to minimize my commitment to the na-
ture of levels. Levels can depend only on laws of nature
(e.g. levels of reality (Poli 2006)) or they can be the result
of a conceptualization of reality (e.g. levels of granularity
or abstraction). Following (Wiggins 1968), levels can cor-
respond to (natural) kinds of objects (i.e. objects that are at
the same level satisfy the same sortal or substance concept,
they have common identity criteria, common persistence
conditions, etc.).12 For some authors, e.g. (Baker 2007;
Poli 2006), levels are non-linear because some comparisons
do not make sense: ‘are robots on a higher level than sea
slugs?’ But tree-hierarchies can also account for different
(conceptual) points of view on reality. In the following I
will thus start from a primitive notion of ‘being at the same
level as’ that allows for non-linear hierarchies. This does
not prevent the interested modeler to constrain the linearity
of levels by adding appropriate axioms.

The formal characterization of the interplay among the
three primitives of being at the same level as, (temporary)
grounding, and (temporary) parthood will be the subject of
the next sections. I will start by analyzing the simple case
of snapshot-models of the world, i.e. theories that model the
world at a given time. This step enables me to re-use some
formal theories already present in the literature. I will then
extend the snapshot-models by adding time and change into
the picture. I conclude the paper by sketching how the pro-
posed theory can be used to represent constitution, inherence
and abstraction.

Levels

From a very abstract perspective, levels induce an order on
objects and group them accordingly. From a reflexive and
transitive relation ≤, x≤ y stands for “x is at a lower level
than or at the same level as y”, an equivalence relation ≈,
x ≈ y stands for “x is at the same level as y”, can be de-
fined as in (d1). Orders can be linear (a1), down linear (a2),
up linear (a3), connected (a4) or disconnected, bounded or
unbounded, discrete or dense, etc.

The theorem (t1), that follows directly from the transitiv-
ity of ≤,13 shows that if x ≤ y, then ≤ holds also between
all the objects at the same level as x and y respectively (i.e.
it orders levels intended as ≈-equivalence classes).

d1 x≈y � x≤y ∧ y≤x (same level)

a1 x≤y ∨ y≤x (linearity)

a2 y≤x ∧ z≤x → y≤z ∨ z≤y (down linearity)

a3 x≤y ∧ x≤z → y≤z ∨ z≤y (up linearity)

a4 ∃z(z≤x ∧ z≤y) (connectedness)

t1 z≈x ∧ w≈y ∧ x≤y → z≤w

Unsurprisingly, ≤ is inadequate to represent grounding
that, as already stated, is a factual relation linking specific
objects. For instance, (at a given time) Goliath is grounded

12As far as I understand this is also the position of (Poli 2006)
and (Baker 2007).

13The proofs of the theorems are reported in the appendix.

on Lumpl but not on all the objects at the same level as
Lumpl. Vice versa, I will show that the weaker notion of ‘be-
ing at the same level as’ together with grounding are enough
to define ≤.

Kamp (see (Reynolds 2002)) considers a theory based on
a strict order ≺ (transitive and asymmetric) and an equiv-
alence relation ≡ (reflexive, symmetric, and transitive) sat-
isfying the additional axioms (a5)-(a8). The theory is used
to interpret modal logics for (branching) time: temporal op-
erators are interpreted in terms of ≺ while the the standard
necessity operator in terms of ≡. Here I consider Kamp’s
theory as a starting point for representing ‘being at the same
level as’ (with ≡) and grounding (with≺, where x≺y stands
for “x grounds y” or “y is grounded on x”).

d2 x≤y � x≡y ∨ ∃u(u≡x ∧ u≺y) (lower/same level)

d3 x
y � x≡y ∨ x≺y

a5 x≺y ∧ x≺z → y≺z ∨ y = z ∨ z≺y (up linearity)

a6 y≺x∧ z≺x → y≺z ∨ y = z ∨ z≺y (down linearity)

a7 x≡y → ¬x≺y

a8 x≡y ∧ u≺x → ∃v(v≡u ∧ v≺y)

Note that (a5) and (a6) involve the identity relation while
(a2) and (a3) involve just an equivalence relation, thus an
analogue of (t1) does not hold for ≺. By adopting (d2)14,
it is possible to prove the reflexivity, transitivity, and down
linearity of ≤. This makes explicit that, once levels are de-
termined by means of ≡, grounding can be used to induce
an order between them. (a8) plays a central role here. It
claims that, if it is possible to go deep (in the level hierar-
chy) from an object x, then it is possible to go deep also
from all the other objects at the same level as x. In some
sense, (a8) characterizes the generic dependence of higher
levels on lower ones. The down linearity of ≤ relies on (a6).
However ≤ is not linear because parallel and incomparable
(by means of ≡) hierarchies of levels are not ruled out. This
also implies that ≤ is not connected.

While, as stated, the up linearity of ≺ (a5) seems too
strong because, for example, it rules out the possibility
of representing different conceptualizations of the same
world,15 I’m not able to clearly argue in favor or against
(a6). On one hand, interpreting grounding as a purely exis-
tential dependence, (a6) seems too restrictive. For example,
(i) according to (Correia 2002), if a is grounded on b then
it is grounded also on all the parts of b and (ii) relational
tropes can, in principle, depend on entities belonging to dif-
ferent levels. On the other hand, I have the strong intuitions
that (i) if, at a given time, Goliath is intimately connected
to Lumpl, it cannot be grounded (excluding the objects that
eventually ground Lumpl) on something different; (ii) the
specific plurality of objects that grounds an abstract object

14(d2) is not equivalent to x≡ y ∨ ∃u(u≡ y ∧ x≺ u) because
it is possible to have objects that do not ground any object, i.e. we
don’t have an upper version of (a8).

15Some authors reject (a5) in an explicit way. For instance,
(Borgo and Vieu 2009) accepts artifacts with different function-
alities to be grounded on the same physical object.
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is enough to distinguish it from other abstract objects with
very similar properties.

Axioms (a9) and (a10) imply the unicity of the bottom
level, i.e. everything is ultimately grounded on objects be-
longing to the same level. The existence of a unique bottom
is highly debated (see (Schaffer 2003) for a review of differ-
ent positions present in the philosophical and scientific lit-
erature), therefore also in this case I don’t strongly commit
to (a9) and (a10). However, these axioms simplify the the-
ory (in particular they allow to prove the connectedness of ≤
(t2)) without being too restrictive from the representational
point of view. Basically they rule out forests of hierarchies
grounded on different bottoms that, assuming a finite num-
ber of bottoms, can always be represented by introducing
one grounding relation for each bottom (indeed a solution
not really elegant).

d4 Bx � ¬∃y(y≺x) (bottom level)

a9 Bx ∧ By → x≡y

a10 Bx ∨ ∃y(By ∧ y≺x)

t2 F � ∃z(z≤x∧ z≤y)

t3 F � y≺x ∧ z≺x ∧ y≡z → y = z

In the following, I will consider the theory F =
{reflexivity, symmetry, and transitivity of ≡, asymmetry
and transitivity of ≺, (a6)-(a10)}. F includes (a6), (a9),
and (a10). However, this move has to be intended just
as a direction of exploration, a starting point in the study
of the notions of level and grounding that offers a com-
promise between usefulness and complexity. As in the
case of parthood (see, for example, (Casati and Varzi 1999;
Simons 1987)), other options, adequate to different scenar-
ios, deserve to be taken into account and compared.

(t3) shows that for each level, an object can be grounded
only on a unique object. Later I will give more details on this
aspect. For the moment note that, differently from (Correia
2002), the proper parts of an object a at the same level as a
cannot ground the objects grounded on a.

Adding parthood

A whole, e.g. a table, can have persistence criteria and causal
powers different from the ones of its parts, e.g. a top and
four legs. To exist, the table requires the existence of the
top and the legs. Is therefore parthood just another kind of
grounding? Or, more strongly, can a theory of levels adopt
parthood rather than grounding? Note that if Lumpl is part
of Goliath, then all the parts of Lumpl, if one accepts the
transitivity of parthood, are also parts of Goliath. Therefore,
one has to reject transitivity or to accept that parthood cap-
tures a partial grounding (as in (Correia 2002)). Moreover,
by accepting the antisymmetry of parthood (a property with
a large consensus) if Lumpl is part of Goliath then the oppo-
site does not hold. But, if Goliath is not part of Lumpl, then
the supplementation principle (a11) assures the existence of
a part of Goliath disjoint from Lumpl. Therefore, to say that
Goliath is grounded only on Lumpl, one must reject (a11),
yielding a non-extensional mereology, i.e. a theory where it
is possible to have different entities with the same parts. A
similar observation applies to situations in which different

objects are grounded on exactly the same objects. This kind
of remarks pervades the literature about parthood. The term
‘part’ is so general that it can be interpreted in several (often
contradictory) ways. The heterogeneity of these interpre-
tations makes very difficult the individuation of a common
core of properties for parthood. In addition, note that, by
reducing grounding to parthood, ‘being atomic’ collapses
to ‘being at the bottom level’, or, in other terms, the parts
cannot be at the same level as the whole.16 This is particu-
larly counter-intuitive for objects like amounts of matter for
which one tends to accept that some of their parts are still
amounts of matter. A change of level seems to underline a
‘change in the nature’ of objects that belong to them.

To address these problems, I prefer to assume both part-
hood and grounding to be primitive.17 This allows me to
consider a simple and well studied theory of parthood called
classical extensional mereology. This theory has been in-
troduced by (Lesniewski 1991) to avoid the ontological gap,
typical of set-theory, between elements and sets. In classical
extensional mereology, parthood is a purely formal relation
that allows to refer to ‘multitudes’ of objects, called mere-
ological sums, that are nothing more than their summands
(Lewis 1991). In particular, mereological sums do not con-
sider the relations that hold among the summands and there-
fore are not wholes in any sense. The mereological sum of
specific objects is unique just because it is not possible to
sum up them in different ways (by relying on intrinsic or ex-
trinsic relations among the summands). Therefore parthood
satisfies the supplementation principle (a11), from which
it follows that two objects with the same parts are identi-
cal (extensionality). More formally, a classical extensional
mereology with binary sums (see (Casati and Varzi 1999;
Simons 1987) is a theory where P (xPy stands for “x is
part of y”) is reflexive, antisymmetric, transitive and satis-
fies (a11) and (a12). ‘Propert parthood’ (PP) and ‘overlap’
(O) are defined, respectively, by (d5) and (d6), while ‘binary
sums’ (sSMab stands for “s is the mereological sum of a
and b”) are defined as in (d7) and their existence is guaran-
teed by (a12). M = {reflexivity, antisymmetry, transitivity
of P, (a11), (a12)} denotes this extensional mereology.

d5 xPPy � xPy ∧ ¬yPx (proper part)

d6 xOy � ∃z(zPx ∧ zPy) (overlap)

d7 sSMab � ∀z(zPs ↔ zPa ∨ zPb) (binary sum)

a11 ¬xPy → ∃z(zPx ∧ ¬zOy)

a12 ∃s(sSMab)

Objects across levels The formal notion of parthood I as-
sumed applies to object of any nature. In particular, mereo-
logical sums can collect objects that belong to different lev-
els. Multi-level objects are objects that spread through lev-
els while one-level objects have all their parts at the same

16Note that this way of talking is a little bit misleading. As stated
in (Casati and Varzi 1999), mereology is not a theory of parts and
wholes because to individuate wholes, in addition to parthood, a
notion of wholeness is needed.

17According to (Baker 2007) and (Gnoli and Poli 2004) this is a
necessary condition for any theory of level.
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level. (a13) and (a14) restrict ≡ and ≺, respectively, to
one-level objects. Together with the down linearity of ≺,
(a14) rules out (one-level) objects grounded on different
(non-comparable) levels. Hence, interesting cases of multi-
dependence, e.g. the one that concerns relational roles, can-
not be represented by means of ≺ unless one reduces re-
lational roles to merological sums of tropes (belonging to
different levels). More complex theories that avoid (a14) are
left for future work.

(a15) guarantees that, if two (one-level) objects are one
part of the other, then their grounding objects (at a given
level) are also one part of the other. (a15) is a sort of down
parthood-monotonicity assuring that lower levels are ‘more
detailed’ than higher ones. An upper version of (a15) ex-
cludes the possibility to have different objects belonging to
the same level grounded on the same object, possibility that
I want to leave open as explained earlier.

d8 1Lx � ∀y(yPx → y≡x) (one-level)

a13 x≡y → 1Lx ∧ 1Ly

a14 x≺y → 1Lx ∧ 1Ly

a15 x≡x′ ∧ x≺y ∧ x′≺y′ ∧ yPy′ → xPx′

Partial grounding Let us consider the theory L = F ∪
M ∪ {(a13), (a14), (a15)}. In L, (one-level) objects are
not grounded on their parts (t4). However, a notion of par-
tial grounding can be defined as in (d9): x � y stands for
“x partially grounds y” or “y is partially grounded on x”.18

This relation is similar to Fine’s strong foundation (see (Si-
mons 1987) p.311-312). Fine’s system extends an exten-
sional mereology with infinite sums by assuming axioms
(af1)-(af6)19 where: x fd y stands for “x is strongly founded
on y”20, σ′X is the least upper bound (in terms of parthood)
of the set of objects X , and x +′ y is the upper bound of
{x, y}. Theorems (t5)-(t10) show how L relates to Fine’s
theory. (t5) directly corresponds to (af1). (t6) shows that the
‘negative conditions’ about parthood present in (af2)-(af4)
are not needed in L. Therefore (t7)-(t9) correspond to (af2)-
(af4), with the only addition of condition 1Lz in (t8) (due to
the fact that≺ but not P is defined only on one-level objects).
A similar argument justifies the condition y≡z in (t10) that
can only simulate (af5) by considering binary sums. An ax-
iom equivalent to (af6) does not hold in L because of (a14).

The partial grounding considered by Correia in (Correia
2002) (called “n-grounding” and represented by xGy that
stands for “x is n-grounded on y”21) is irreflexive, transi-
tive (properties that it shares with �), and satisfies two ad-
ditional constraints: xGy → Ex∧ Ey and �∀x(∃y(xGy) →
�(Ex → ∃z(xGz))), where Ex stands for “x exists”. L
cannot represent the last two constraints. However, in the
next section, I will introduce a theory of time and a predi-

18It is possible to start from � and P and define x≺y as x� y∧
¬∃z(z � y ∧ xPPz), i.e. x is the maximal (in mereological terms)
object that grounds y. I prefer to start from P and ≺, because, as
stated, � is conceptually more complex than ≺.

19Note that the first four axioms define a complete semi-lattice.
20Note that the arguments are inverted with respect to �.
21Here too the arguments are inverted with respect to �.

cate of existence that allow to ‘simulate’ these constraints in
temporal terms. I will come back to this point later.

d9 x � y � ∃z(xPz ∧ z≺y) (partial grounding)

af1 x fd y → ¬yPx

af2 x fd y ∧ y fd z ∧ ¬zPx → x fd z

af3 x fd y ∧ xPz ∧ ¬yPz → z fd y

af4 x fd y ∧ zPy ∧ ¬zPx → x fd z

af5 X �= ∅ ∧ ∀y ∈ X(x fd y) → x fd (σ′X)

af6 x fd y → x fd (x +′ y)

t4 L � xPy → ¬x≺y

t5 L � y � x → ¬yPx

t6 L � z � y ∧ y � x → ¬zPx

t7 L � z � y ∧ y � x → z � x

t8 L � y � x ∧ xPz ∧ 1Lz → y � z

t9 L � y � x ∧ zPy → z � x

t10 L � y≡z ∧ y � x ∧ z � x ∧ sSMyz → s � x

Time and change

At different times, Goliath can be grounded on different
amounts of matter, i.e. Lumpl can be substituted by another
substratum. To represent this dynamic aspect, L must be
extended to take into account time and change.

I adopt the primitive Etx, “x exists at time t” and a logic
with two sorts, time and object, distinguished by a notational
convention: variables on times are noted by t, t′, ti, etc. I
focus only on objects in time (a16) without committing to a
particular theory of time, i.e. time is just a non-structured
set of indexes.

A temporally qualified grounding must be introduced:
x ≺ t y stands for “x grounds y at t”, i.e., at t, the exis-
tence of x makes possible the one of y, y owes its existence
at t to x. F must be modified to account for the tempo-
ral argument: (a20), (a21), and (a22) are direct adjustments
of, respectively, (a6), (a7), and (a8), while (a23) and (a24)
correspond to, respectively, (a9) and (a10) where B is now
defined by (d10).22

d10 Bx � ¬∃yt(y≺t x) (bottom level)

a16 ∃t(Etx)

a17 x≺t y → Etx ∧ Ety

a18 x≺t y → ¬y≺t x

a19 x≺t y ∧ y≺t z → x≺t z

a20 y≺t x ∧ z≺t x → y≺t z ∨ y = z ∨ z≺t y

a21 x≡y → ¬∃t(x≺t y)

a22 x≡y ∧ u≺t x ∧ Et′y → ∃v(v≡u ∧ v≺t′ y)

a23 Bx ∧ By → x≡y

a24 Bx ∨ ∃yt(By ∧ y≺t x)

Note that ≡ is not temporally qualified. A theory based on
a non temporally qualified ≡ presupposes a static notion of
level: objects cannot change level through time. This static

22Note that (a22) applies at every time y exists. The synchronic
version, x≡y∧u≺t x→∃v(v≡u∧v≺t y), is too strong because
x≡y does not imply that y exists when x exists.
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notion is assumed by some views on levels. For instance,
in the view that associates natural kinds to levels, no object
can survive a change in natural kind just because no object
can loose one of its essential properties. Dynamic theories
of levels would require ≡ to be modified by adding two tem-
poral arguments to diachronically compare an object as it is
at t with an object as it is at t′. Again I leave this interesting
alternative to future work.

Let Fτ = {reflexivity, symmetry, and transitivity of ≡,
(a16)-(a24)}. Assuming (d11), it is possible to prove that ≤
is a connected down-linear order. In addition (i) (t11) shows
that the equivalence relation induced by ≤ is equivalent to ≡
(a primitive of Fτ ); (ii) (t12) generalizes the antisymmetry
of ≺; and (iii) (t13) ensures that, at a given level and time,
an object has a unique grounding.

d11 x≤y � x≡y∨∃zt(z≡x∧ z≺t y) (lower/same level)

t11 Fτ � x≤y ∧ y≤x ↔ x≡y

t12 Fτ � x≤y → ¬∃t(y≺t x)

t13 Fτ � y≺t x ∧ z≺t x ∧ y≡z → y = z

Parthood too needs to be temporally qualified: some parts
of an object can exist only at specific times (in particular
the parts of mereological sums, see the next section). Tem-
porary parthood, xPty stands for “x is part of y at t”, is
characterized by modifying the axioms for classical exten-
sional mereology as in (a25)-(a29). (a29) guarantees that
two objects that coincide (in the sense defined by (d12)) dur-
ing their whole existence are identical (see the next section
for more details on this axiom).

d12 xCNty � xPty ∧ yPtx (temporary coincidence)

d13 xOty � ∃z(zPtx ∧ zPty) (temporary overlap)

a25 xPty → Etx ∧ Ety

a26 Etx → xPtx

a27 xPty ∧ yPtz → xPtz

a28 Etx ∧ Ety ∧ ¬xPty → ∃z(zPtx ∧ ¬zOty)

a29 ∀t(Etx → xPty) ∧ ∀t(Ety → yPtx) → x = y

Concerning the links between ≡, ≺, and P, (a30) and
(a31) correspond to, respectively, (a13) and (a14) where 1L

is now defined by (d14) instead of (d8), and (a32) is the tem-
poral version of (a15).

Let Lτ = Fτ ∪{(a25)-(a32)}. By defining temporary par-
tial grounding as in (d15), (t14)-(t22) can be proved. (t14)-
(t18) are the temporal versions of (t5)-(t9). A theorem sim-
ilar to (t10) cannot be proved because I have not introduced
the mereological sums in terms of temporary parthood (I dis-
cuss this issue in the next section). In addition, (t20), (t21),
and (t22) show that there are no synchronic or diachronic
loops for �. These results make evident a close correspon-
dence between the atemporal axioms and theorems in L and
the temporal ones in Lτ .

d14 1Lx � ∀yt(yPtx → y≡x) (one level)

d15 x �t y � ∃z(xPtz ∧ z≺t y) (temp. partial ground.)

a30 x≡y → 1Lx ∧ 1Ly

a31 x≺t y → 1Lx ∧ 1Ly

a32 x≡x′ ∧ x≺t y ∧ x′≺t y′ ∧ yPty
′ → xPtx

′

t14 Lτ � x �t y → ¬yPtx

t15 Lτ � z �t y ∧ y �t x → z �t x

t16 Lτ � z �t y ∧ y �t x → ¬zPtx

t17 Lτ � y �t x ∧ xPtz ∧ 1Lz → y �t z

t18 Lτ � y �t x ∧ zPty → z �t x

t19 Lτ � x �t y → Etx ∧ Ety

t20 Lτ � ¬x �t x

t21 Lτ � x �t y → x≤y ∧ ¬x≡y

t22 Lτ � x �t y → ¬∃zwt′(z≡x ∧ w≡y ∧ w �t′ z)

Let us come back to Correia’s theory. My temporary par-
tial grounding can be related to Correia’s primitive xtGyt′

(“x at t is grounded on y at t′”)23 by assuming t = t′. G

is (necessarily) irreflexive, asymmetric, transitive, and it sat-
isfies two additional constraints: �∀xytt′(xtGyt′ → Etx ∧
Et′y) and �∀x(∃ytt′(xtGyt′) → �(Ex → ∃ztt′(xtGzt′))),
where Etx corresponds to my temporary predicate of exis-
tence and is related to the non-temporary E by the axiom
�∀x(∃t(Etx → Ex)). Taking apart the modality24, the first
four constraints directly correspond, respectively, to (t20),
(t22), (t15), and (t19), while (considering the link between
temporary and non-temporary E in Correia) the last con-
straint can be at least partially captured by (t23).

Note that the properties of � are quite similar to the ones
of temporary (proper) parthood. This claim is strengthened
by (t24), a sort of temporal version of the weak supplementa-
tion principle xPPy → ∃z(zPPy ∧ ¬zOx) (see (Casati and
Varzi 1999)). In my understanding, this explains why some
authors use parthood to represent constitution or, more gen-
erally, partial grounding. However, I hope to have shown
that � is quite different from (formal) parthood and that the
differences between them can be clarified and analyzed by
using a more basic theory.

t23 Lτ � ∃yt(y �t x) → ∀t′(Et′x → ∃z(z �t′ x))

t24 Lτ � ∃a(xPPta∧a≺ty) → ∃z(z≡x∧z�ty∧¬zOtx)

Temporary vs. non-temporary relations

One may wonder whether Lτ and L or, more precisely, tem-
porary and non-temporary versions of parthood and ground-
ing, are somewhat related. To address this topic, one has to
understand whether temporary relations induce some tempo-
ral constraints. Let us start from parthood. (a33) guarantees
that the temporal extension of the part is included in that of
the ‘whole’. (a33) seems quite intuitive but it interacts with
other mereological axioms in a non-negligible way. Let us
consider two objects a and b such that a exists only at t and
b only at t′. By (a12), there exists s such that sSMab and
therefore, by (d7), both aPs and bPs hold. From (a33), one
concludes that s exists at both t and t′ even though only a
part of it exists at each time. According to (van Invagen
2006), this shows that mereological sums can change parts
through time. For other authors, e.g. (Baker 2007), sums

23Remember that the arguments are inverted with respect to �.
24Note however that all FOL axioms can be considered as nec-

essary.
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exist only when all the summands exist and (a12) must thus
be accordingly modified. I see two problems with such a
move. First, in my understanding, the formal nature of P al-
lows SM to aggregate objects independently of their nature
and, in particular, independently of their temporal extension.
Second, if a theory commits to both mereological sums and
differences, e.g. extensional closure mereology (Casati and
Varzi 1999), then it is very hard to reject the difference be-
tween a and b in the situation where bPPa, a exists at both
t and t′, b exists only at t, and a and b coincide at t (in the
sense of (d12)). It seems that, by refusing this kind of sums
and differences, one tends to accept parthood only between
temporally co-located entities. On the other hand, (Masolo
2009) shows that, by defining parthood as constant part-
hood (d16), (a25)-(a29) (and the whole Lτ ) are not enough
to prove the supplementation principle (a11): the previous
example given for difference is a counter-example because
nothing guarantees the existence of a part of a that does not
overlap b ((a28) applies only synchronically). This means
that Lτ is existentially less committing than L. However,
the extensionality of P (t25) is guaranteed and thus sums can
be introduced via (d7) where parthood simpliciter is defined
by (d16).

d16 xPy � ∀t(Etx → xPty)

d17 x≺ y � ∀t(Etx → x≺t y)

d18 x≺ y � ∀t(Ety → x≺t y)

a33 xPy → ∀t(Etx → Ety)

t25 ∀z(zPx ↔ zPy) → x = y

Similarly, by defining ≺ as constant grounding (d17), Lτ

does not allow to prove all the axioms in F . Let us con-
sider a counter-example of (a6): at t the collectable item c
is grounded on the record r that, in turn, is grounded on the
piece of plastic p1. Collectable items need to be perfect,
without any mark, scratch, etc. Therefore, at t′, when r is
scratched (and therefore it is grounded on a different piece
of plastic p2), c does not exist anymore. It is easy to verify
that this situation satisfies all the axioms in Lτ .25 Accord-
ing to (d17), we have p1 ≺ r and p2 ≺ r (during their whole
existence both p1 and p2 ground r) but p1 �= p2 and neither
p1 ≺ p2 nor p2 ≺ p1 because they are at the same level. By
assuming a different definition of constant grounding (d18),
the previous example is still a counter-example of (a6). Ac-
cording to (d18), we have r≺c and p1≺c (c exists only at t
when it is grounded on both r and p1) but p1 �= r and neither
p1≺ r (r exists at t′ but it is grounded on p2 and not on p1)
nor r≺p1 (p1 exists at t but it is not grounded on r).

Counter-examples of (a8) can also be found. Let us con-
sider two records r1 and r2 that exist only at t and t′. At
t′, r1 is scratched (its grounding change from the piece of
plastic p1 (at t) to p′

1
(at t′)) while r1 remains perfect (it is

always grounded on the piece of plastic p2). According to
(d17), p2 ≺ r2 but nothing constantly grounds r1 even if it
is at the same level as r2. Let us now assume that, at t′, r1

25Actually, it is also necessary to assume that each object is part
of itself at any time at which it exists. This proves the consistency
of Lτ .

ceases to exist because of a deformation of p1 that however
still exists at t′ (the shape is not essential to pieces of plastic).
According to (d18), p2 ≺ r2 but nothing constantly grounds
r1 (at t′, p1 exists but it does not ground r1 anymore) even
though it is at the same level as r2.

These remarks show that it is not easy to move from a
static (that considers only a snapshot of the world) ‘inter-
pretation’ of L to a dynamic one where the non-temporary
relations are defined in terms of temporary ones. In particu-
lar, starting from Lτ , the proposed definitions are too weak
to capture the whole L.

Constitution, inherence, and abstraction

In this section, I will sketch howLτ can be extended to char-
acterize the three kinds of grounding relations considered in
the initial examples. These extensions characterize constitu-
tion, inherence, and abstraction only very partially therefore
they have to be intended as suggestions and not as ‘defini-
tive’ theories.

Constitution

At a given level and time, the grounding of an object is
unique, therefore constitution can be directly represented by
temporary grounding. In addition, as already observed, con-
stitution implies spatial co-location. Even though I think
that it is not too difficult to extend Lτ with a theory of space
and location (see, for example (Casati and Varzi 1999)) here
I have not addressed this aspect. Who prefers a notion of
partial constitution can use �.

Inherence

We introduced inherence as a relation between qua-entities
and players (of roles). But inherence is also used in trope
theory (see (Daly 1997) for an introduction) to represent the
link between an individual property (a trope, e.g. ‘the being
red of my car’) and the unique object (the host) it is anchored
to (e.g. ‘my car’). While constituted objects can change their
constituents across time, both tropes and qua entities inhere
in the same object during their whole existence, i.e. inher-
ence is temporally qualified only by the temporal extension
of the trope (or qua entity). By assuming (a34), if x inheres
in y (xINy) then x is constantly grounded on y (in the sense
defined by (d18)). Note that IN is here an additional primi-
tive, therefore, in general, the opposite implication does not

hold. By adopting the definition xINy � y ≺ x (where≺
is defined by (d18)) one not only fails to capture (a6) and
(a8) but also the non-migration principle (a35), one of the
few properties stated for inherence (see (Guizzardi 2005)).
Let us consider a situation in which ‘John qua passenger
of Alitalia’ is grounded on John that, in turn, is grounded
on his body. If these three entities have the same temporal
extension, then, according to the assumed definition, ‘John
qua passenger of Alitalia’ inheres both in John and his body
(that are different because they belong to different levels).
This problem can be solved by introducing the notion of di-
rect grounding (d19) and defining inherence by (d20). (a6)
trivially holds, while, unfortunately, (a8), applied to inher-
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ence, remains unsatisfied. However one can at least better
characterize IN by substituting ≺ with � in (a34).

a34 xINy → ∀t(Etx → y≺t x)

a35 xINy ∧ xINz → y = z

d19 x�ty � x≺t y ∧ ¬∃z(x≺t z ∧ z≺t y) (direct groun.)

d20 xINy � ∀t(Etx → y�tx)

Abstraction

The distinction between parthood and grounding allows to
address the notion of granularity by relying on the fact that
atoms (objects without proper parts) can be grounded on
non-atomic objects. In this section, I will formally restrict
grounding to capture (an approximate notion of) abstraction.
In the following, x ≺t y must then be read as “at t, y is an
abstraction of x”.

I consider the following assumptions: (i) at any given
time, all the objects are ultimately composed (in mereologi-
cal terms) by atoms (a36) (see (Masolo and Vieu 1999) for a
deep discussion of atomicity); (ii) higher levels are coarser
than lower ones, i.e., abstract atoms are grounded on non-
atomic objects (a37); (iii) at any given time, higher atoms
partition lower ones (a38) and (a39) (where the direct par-
tial grounding �© is defined by (d22)).26 My theory of gran-
ularity is naive and it considers ‘synchronic’ abstraction in
the sense that both the set of atoms and the way they are ab-
stracted can change across time. Alternatively, it is possible
to consider a theory where both the set of atoms and the way
they are abstracted remain constant (this seems to go in the
direction of a non temporally qualified abstraction relation)
and thus mereological changes reduce to substitution, loss,
or gain of atoms.

d21 Atx � Etx ∧ ¬∃y(yPPtx) (atom)

d22 x�©ty � ∃z(xPtz ∧ z�ty) (partial direct ground.)

d23 Tx � ¬∃yzt(y≡x ∧ y≺t z) (top level)

a36 ∀z(Atz → (zPtx → zPty)) → xPty

a37 Atx ∧ ¬Bx → ∃y(y�tx ∧ ¬Aty)

a38 Atx ∧ ¬Tx → ∃y(x�©ty ∧ Aty)

a39 Atx ∧ Atx
′ ∧ y�tx ∧ y′

�tx
′ → (xCNtx

′ ↔ yOty
′)

t26 Atx ∧ Atx
′ ∧ y�tx ∧ y�tx

′ → xCNtx
′

t27 Atx ∧ Atx
′ ∧ y�©tx ∧ y�©tx

′ → xCNtx
′

Abstract objects are often assumed to correspond to
equivalence classes of (lower level) objects. This correspon-
dence is often characterized by f(x) = f(y) ↔ xRy, where
R is an equivalence relation on objects and f(x) denotes the
abstraction of the object x. If both f and R depend on time,
then it is necessary to consider a temporally qualified version
of the previous constraint: f(x, t) = f(y, t) ↔ xRty. In my
theory of granularity, such constraint can be represented by
assuming that the elements in the equivalence classes gen-
erated by R at a given time t correspond to the atomic parts
of objects that, at t, directly ground atoms (i.e. to atoms x
such that x�©y where y is an atom). This means that: (i)

26Theories of granularity often adopt similar constraints that in
general are not temporally qualified (see (Keet 2008)).

at t, the equivalence classes generated by R correspond to
the objects that ground (in terms of�) atoms, and (ii) that
the abstract object associated (via f) to an equivalence class
corresponds to ‘the’ atom (it is unique, in the sense of co-
incidence, (t26)) directly grounded on the object that corre-
sponds to such equivalence class. By (t27), f can then be
simulated by direct partial grounding.27

Clearly, a much deeper analysis is necessary to treat these
aspects in a satisfactory way. Nevertheless, I hope that,
by showing how Lτ can be used to characterize different
notions of granularity (as well as constitution and inher-
ence), the previous discussion can provide some arguments
in favour of the generality and usefulness of Lτ .

Conclusion

In the previous sections, I discussed a theory that carefully
distinguishes the notions of level, parthood, and grounding.
I mentioned alternative characterizations of these primitives
that reflect different points of view on levels. As in the case
of mereotopologies (see (Casati and Varzi 1999)) or theories
of time (see (Hajnicz 1996; Van Benthem 1983)), a deeper
study that formalizes and compares these alternative views
would highly improve our understanding of levels. However
this is a slow and complex process to which, I hope, this
paper can contribute.
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Appendix: proofs

In this section, I will sketch the proofs of the theorems pre-
viously stated. In the text, I will not explicitly refer to the
use of the reflexivity, symmetry, and transitivity of ≡.

Proofs in F

F = {reflexivity, symmetry, and transitivity of ≡, asymme-
try and transitivity of ≺, (a6)-(a10)}.

The proofs of the reflexivity of ≤, transitivity of ≤, down
linearity of ≤, (t3) and (t2) are straightforward adjustments
of the proofs of the corresponding properties in Fτ . The
reader can refer to these proofs just paying attention to the
fact that in Fτ , ≤ is defined by (d11) instead than (d2).

Proofs in L

L = F ∪ M ∪ {(a13), (a14), (a15)}, where M =
{reflexivity, antisymmetry, transitivity of P, (a11), (a12)}.

t4 L � xPy → ¬x≺y
If ¬1Ly then the thesis follows from (a14). Let 1Ly, then
x≡y. The thesis follows from (a7). �

t5 L � y � x → ¬yPx
From ∃z(yPz∧ z≺x), by (a14), we have 1Lx∧1Lz and
therefore y ≡ z. By contradiction, assume yPx. It fol-
lows that x≡y≡z that, together with z≺x, contradicts
(a7). �
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t6 L � z � y ∧ y � x → ¬zPx
From the hypotheses, by (t7) (see below), we have z �x.
The thesis follows directly from (t5). �

t7 L � z � y ∧ y � x → z � x
From ∃u(zPu ∧ u ≺ y) ∧ ∃v(yPv ∧ v ≺ x), by (a14),
we have 1Lv ∧ 1Lu and, therefore, y≡ v ∧ z≡u. From
y≡ v ∧ u≺ y, by (a8), we have ∃w(w≡u≡ z ∧ w≺ v)
and, by (a15), uPw follows. By the transitivity of P and
of ≺ we conclude that ∃w(zPw ∧ w≺x). �

t8 L � y � x ∧ xPz ∧ 1Lz → y � z
The proofs is very similar to the one of (t7). �

t9 L � y � x ∧ zPy → z � x
It trivially follows from the transitivity of P. �

t10 L � y≡z ∧ y � x ∧ z � x ∧ sSMyz → s � x
By the down linearity of ≤, the object u, at the same
level as y and z, that grounds x is unique. From the
hypotheses and (d9) we conclude that both y and z are
part of u. Thus, from (d7) (and the properties of P) sPu
and the thesis follow. �

Proofs in Fτ

Fτ = {reflexivity, symmetry, and transitivity of ≡, (a16)-
(a24)}.

The proof of the reflexivity of ≤ is trivial, while the proof
of the transitivity of ≤ is very similar to the one of the down
linearity of ≤.

• Fτ � y≤x ∧ z≤x → y≤z ∨ z≤y (down linearity)
We have four cases. (a) y≡x ∧ z≡x. Trivial.
(b) y ≡ x ∧ ∃wt(w ≡ z ∧ w≺t x). From (a16) we have
∃t′(Et′y) and from (a22) we have ∃ut′(u ≡ w ≡ z ∧
u≺t′ y).
(c) ∃wt(w≡y ∧ w≺t x) ∧ z≡x. See case (b).
(d) ∃ut(u≡y ∧ u≺t x) ∧ ∃wt′(w≡z ∧ w≺t′ x).
From w ≺t′ x, by (a17), we obtain Et′x. From x≡ x ∧
u ≺ t x ∧ Et′x, by (a22), we have ∃v(v ≡ u ∧ v ≺ t′x).
From v≺t′x ∧ w≺t′x, by (a20), we conclude v≺t′w ∨
v = w ∨ w≺t′v.
(i) If v = w, then v ≡ w ≡ u ≡ y ≡ z, from which
z≤y follows. (ii) Assume v≺t′ w. From (a16) we have
∃t′′(Et′′z). From w≡ z ∧ v≺t′ w ∧ Et′′z, by (a22), we
obtain ∃at′′(a≡ v ∧ a≺t′′ z). But v≡ y therefore a≡ y
and finally y ≤ z. (iii) Assume w ≺ t′ v. The proof is
analogous of the one of the case (ii). �

• Fτ � ∃z(z≤x ∧ z≤y) (connectedness)
(a) If Bx ∧ By the thesis follows trivially. (b) Assume
Bx ∧ ¬By. By (a24), ∃wt(Bw ∧ w≺t y) and, by (a23),
w ≡ x, therefore x ≤ y. It is enough to take z = x. (c)
Assume ¬Bx ∧ By. See (b). (d) Assume ¬Bx ∧ ¬By.
From (a24) we have ∃ut(Bu ∧ u≺ t x) and ∃wt′(Bw ∧
w≺t′ y). From (a23) we have u≡w. Therefore u≤x ∧
u≤y. It is enough to take z = u. �

t11 Fτ � x≤y ∧ y≤x ↔ x≡y
The direction ← is trivial. For the other direction we
have four cases: (a) x≡ y ∧ y≡x . Trivial. I will show
that the other cases lead to a contradiction.
(b) From x≡ y ∧ ∃zt(z ≡ y ∧ z ≺t x) we directly have
∃zt(z≡x ∧ z≺t x) that contradicts (a21).

(c) y≡x ∧ ∃zt(z≡x ∧ z≺t y). See (b).
(d) ∃zt(z≡y ∧ z≺t x) ∧ ∃z′t′(z′≡x ∧ z′≺t′ y). From
z ≺t x, by (a17), we have Etz. From z ≡ y ∧ z′ ≺t′ y ∧
Etz, by (a22), we deduce ∃u(u ≡ z′ ∧ u ≺ t z). From
u ≺ t z ∧ z ≺ t x, by (a19), we have u ≺ t x while from
u≡z′ ∧ z′≡x we have u≡x. These two fact contradict
(a21). �

t12 Fτ � x≤y → ¬∃t(y≺t x)
If x ≡ y the thesis follows directly from (a21). Other-
wise, by contradiction, assume ∃ztt′(z ≡ x ∧ z ≺t′ y ∧
y ≺t x). Ety follows from (a17). From y ≡ y ∧ z ≺t′ y
∧Ety, by (a22), ∃u(u≡z∧u≺t y). From u≺t y∧y≺t x
∧ u≡ z ∧ z ≡ x, by (a19), we have u≺t x ∧ u≡ x that
contradicts (a21). �

t13 Fτ � y≺t x ∧ z≺t x ∧ y≡z → y = z
From the hypotheses, by (a20), we obtain y≺t z ∨ y = z
∨ z≺t y. By (a21), y≺t z and z≺t y both imply ¬y≡z
that contradicts the hypotheses. The only remaining op-
tion is y = z. �

Proofs in Lτ

Lτ = Fτ ∪ {(a25)-(a32)}.
(t18)-(t22), and (t24) have quite straightforward proofs.

t14 Lτ � x �t y → ¬yPtx
From ∃z(xPtz∧ z≺t y), by (a31), we have 1Lz and (us-
ing the properties of P) 1Lx. By contradiction, assume
yPtx. Because 1Lx then x ≡ y. From 1Lz ∧ xPtz we
have z ≡ x≡ y that, by (a21), implies ¬z ≺t y. Contra-
diction. �

t15 Lτ � z �t y ∧ y �t x → z �t x
From ∃u(zPtu ∧ u ≺ t y) and ∃w(yPtw ∧ w ≺ t x), by
(a31) and (a25), we have 1Lu∧ 1Lw ∧Etu∧Etw. From
1Lw∧yPtw we obtain w≡y. From w≡y∧u≺t y∧Etw,
by (a22), we have ∃a(a ≡ u ∧ a ≺ t w) that, by (a19),
implies ∃a(a≡u∧a≺t x). From u≡a∧u≺t y∧a≺t w∧
yPtw, by (a32), we obtain uPta. From zPtt ∧ uPta, by
(a27), we have zPta that, together with a≺t x, conclude
the proof. �

t16 Lτ � z �t y ∧ y �t x → ¬zPtx
From (t15) we have z �t x, i.e. ∃a(z≡ a ∧ a≺t x). By
contradiction, assume zPtx. By (a31) we have 1Lx and
therefore z≡x≡a. But x≡a∧ a≺t x contradicts (a21).

�

t17 Lτ � y �t x ∧ xPtz ∧ 1Lz → y �t z
The proof is very similar to the one of (t15). �

t23 Lτ � ∃yt(y �t x) → ∀t′(Et′x → ∃z(z �t′ x))
From (d15) we have ∃u(yPtu ∧ u≺t x). Suppose Et′x.
(a22) and (a17) imply ∃z(z≡u∧ z≺t′ x∧Et′z). There-
fore, by (a26), ∃z(zPt′z ∧ z≺t′ x) follows. �

t25 ∀z(zPx ↔ zPy) → x = y
If x �= y, by (a29), ∃t(Etx∧¬xPty) or ∃t(Ety∧¬yPtx).
In the first case, by (d16), we have ¬xPy. Therefore we
have xPx ∧ ¬xPy (xPx follows from (a26)). Similarly
in the second case. �
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