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Abstract

We address the problem of information fusion in uncertain
environments. Imagine there are multiple experts building
probabilistic models of the same situation and we wish to
aggregate the information they provide. There are several
problems we may run into by naively merging the informa-
tion from each. For example, the experts may disagree on
the probability of a certain event or they may disagree on the
direction of causility between two events (e.g., one thinks A
causes B while another thinks B causes A). They may even
disagree on the entire structure of dependencies among a set
of variables in a probabilistic network. In our proposed so-
lution to this problem, we represent the probabilistic models
as Bayesian Knowledge Bases (BKBs) and propose an algo-
rithm called Bayesian knowledge fusion that allows the fusion
of multiple BKBs into a single BKB that retains the informa-
tion from all input sources. This allows for easy aggrega-
tion and de-aggregation of information from multiple expert
sources and facilitates multi-expert decision making by pro-
viding a framework in which all opinions can be preserved
and reasoned over.

Introduction

There are many situations when information fusion can be
useful, from fusion of low level sensor data to the aggre-
gation of higher level models built by human experts. One
simple example is the case of multiple medical diagnosis
expert systems, each containing rules from different experts.
One expert may believe that the causal link between disease
A and symptom B is strong while another may think it is
weak; or one may think that condition A causes condition B
while another thinks that B causes A. In the former case we
could take the max of the two conditional probabilities, or
the average, or some other function of the two, but in doing
so we would likely lose some information. In the latter case
we would end up with a cyclic causal relationship, violating
the rules of some knowledge representation schemes like the
widely used Bayesian networks (Pearl 1988). The ability to
aggregate knowledge from mutiple sources in light of these
difficulties is crucial in decision making scenarios involving
mutiple subject matter experts and perspectives.
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In addition to combining the opinions of multiple experts,
another major goal of this work is to allow the easy aggre-
gation and de-aggregation of pieces of information. This
allows for reasoning over only the relevant pieces of the
knowledge base. It also alleviates the problem of the high
computational cost of reasoning in very large knowledge
bases and allows for focused source-based analyses. Ease of
aggregation is also ideal when dealing with a probabilistic
model of a dynamic or evolving situation where new knowl-
edge is being gained and added to the knowledge base in-
crementally and old knowledge may be removed if it is no
longer applicable.

In this paper, we use Bayesian Knowledge Bases (BKBs)
(Santos and Santos 1999; Santos, Santos, and Shimony
2003; Rosen, Shimony, and Santos 2004) as our knowledge
representation framework. A BKB is a generalization of a
Bayesian network (BN) in which dependencies are speci-
fied between states of random variables instead of between
random variables, directed cycles are allowed, and the prob-
ability distribution specified need not be complete. We show
how to take a collection of BKBs and merge them into one
single BKB. In the context of the fusion process, we refer to
the input BKBs as Bayesian Knowledge Fragments (BKFs)
since each represents one fragment of knowledge that we
wish to fuse into a larger knowledge base. Thus each BKF
contains one chunk of knowledge and the fusion process al-
lows them to be composed into larger, semantically mean-
ingful models. These fragments can be easily stored, re-
trieved, and aggregated.

In related work, others have tried to use BNs for knowl-
edge representation, but techniques based on BNs run into
problems when it comes to tractable manipulation and rea-
soning. These techniques fall victim to exponential run time
complexity, the need for complete specification of probabil-
ity distributions, and overly rigid rules regarding conditional
dependence structure. Included in this class are BN vari-
ants such as object-oriented BNs (Koller and Pfeffer 1997),
multi-entity BNs (Laskey 2008), and Bayesian blackboards
(Sutton et al. 2004).

Our fusion algorithm is based on the addition of new
nodes to the input fragments called source nodes. These
nodes indicate which rules in the knowledge base came
from which fragments. A reliability index is given to each
fragment indicating the trustworthiness of the source of the
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Figure 1: A BKB fragment from a knowledge base about
the South Carolina Democratic Primary election as a set of
CPRs.

knowledge contained in the particular fragment. With these
source nodes and their corresponding reliabilities, the infer-
ence process on the fused BKB can consider information
from multiple sources when constructing explanations for
any evidence observed. Thus the constructed explanation
may contain elements from several different sources.

In the next section we will describe BKBs in more detail.
Then we will present the fusion algorithm. After that we
will further investigate the properties of the fused BKB, and
then we will end the paper with a conclusion and description
of future directions for this research.

Bayesian Knowledge Bases

A BKB is a collection of conditional probability rules
(CPRs) of the form if A1 = a1, A2 = a2, . . . , An = an,
then B = b with probability p, that satisfies conditions of
normalization and mutual exclusivity that will be formally
defined shortly. In these rules, Ai and B are random vari-
ables and ai and b are instantiations, or states, of those ran-
dom variables. BKBs subsume Bayesian networks (BNs) as
all BNs are representable as BKBs (one can form a BKB
from a BN by making all the conditional probability table
entries in the BN into CPRs in the BKB). In contrast to BNs,
BKBs allow for independence to be specified between states
of random variables instead of between the random variables
themselves. They also do not require that the probability
distribution specified by the rules be complete; inference is
carried out on only those rules that are specified. This allows
for reasoning in the face of incompleteness and alleviates the
burden of filling in large conditional probability tables which
can be especially problematic when all the probabilities for
these tables are not readily available.

Similarly to a BN, a BKB can be represented graphically,
but the graph is not required to be acyclic as with BNs. There
are two types of nodes in a graphically depicted BKB, I-
nodes representing the different instantiations of the random
variables, and S-nodes, or “support nodes”. An example of
a BKB from work on the South Carolina Democratic Pri-
mary election is shown in rule form in Figure 1 and in graph
form in Figure 2. Each solid black circle in Figure 2 is an
S-node and corresponds to exactly one of the CPRs from
Figure 1. The number next to the S-node is its weight. Each
text-filled oval is an I-node corresponding to one state of
one of the random variables. The dependencies shown in
the BKB would result in a circular directed graph at the ran-
dom variable level (Figure 3) and thus would not be a valid
BN. The circular relationship results because black voters

Figure 2: A BKB fragment from a knowledge base about the
South Carolina Democratic Primary election as a directed
graph.

Figure 3: Underlying random variable relationships in Fig-
ure 2.

felt that Hillary Clinton had downplayed Martin Luther King
Jr.’s role in the civil rights movement and this caused them
to support Obama (Shipman 2008). However, some white
voters who liked the Clinton family and supported Hillary
may have been skeptical that she had any ill intentions when
making the remark about Martin Luther King Jr. Similar
to d-separation in BNs, it is possible to determine indepen-
dence semantics from the graph induced by a BKB (Shi-
mony, Santos, and Rosen 2000).

We now give the formal definition of the graphical repre-
sentation of a BKB from (Santos and Dinh 2008):

Definition A correlation-graph is a directed graph G =
(I ∪S, E) in which I ∩S = ∅, E ⊂ {I ×S}∪{S× I}, and
∀q ∈ S, there exists a unique α ∈ I such that (q, α) ∈ E. If
there is a link from q ∈ S to α ∈ I , we say that q supports
α.

An edge (a, b) ∈ E will be denoted as a → b throughout
the rest of the paper. For each S-node q in a correlation
graph G, we denote the set of all I-nodes that point to q as
TailG(q), i.e. TailG(q) = {α ∈ I|α → q ∈ E}. Similarly
the HeadG(q) is the I-node that q points to in G, i.e. the α
such that q → α ∈ E.

Two sets of I-nodes, I1 and I2 are said to be mutually ex-
clusive if there is an I-node (R = v1) in I1 and an I-node
(R = v2) in I2 with v1 	= v2. Intuitively, mutual exclusivity
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is the condition that the two sets I1 and I2 cannot be satis-
fiable at one time (i.e. there must be some random variable
(in this case R) that is given a contradictory assignment in
each of the sets). Similarly, two S-nodes q1 and q2 are called
mutually exclusive if Tail(q1) and Tail(q2) are mutually
exclusive. S-nodes and I-node sets that are not mutually ex-
clusive are called compatible. A state is a set of I-nodes θ
such that there is at most one instantiation of each random
variable in θ.

Definition A Bayesian knowledge base (BKB) is a tuple
K = (G, w) where G = (I ∪ S, E) is a correlation-graph,
and w : S → [0, 1] such that

1. ∀q ∈ S, TailG(q) contains at most one instantiation of
each random variable.

2. For distinct S-nodes q1, q2 ∈ S that support the same I-
node, TailG(q1) and TailG(q2) are mutually exclusive

3. For any Q ⊆ S such that (i) HeadG(q1) and HeadG(q2)
are mutually exclusive, and (ii) TailG(q1) and TailG(q2)
are not mutually exclusive for all q1 and q2 in Q,

∑

q∈Q

w(q) ≤ 1

So a BKB is a correlation graph along with a weight func-
tion (specifying the probabilities in the CPRs) satisfying the
above conditions. The first condition states that no rule can
have two contradictory assignments in its tail. The second
ensures that all S-nodes pointing to the same I-node are mu-
tually exclusive, and the last condition ensures normaliza-
tion of the probabilities.

Reasoning with BKBs takes on two main forms called be-
lief revision and belief updating, similar to reasoning with
BNs (Pearl 1988). Belief revision has also been called the
maximum a posteriori (MAP) or most probable explanation
(MPE). In belief revision we have some evidence in the form
of assignments of random variables to states, e.g. assume
we have a BKB with n variables and k pieces of evidence
A1 = a1, A2 = a2, . . . , Ak = ak. The goal of belief re-
vision is to find the assignment of Ak+1, Ak+2, . . . , An to
states such that P (Ak+1 = ak+1, . . . , An = An|A1 =
a1, . . . , An = ak) is maximized. Intuitively, this can be
thought of as finding the most probable state of the world
that contains all the evidence. In belief updating, the goal
is to find the probability of a state of a random variable
given the evidence. For example, assuming again that
A1 = a1, A2 = a2, . . . , An = ak, we may want to find
P (B = b|A1 = a1, A2 = a2, . . . , An = ak) for some in-
stantiation b of a random variable B.

In BKBs we are often interested in partial states of the
world instead of complete states. In revision, we can com-
pute the most likely partial state of the world (also called the
most probable inference as will be described later), and in
updating, we can find the marginal probability of a partial
state of the world in addition to a single single state of a ran-
dom variable or a complete state of the world. Given that
BKBs support incomplete specification of knowledge, we
may have to make these calculations in the face of this in-
completeness. In these situations, only the information that

has been specified by the knowledge engineer is used in the
calculations.

In carrying out both types of reasononing, we make use of
subgraphs called inferences that capture the joint probability
of the I-nodes in the subgraph. Intuitively, an inference is a
partial state of the world.
Definition Let K = (G, w) be a BKB with correlation
graph G = (I ∪ S, E). A subgraph τ = (I ′ ∪ S′, E′) of
G is called an inference over K if
1. τ is acyclic.
2. (Well-supported) ∀α ∈ I ′, ∃q ∈ S′, q → α ∈ E′

3. (Well-founded) ∀q ∈ S′, Tailτ (q) = TailG(q)
4. (Well-defined) ∀q ∈ S′, Headτ (q) = HeadG(q)
5. There is at most one I-node corresponding to any given

random variable in I ′.
The properties above state that in an inference, (2) each I-

node must have an S-node pointing to it, (3) if an S-node in
the inference has any I-nodes pointing to it in the correlation
graph they must also be in the inference, (4) there cannot
be S-nodes in the inference that do not point to any I-nodes
in the inference, and (5) there cannot be mutually exclusive
I-nodes in an inference. The joint probability of the set of
I-nodes in an inference is simply the product of the weights
of all S-nodes in the inference, i.e. for an inference τ =
(I ′ ∪ S′, E′), P (τ) =

∏
q∈S′ w(q).

The Fusion Algorithm

In this section, we will define an algorithm that takes multi-
ple Bayesian knowledge fragments as input and fuses them
into one larger BKF. Each BKF is assumed to come from a
distinct expert source. The reliability and probability of cor-
rectness of each source is assessed to produce a reliability
index for each fragment allowing more reliable sources to
be given more weight in the fused BKF. As long as the in-
put fragments are valid BKBs, the algorithm assures that the
fusion of these BKBs is still a valid BKB. A BKF can thus
be described as a BKB along with a source and its reliability
index, i.e. it can be described as a tuple K = (G, w, σ, r(σ))
where G and w define a valid BKB, σ is the source of the
BKB, and r(σ) is the reliability index, a non-negative real
number denoting the reliability of the source.

The idea behind the algorithm is to first take the union of
all input fragments. Then for each random variable A in the
fused BKF we create a new random variable SA representing
the source of a rule supporting an I-node representing a state
of A. Each S-Node that points to a state of A has an I-node
added to its tail called a source node whose random variable
is SA and whose state is σ, the source of the fragment the S-
node came from. The reliability of this source node is r(σ),
the reliability of the fragment that the S-node came from. So
if a rule q supporting (A = a) is from source σ, we would
add the I-node (SA = σ) to the tail of q in the fused BKF.
We also add an S-node q′ to the fused BKF whose head is
(SA = σ). The weight of this S-node is proportional to the
reliability index r(σ) for the source, normalized so that the
weights of all sources for a given random variable cannot
exceed 1.
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Figure 4: Naive union of two fragments results in a violation
of mutual exclusivity.

In addition to allowing us to keep track of sources in the
model, the source nodes also resolve problems that could
occur if we decided to just take the simple union of several
fragments. Consider the two fragments in Figure 4 (a) and
(b) whose naive union is shown in 4 (c). We can see that
this is not a valid BKB because the two S-nodes supporting
(A = a) are not mutually exclusive. If we add in source
nodes as in Figure 5 we can see that the S-nodes are now
mutually exclusive because the source nodes in the tails of
the random variables cannot both be true at the same time.
The algorithm also solves normalization problems that may
occur after fusion. There is a danger of violating property
(3) in the definition of a BKB above and ending up with
probabilities that can sum to more than 1 using a naive fu-
sion approach, but the source nodes prevent this. Intuitively,
adding a source node turns a rule that says “If A is true then
B with probability p” into a rule that says “If source σ is
correct and A is true, then B with probability p”.

The algorithm can be described more formally as fol-
lows. The input is a set of n BKFs, {K1, K2, . . . , Kn}
where Ki = (Gi, wi, σi, r(σi)). The output is a new BKB,
K ′ = (G′, w′) with G′ = (I ′ ∪ S′, E′), that is the fusion of
the n input BKFs. For an I-node α in some fragment, let Rα

be the random variable that α is an instantiation of.

BAYESIAN-KNOWLEDGE-FUSION(K1, K2, . . . , Kn)
1 Let G′ = (I ′, S′, E′) be an empty correlation graph
2 for all fragments Ki with i ← 1 to n
3 for all S-nodes q ∈ Si

4 Let α ← HeadGi(q)
5 Let the source I-node for q
6 be s = (SRα

= σi)
7 Add q, all nodes connected to q in Gi,
8 and the corresponding edges to G′
9 Add s to G′ along with an S-node

10 supporting it
11 Let ρ be a normalizing constant
12 for all S-nodes q′ supporting some source node s
13 Let w′(q′) ← r(s)/ρ
14 return K ′ = (G′, w′)

To compute the normalizing constant ρ we compute for
each random variable R, the sum of the reliabilities of all
source nodes supporting an instantiation of R. ρ is then set
to the maximum of these sums.

Figure 5: Fusion of the two fragments from Figure 4 us-
ing our Bayesian knowledge fusion algorithm solves mutual
exclusivity problem.

Algorithm Properties

As long as the fragments that are input into the algorithm
are themselves valid BKBs, the output of the algorithm will
also be a valid BKB. To prove this we need to show that the
conditions in the definition of a BKB are satisfied.
Theorem 1 The output K ′ = (G′, w′) of
BAYESIAN-KNOWLEDGE-FUSION is a valid BKB.

We now sketch the proof of this theorem:
Proof The fused BKB is clearly a correlation-graph with
a weight function, so the other three properies are all that
remain to be shown.

1. There is at most one instantiation of each random variable
in the tail of any S-node because we added only one I-
node to each tail and it is of a random variable that did
not previously exist.

2. (Mutual exclusivity) Let qi be any S-node in G′ and as-
sume it came from input fragment Ki and has head (R =
v). If there are any other S-nodes from Ki with the same
head, they are mutually exclusive with q since Ki is itself
a BKB and S-nodes with the same head in a BKB must
be mutually exclusive. Other S-nodes with the same head
that originate from a fragment other than i are still mutu-
ally exclusive with qi because each has a source random
variable, SR in its tail with different states (corresponding
to the fragment the S-node originated from).

3. (Normalization): Now we need to show for any set of mu-
tually exclusive S-nodes with compatible tails, the sum of
the weights is less than 1. Any such set will have have
all S-nodes pointing to I-nodes of the same variable (or
else wouldn’t be mutually exclusive). Assume that ran-
dom variable is a source variable, then the normalization
step in the algorithm forces the sum of their weights to
be less than or equal to 1. If the set points to some other
random variable, all S-nodes in the set must be from the
same fragment because S-nodes from different fragments
would have source nodes in their tail with different in-
stantiations, making the tails mutually exclusive (and so
not compatible).

Therefore the result of the fusion algorithm is a valid BKB.
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Now that we know the result of the fusion algorithm is a
valid BKB if all input fragments are valid BKBs, it is inter-
esting to ask what other properties of the input fragments are
preserved by the algorithm. One property that we know is
preserved is groundedness.

Definition A node a ∈ I ∪ S in a BKB is said to be
grounded if there exists an inference τ over the BKB such
that a is in τ .

Groundedness is a desirable property because if an S-node
remains grounded during changes to the knowledge base, the
initial probability assigned to it is preserved (Santos, Santos,
and Shimony 2003).

Theorem 2 If all S-nodes in the input fragments are
grounded in their respective fragments, then all S-nodes in
the fusion of these fragments, K ′, are grounded in K ′.

We now sketch a proof of this theorem:

Proof Let q ∈ S′ be an S-node originally from fragment
Ki, then there is a subgraph τ that is an inference over Ki

such that q ∈ τ . We will construct a new subgraph τ ′ ⊃ τ
that is an inference over K ′. For each S-node q′ ∈ τ , the
fusion algorithm added a corresponding source node, call it
α′ to the fused BKB. Add α′ along with the edge α′ → q′ to
the new inference τ ′ along with α′’s source node.

We claim that this new subgraph, τ ′ is an inference that
contains q. It is identical to τ except for the addition of the
source nodes and their supports. As a result, it is acyclic
as required by the definition of an inference (since τ was
acyclic and the source nodes’ supports have an empty tail).
We only added one I-node and we also added a support for it
(so τ ′ is well-supported). We only added one S-node with no
ancestors in the BKB, so τ ′ is well-founded, but it has one
child (the source node), so it is well-defined. Finally all I-
nodes added to τ ′ are from distinct random variables that are
not found in τ , so there is at most one I-node corresponding
to a given random variable in the BKB. Therefore τ ′ is an
inference.

In addition to groundedness of S-nodes we are also inter-
ested in whether I-nodes or sets of I-nodes participate in any
inferences.

Corollary 3 If all S-nodes in the input BKBs are grounded
in their respective BKBs, then all I-nodes in K ′ are
grounded in K ′.

Proof Assume α is an I-node in K ′, then it must be in either
the head or the tail of some S-node q. By the previous result,
q is in some inference τ ′ in the fused BKB. Since τ ′ is well-
founded and well-defined, the head and tail of q in K ′ must
also be in τ ′. Therefore α is in τ ′ and so α is grounded.

This establishes that single I-nodes remain grounded in
the fused BKB, but what about sets of I-nodes?

Definition A state θ is well-represented in a BKB K if there
exists an inference τ = (I ′ ∪ S′, E) over K whose I-node
set I ′ coincides with θ, i.e. if θ ⊆ I ′.

Similar to groundedness, we can show that the fusion al-
gorithm also preserves well-representedness:

Figure 6: Fragments from two different doctors on the left.
The BKB resulting from their fusion is shown on the right.

Figure 7: Most probable inference from BKB in Figure 6
with evidence (A = yes) contains the original nodes (cen-
ter) and the source nodes that were used to support them.

Corollary 4 All well-represented states in the input frag-
ments are well-represented in K ′.

Proof If a state θ was well-represented in some fragment
Ki then it was in an inference τ in Ki. After the fusion
process it is also in the inference τ ′ discussed in proof of the
previous theorem.

Examples

Now, an example of how the fusion process can be used to
aggregate information from multiple experts will be given in
this section. Assume there are two doctors asked to provide
rules to a diagnosis system. They do not have much time
to help so they each provide only a few simple rules. The
provided fragments are shown on the left of Figure 6. The
fusion of these two fragments is shown on the right of the
same figure. In the fragments, random variables A, B, and
C correspond to symptoms, and disease is a random variable
representing the possible diseases a patient may have.
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If we are presented with a patient who has symptom A, we
can perform belief revision on the fragments to infer a likely
disease. From fragment 1 we would conclude the patient
had d1. From fragment 2 we would not be able to make
any conclusions, but from the fusion of the two fragments
we would see that d2 was most likely. This would be done
by performing belief revision on each BKB to find the most
probable inference containing the evidence that (A = yes).
The result of belief revision on the fused BKB in Figure 6 is
shown in Figure 7. The setting of each random variable in
the most probable inference is shown. Each source random
variable is also assigned to a state indicating which source
was used to support the truth of the random variable. The
output can be interpreted: The most likely symptoms are A,
B, and C. The source of the rule supporting A was 1, and
the source of the rule supporting B, C, and the disease was
2 in this inference.

The authors have used the fusion process in modeling
multiple real world scenarios. In one instance the conflict
between gangs and the government in Haiti was modeled.
In another the South Carolina Democratic primary election
was studied. In both cases many sources were used such as
news reports, blogs, and expert analysis. A fragment was
created from each of the sources and then they were fused
for analysis. The fusion algorithm proved especially help-
ful in two regards. First it was simply too difficult to work
with a network the size of the final fused BKB, it was much
easier to deal with each of the fragments separately. Second,
there were often multiple violations of the mutual exclusiv-
ity condition between any two fragments neccesitating ei-
ther a change in the fragments or an algorithm such as ours
in order to aggregate them.

As a note, the fusion algorithm will work on Bayesian
networks as well as BKBs, but when you fuse BNs, you
will most likely end up with a BKB, not a BN, after the
fusion. Cycles may be introduced violating the acyclicity
of BNs, and rules will almost certainly be missing from the
fused network making it an invalid BN, but still a valid BKB.
However, the resulting BKB will be probabilistically com-
plete in that there will exist a set of mutually exclusive in-
ferences whose probabilities sum to one.

Conclusion and Future Work
In this paper we introduced an algorithm to fuse several
Bayesian knowledge fragments into one BKB. This allows
the easy aggregation and de-aggregation of chunks of infor-
mation from multiple sources. The fusion was shown to
produce a valid BKB that preserves the rules in the input
fragments and their groundedness. The fusion process also
allows for the tracking of sources and construction of ex-
planations that contain rules from multiple experts, forming
an explanation with greater likelihood than one formed from
rules taken from a single expert in isolation. The algorithm
allows for disagreement and even circularity in the rules pro-
vided by different sources.

Future research in this area will further investigate the
properties of fused knowledge bases and also identify pos-
sible applications to demonstrate their usefulness. One par-
ticular problem that will be addressed is the validation of

fused BKBs. Previous work has looked at how to validate
the correctness of a single BKB with regard to a set of test
cases (Santos 2001; Santos and Dinh 2008). Given a set of
fragments that all pass their own individual test cases, we
will investigate under what conditions it can be guaranteed
that the fused BKB will also be able to pass these test cases.
In particular, if the fused BKB does not pass all test cases,
is there a way of adjusting the reliabilities of the input frag-
ments so that it does pass?
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