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Abstract 
We propose CMRULES, an algorithm for mining sequential 
rules common to many sequences in sequence databases 
not for mining rules appearing frequently in sequences. For 
this reason, the algorithm does not use a sliding window 
approach. Instead, it first finds association rules to prune the 
search space for items that occur jointly in many sequences. 
Then it eliminates association rules that do not meet 
minimum confidence and support thresholds according to 
the time ordering. We evaluated the performance of 
CMRULES in three different ways. First, we provide an 
analysis of its time complexity. Second, we compared its 
performance on a public dataset with a variation of an 
algorithm from the literature. Results show that CMRULES 
is more efficient for low support thresholds, and has a better 
scalability. Lastly, we report a real application of the 
algorithm in a complex system. 

 Introduction   
Discovering temporal relationships between events stored 
in large databases is important in many domains, as it 
provides a better understanding of the relations between 
events, and sets a basis for the prediction of events. For 
example, in international trade, one could be interested in 
discovering relations between the appreciation of 
currencies to make trade decisions. Various methods have 
been proposed for mining temporal relations between 
events in databases (see for example Laxman & Sastry, 
2006, for a survey). 
 In the field of data mining, one of the most popular set 
of techniques for discovering temporal relations between 
events in discrete time series is sequential pattern mining 
(Agrawal & Srikant, 1995), which consists of finding 
sequences of events that appear frequently in a sequence 
database. However, knowing that a sequence of events 
appear frequently in a database is not sufficient for the 
prediction of events. For example, it is possible that some 
event y appears frequently after an event x but that there 
are also many cases where x is not followed by y. In this 
case, predicting that y will occur if x occurs on the basis of 
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a sequential pattern x,y could be a huge mistake. Thus, for 
prediction, it is desirable to have patterns that indicate how 
many times x appeared before y and how many times x 
appeared and y did not. But adding this information to 
sequential patterns cannot be done easily as sequential 
patterns are lists of events that can contain several events – 
not just two, as in the previous example– and current 
algorithms have just not been designed for this. 
 The alternative to sequential pattern mining that address 
the problem of prediction is sequential rule mining 
(Mannila et al., 1997; Das et al., 1998; Harms et al., 2002; 
Hamilton et al., 2005; Hsieh et al., 2006; Deogun & Jiang, 
2005). A sequential rule (also called episode rule, temporal 
rule or prediction rule) indicates that if some event(s) 
occurred, some other event(s) are likely to occur with a 
given confidence or probability Sequential rule mining has 
been applied in several domains such as stock market 
analysis (Das et al., 1998; Hsieh et al., 2006), weather 
observation (Hamilton & Karimi, 2005) and drought 
management (Harms et al, 2002; Deogun & Jiang, 2005). 
 The most famous approach for sequential rule mining is 
that of Mannila et al. (1997) and other researchers 
afterward that aim at discovering partially ordered sets of 
events appearing frequently within a time window in a 
sequence of events. Given these “frequent episodes”, a 
trivial algorithm can derive sequential rules respecting a 
minimal confidence and support (Mannila et al., 1997). 
These rules are of the form  X Y, where X and Y are two 
sets of events, and are interpreted as “if event(s) X appears, 
event(s) Y are likely to occur with a given confidence 
afterward”. However, their work can only discover rules in 
a single sequence of events. Other works that extract 
sequential rules from a single sequence of events are the 
algorithms of Hamilton & Karimi (2005), Hsieh et al. 
(2006) and Deogun & Jiang (2005), which respectively 
discover rules between several events and a single event, 
between two events, and between several events  
 Contrarily to these works that discover rules in a single 
sequence of events, a few works have been designed for 
mining sequential rules in several sequences (Das et al., 
1998; Harms et al., 2002). For example, Das et al. (1998) 
discovers rules where the left part of a rule can have 
multiple events, yet the right part still has to contain a 
single event. This is a serious limitation, as in real-life 
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applications, sequential relationships can involve several 
events. Moreover, the algorithm of Das et al. (1998) is 
highly inefficient as it tests all possible rules, without any 
strategy for pruning the search space. To our knowledge, 
only the algorithm of Harms et al. (2002) discovers 
sequential rules from sequence databases, and does not 
restrict the number of events contained in each rule. It 
searches for rules with a confidence and a support higher 
or equal to user-specified thresholds. The support of a rule 
is here defined as the number of times that the right part 
occurs after the left part within user-defined time windows.  
 However, one important limitation of the algorithms of 
Das et al., (1998) and Harms et al. (2002) comes from the 
fact that they are designed for mining rules occurring 
frequently in sequences. As a consequence, these 
algorithms are inadequate for discovering rules common to 
many sequences. We illustrate this with an example. 
Consider a sequence database where each sequence 
corresponds to a customer, and each event represents the 
items bought during a particular day. Suppose that one 
wishes to mine sequential rules that are common to many 
customers. The algorithms of Das et al. (1998) and Harms 
et al. (2002) are inappropriate since a rule that appears 
many times in the same sequence could have a high 
support even if it does not appear in any other sequences. 
A second example is the application domain of this paper. 
We have built an intelligent tutoring agent that records a 
sequence of events for each of its executions. We wish that 
the tutoring agent discovers sequential rules between 
events, common to several of its executions, so that the 
agent can thereafter use the rules for prediction during its 
following execution.  
 In this paper, we address this problem by proposing an 
algorithm specifically designed for mining sequential rules 
common to many sequences, and that does not restrict the 
number of events in each rule. Because it has a different 
purpose, the algorithm does not rely on a sliding-window 
approach. Instead it finds associations rules between items 
to prune the search space to items that occur jointly in 
many sequences. Then it eliminates association rules that 
do not meet minimum confidence and support thresholds 
according to the time ordering. In this paper, we prove that 
this correctly discovers all sequential rules if parameters 
for mining association rules are chosen correctly.  
 The paper is organized as follows. The next section 
gives a brief overview of the problem of association rule 
mining, defines the problem of mining sequential rules 
common to many sequences, and analyzes the relation 
between sequential rules and association rules. Next the 
third section presents our algorithm based on association 
rule mining, a proof that if the confidence and support are 
chosen correctly the set of all sequential rules is found, and 
an analysis of the algorithm’s time complexity. The fourth 
section presents an evaluation of the algorithm with a real 
dataset and an application in a complex system for 
providing help to students during learning activities. 
Finally, the last section draws a conclusion. 

Background and Problem Definition 
Association rule mining (Agrawal et al., 1993) is a popular 
knowledge discovery technique for discovering 
associations between items from a transaction database. 
Formally, a transaction database D is defined as a set of 
transactions T={t1,t2…tn} and a set of items I={i1, i2,…in}, 
where t1,t2,…,tn  I. The support of an itemset X  I for a 
database is denoted as sup(X) and is calculated as the 
number of transactions that contains X. The problem of 
mining association rules from a transaction database is to 
find all association rules X→Y, such that X,Y  I, 
X∩Y= , and that the rules respect some minimal 
interestingness criteria. The two interestingness criteria 
initially proposed (Agrawal et al. 1993) are that mined 
rules have a support greater or equal to a user-defined 
threshold minsup and a confidence greater or equal to a 
user-defined threshold minconf. The support of a rule 
X→Y is defined as sup(X  Y) / |T|. The confidence of a 
rule is defined as conf(X→Y) = sup(X  Y) / sup(X). 
Since |T| ≥ sup(X)  for any X I, the relation conf(r) ≥ 
sup(r) hold for any association rule r.  

Association rules are mined from transaction databases. 
A generalization of a transaction database that contains 
time information about the occurrence of items is a 
sequence database (Agrawal & Srikant, 1995). A sequence 
database SD is defined as a set of sequences S={s1, s2…sn} 
and a set of items I={i1, i2,…in}, where each sequence sx is 
an ordered list of transactions sx={X1, X2, … Xn} such that 
X1, X2, …Xn  I .  

We propose the following definition of a sequential rule 
to be discovered in a sequence database. A sequential rule 
X Y is a relationship between two itemsets X,Y such that 
X,Y  I and X∩Y = . The interpretation of a rule X Y is 
that if the items of X occur in some transactions of a 
sequence, the items in Y will occur in some transactions 
afterward from the same sequence. Note that there is no 
ordering restriction between items in X and between items 
in Y. We define two interestingness measures for such a 
rule, which are an adaptation for multiple sequences of the 
measures used for other sequential rule mining algorithms 
(Mannila et al., 1997; Das et al., 1998; Harms et al., 2002). 
The first measure is the rule’s sequential support and is 
defined as: seqSup(X  Y) = sup(X■Y) / |S|. The second 
measure is the rule’s sequential confidence and is defined 
as: seqConf(X  Y) =  sup(X■Y) / sup(X). Here, the 
notation sup(X■Y) denotes the number of sequences from 
a sequence database where all the items of X appear before 
all the items of Y (note that items from X or from Y do not 
need to be in the same transaction). The notation sup(X) 
represents the number of sequences that contains X. Since 
|S| ≥ sup(X) for any X ⊆ I , the relation seqConf(r) ≥ 
seqSup(r) holds for any sequential rule r. We define the 
problem of mining sequential rules common to several 
sequences as the problem of finding all sequential rules 
from a sequence database such that their sequential support 
and sequential confidence are respectively higher or equal 
to some user-defined threshold minSeqSup and 
minSeqConf. As an example, figure 1 shows a sequence 
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database containing four transactions and some sequential 
rules found with minSeqSup = 0.5 and minSeqConf = 0.5. 

  

 
Figure 1: A sequence database (left) and sequential rules 

found (right). 
 

 Note that the problem of mining sequential rules is 
largely different from the one of mining sequential 
patterns, since there is no time ordering inside itemsets of 
sequential rules. Therefore it is not possible to simply 
adapt a sequential pattern mining algorithm for generating 
these sequential rules. 

Instead, the algorithm that we proposed in this paper is 
based on the observation that if we ignore or remove the 
time information of a sequence database SD, we obtain a 
transaction database SD’. For each sequence database SD 
and its corresponding transaction database SD’, each 
sequential rule r: X Y of S has a corresponding 
association rule r’: X→Y in S’. Since sup(X■Y) is always 
lower or equal to sup(X Y) the relationships (1) sup(r’) ≥ 
seqSup(r) and conf(r’) ≥ seqConf(r), hold for any 
sequential rule r and its corresponding association rule r’. 

An Algorithm for Mining Sequential Rules 
Based on the previous observations of the relationship 
between sequential rules and association rules, we propose 
the following algorithm for mining sequential rules. The 
algorithm is presented in figure 2. We name this algorithm 
CMRULES. Figure 3 shows a sample execution with a 
sequence database containing four sequences. 

Figure 2: The CMRULES algorithm 

 The algorithm takes as input a sequence database and 
the minSeqSup and minSeqConf thresholds and outputs the 
set of all sequential rules in the database respecting these 
thresholds. CMRULES starts by ignoring the sequential 

information from the sequence database to obtain a 
transaction database (fig. 2 and 3. Step 1). It then applies 
an association rule mining algorithm to discover all 
association rules from this transaction database with 
minsup = minSeqSup and minconf = minSeqConf (fig. 2 
and 3. Step 2). Then, CMRULES calculates the sequential 
support and sequential confidence of each association rule 
by scanning the sequence database, and then eliminate the 
rules that do not meet the minSeqSup and minSeqConf 
minimum thresholds (fig. 2 and 3. Step 3). The set of rules 
that is kept is the set of all sequential rules.  

Figure 3: A sample execution of the CMRULES algorithm 

Proof of Completeness 
We now show that the CMRULES can find all sequential 
rules. To prove this, we have to demonstrate that the set of 
association rules contains the set of all sequential rules. 
This is proven next. 
Theorem 1. The algorithm discovers all sequential rules 
for a given minSeqConf and minSeqSup if we choose 
minconf ≤ minSeqConf and minsup ≤ minSeqSup. 
Proof. To prove this, we can consider the sequential 
support and sequential confidence interestingness measures 
separately, without loss of generality. 

Let’s first consider the sequential support. Suppose 
there is a sequential rule r such that seqSup(r) ≥ minSeqSup 
and minsup > sup(r’) (we suppose that the corresponding 
association rule  is not frequent). We know that sup(r’) ≥ 
seqSup(r). Therefore, it follows that minsup > sup(r’) ≥ 
seqSup(r) ≥ minSeqSup. Thus, minsup ≥ minSeqSup. 
Therefore, if we choose minSeqSup ≥ minsup there will be 
no such rule r. 

Now consider the sequential confidence. Suppose there 
is a sequential rule r such that seqConf(r) ≥ minSeqConf 
and that minconf > conf(r’). We know that conf(r’) ≥ 
seqConf(r).  Therefore minconf > conf(r’) > seqConf(r) ≥ 
minSeqConf. Therefore, if we choose minSeqConf ≥ 
minconf  there will be no such rule r. 
Corollary 1. The algorithm is more effective if we choose 
minconf = minSeqConf and minsup = minSeqSup. 

 
 

 

 
 

 

INPUT : a sequence database, minSeqSup, minSeqConf 
OUTPUT : the set of all sequential rules  
PROCEDURE: 
1. Consider the sequence database as a transaction database 
2. Find all association rules from the transaction database by 

applying an association rule mining algorithm such as Apriori 
(Agrawal et al., 1993). Select minsup  minSeqSup  and 
minconf   minSeqConf. 

3. Scan the original sequence database to calculate the sequential 
support and sequential confidence of each association rule 
found in the previous step. Eliminate each rule r such that: 

a. seqSup(r) < minSeqSup 
b. seqConf(r) < minSeqConf 

4. Return the set of rules 
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Proof: In association rules mining, the lower minsup or 
minconf is, the more rules can be found, and the more 
computation can be required. Therefore, for our algorithm 
it is best to select the highest possible value for minsup and 
minconf  that will discover association rules containing all 
desired sequential rules. In Theorem 1, we found that these 
values are bound by minSeqConf and minSeqSup, to have a 
guarantee that all sequential rules will be found. Therefore, 
the highest value that one can give to minconf  and minsup 
are respectively minSeqConf and minSeqSup. 

Implementing Step 3 Efficiently  
We now describe how to implement Step 3 of the 
CMRULES algorithm efficiently. The naive approach 
would be to take each sequence and check if each 
association rule X→Y is contained in it to calculate the 
sup(X■Y) value that is necessary for calculating the 
sequential confidence and sequential support. Checking if a 
rule is contained in a sequence is done in linear time (a 
sequence can be scanned one time from left to right to see 
if X occurs, and Y occurs afterward). However, checking if 
each rule is contained in each sequence is inefficient. We 
describe next how to minimize the number of sequences to 
be checked for each rule. But we first need to explain how 
association rule mining is performed. 

To generate association rules, one needs to apply an 
algorithm such as Apriori (Agrawal et al., 1993). 
Algorithms for association rule mining proceed in two 
steps (Agrawal et al., 1993). They first discover frequent 
itemsets, and then use them to generate association rules. A 
frequent itemset is an itemset that appear more than 

 times in a transaction database. The support of an 
itemset is defined as the number of transactions that 
contains it. Generating association rules is then done by 
selecting pairs of frequent itemsets X and Y such that X  
Y, to generate rules of the form X→Y-X (see Agrawal et 
al., 1993 for a fast algorithm).  

Now, to implement efficiently step 3 of CMRULES, we 
need to modify the frequent itemset mining algorithm so 
that each itemset X found is annotated with the set of 
transactions that contains it. This is a trivial modification 
for an algorithm such as Apriori (Agrawal et al., 1993) (in 
the case of Apriori, this variation is known as Apriori-TID; 
cf. Agrawal et al., 1993).  Having this extra information 
about frequent itemsets, Step 3 can be performed 
efficiently by checking each rule X→Y only against the 
sequences that contain its left itemset X. This will allow 
calculating correctly the sequential support and sequential 
confidence of the rule, since sup(X■Y) can be calculated 
by checking only with the sequences containing X (by the 
definition of sup(X■Y), and the other terms for calculating 
the sequential support and confidence (sup(X) and |S|) are 
known. In our tests, this simple optimization improved step 
3’s performance by up to 50%. 

Reducing Memory Consumption 
It is possible to merge Step 2 and Step 3 of CMRULES so 
that each association rule that is generated is immediately 
checked for its sequential support and confidence. This 
allows considering only one association rule at a time in 
central memory. Therefore, the set of all association rules 
does not need to be stored. This greatly reduces memory 
consumption and also makes the algorithm faster. 
Moreover, sequential rules can be saved to disk 
immediately after being found, and if one wish to keep 
association rules, these latter can also be written to the disk 
at the same time. This implementation strategy greatly 
reduces the memory requirement of the algorithm. 
 
Analysis of the Time complexity 
We here provide a brief analysis of the time complexity of 
CMRULES. First, the time complexity of converting a 
sequence database in a transaction database (Step 1 of) is 
linear with respect to the number of sequences and their 
size.  
  The time complexity of Step 2 is more difficult to 
establish. It depends on the association rule mining 
algorithm that is used. As explained previously, mining 
association rule is done in two steps: mining frequent 
itemsets and generating rules. The first step is the most 
costly (Agrawal et al., 1993), so it is adequate to ignore the 
second step for estimating time complexity. If we use the 
Apriori algorithm for mining frequent itemsets, the time 
complexity is Ο(d2 n) where d is the number of different 
items and n is the number of transactions in the database 
(see Hegland, 2007 for a proof). In our implementation, we 
used Apriori-TID a variation that performs slightly better 
for some datasets (Agrawal et al., 1993) and has a similar 
time complexity (Hegland, 2007).  

Step 3 of CMRULES checks each candidate rule against 
the set of sequences that contains its antecedent (as 
explained). In the best case and worst case, there are 
respectively |S| × minsup sequences, and |S| sequences to 
be checked for each rule. Checking if a rule is contained in 
a sequence is done in linear time. Thus, the time 
complexity of step 3 is linear with respect to the number of 
sequences that contain the antecedent of each rule, the size 
of each sequence and the total number of rules. 

Evaluation of the Algorithm 
We have implemented CMRULES in the Java 
programming language. We describe next its evaluation 
with a real dataset, and an application of the algorithm.  

Evaluation of the Algorithm with  the Kosarak 
Dataset 
To evaluate the performance of the algorithm, we 
compared its performance with a second algorithm on a 
real dataset. The second algorithm is the one of Deogun et 
al. (2005). Although this latter was proposed for mining 
sequential rules in a single sequence, it is easy to adapt it 
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for the case of mining rules common to multiple 
sequences. We have adapted it, and implemented it in the 
Java programming language. Since space is limited, we 
will only briefly describe our adaptation.  
 The algorithm proceeds as follow. It first finds all rules 
where the left and right sides contain a single item. This is 
done by counting the support of each items of size one by 
scanning the sequence database one time. Then, for each 
pair of frequent items x,y appearing in at least minSeqSup 
same sequences, the algorithm generate candidates rules 
{x} y} and {y} x}. These rules are then evaluated by 
calculating their sequential support and confidence to see if 
they respect minSeqSup and minSeqConf. Calculating the 
sequential support and confidence is done exactly as in 
Step 3 of our algorithm. Once, these rules are found, the 
algorithm then recursively find larger candidate rules by 
combining rules of smaller size in a level-wise manner 
(similar to Apriori). This is done by two separate 
processes. Left-side expansion is the process of taking two 
candidate rules X Y and Z , where X and Z are 
itemsets of size n sharing n-1 items, to generate a new 
larger candidate rule X  . Right-side expansion is the 
process of taking two candidate rules Y X and Y Z, 
where X and Z are itemsets of size n sharing n 1 items, to 
generate a new larger candidate rule Y  X Z. After 
candidate rules are generated by left/right side expansion 
their sequential support and confidence are calculated by 
scanning sequences. To prune the search space for 
candidate rules, it can be shown easily that expanding the 
left side of a rule not respecting minSeqSup will not result 
in valid sequential rules, and that expanding the right side 
of a rule not respecting minSeqSup or minSeqConf will not 
generate valid sequential rules. Also, by using a 
lexicographic ordering of items in itemsets, it can be 
shown that no candidate rule will be generated twice. It is 
important to note that the algorithm of Deogun et al. is 
designed to find a subset of all the sequential rules (that is 
not a lossless representation of all sequential rules), and 
that we have adapted it to find all sequential rules. 
 To compare the performance of both algorithms, we 
have used Kosarak, a public dataset available from 
http://fimi.cs.helsinki.fi/data/. It contains 990 000 click-
stream data from the logs of online news portal. In a first 
experiment, we selected the 70 000 first sequences of the 
dataset. These sequences contain an average of 7.97 items 
each, from a set of 21 144 different items. We applied the 
algorithms on this dataset with minSeqConf = 0.3 and with 
minSeqSup = 0.02, 0.019, ..., 0.003.  
 Figure 4.a shows the time required for running 
CMRULES and the time for executing the adaptation of 
the Deogun et al. algorithm (Algo 2). From this figure we 
can see that for high support, both algorithms have similar 
performance. But for lower support thresholds CMRULES 
is much faster. For example, whereas for minSeqSup = 0.02 
both algorithms provides similar performance, for 
minSeqSup = 0.004 our algorithm is more than five times 
faster. This shows that CMRULES has a better scalability. 

 During the experiment, we also measured the number of 
association rules and sequential rules discovered for each 
value of minSeqSup. Figure 4.b illustrates these results. 
The number of sequential rules ranged from 11 to 20 % of 
all the association rules. This shows that the percentage of 
sequential rules can be quite high in real datasets. For 
example, for a minSeqSup of 0.02, there is 312 association 
rules and 64 sequential rules (20.51 %), and for a 
minSeqSup of 0.003, there is 21 947 association rules and 2 
512 sequential rules (11.44%). We also observed that 
execution time of our algorithm seems to grow 
proportionally to the number of association rules. Lastly, 
we observed that the time for converting the sequence 
database in a transaction database (step 1 of our algorithm) 
is negligible (around 300 ms). We have performed other 
experiments on Kosarak that have shown the same trends. 
Due to space limitation they are not described in this paper. 

   
Figure 4: Result of experiment with the Kosarak dataset  

Application of the Algorithm in an Intelligent 
Tutoring Agent 
To further evaluate the algorithm and demonstrate its 
utility, we used it for a real application. We integrated the 
algorithm in an intelligent tutoring agent named CTS 
(Faghihi et al., 2010), designed for providing assistance to 
learners during learning activities in virtual environments. 
CTS is currently used for CanadarmTutor (Kabanza et al., 
2010), a simulator-based tutoring system for learning to 
operate the Canadarm2 robotic arm, deployed on the 
international space station. During training sessions, CTS 
interacts with learners through a dialogue comprising hints, 
questions and explanations. CTS takes pedagogical 
decisions by relying on rules encoded in a structure named 
“the Behavior Network”, authored by humans (Faghihi et 
al., 2010).  
 We have integrated the algorithm in CTS to provide it 
with the capability of learning relations between events. To 
do so, we have modified CTS so that it records each of its 
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executions in a sequence database. Each sequence contains 
the information that CTS perceived and the decisions that 
it took during one execution. We have also modified CTS 
so that it applies the algorithm after each execution to 
discover sequential rules common to several executions. 
We conducted a short experiment in which we performed 
100 executions of CTS. During these executions, we 
responded to the questions posed by CTS. This resulted in 
a sequence database of 100 sequences with an average 
length of 25 itemsets. The algorithm was executed after 
each execution starting from the fourth execution. On 
average, sequential rules represented 31.05 % of all 
association rules, and the average number of sequential 
rules was 27. The execution time of the algorithm was 
short (less than 50 ms). CTS found several relevant 
sequential rules such as “the learner move the wrong joint 

 the learner makes the robotic arm pass too close to the 
space station” and “the learner lacks motivation  the 
learner is inactive”. CTS then used the learned rules to 
adapt its behavior by making suggestions to learners such 
as to review the arm manipulation procedure or by 
generating encouragements. Overall, we observed that the 
behavior of CTS improved. However, we have not yet 
measured quantitatively how this new version of CTS 
influences the learning of students. We briefly describe 
here this experiment to illustrate an application of the 
algorithm. The reader can refer to a full paper describing 
this application for more details (Faghihi et al., 2010).  

Conclusion 
This paper presented CMRULES, an algorithm for mining 
sequential rules common to several sequences in sequence 
databases.  

Because the algorithm is based on association rule 
mining it is very efficient if one wishes to discover both 
association rules and sequential rules in a database, as both 
are discovered at the same time. Moreover, it is possible to 
enhance the capability of CMRULES by choosing a 
particular association rule mining algorithm having this 
capability. For instance, if one implements CMRULES by 
using an incremental association rule mining algorithm 
such as the one of Cheung et al. (1996), the result would be 
an incremental algorithm for mining sequential rules. 
Besides this type  of extensions, many others are possible 
by modifying the code for checking if a rule is included in 
a sequence. For example, one could easily modify the 
definition of sup(X■Y) so that the antecedent and 
consequent of a rule have to occur within a given time 
frame, as it is proposed in the works of Mannila et al. 
(1997), Das et al. (1998) and Harms et al. (2002). 

We evaluated the performance of our algorithm in three 
different ways. We first analysed its time complexity. 
Second, we measured its performance with Kosarak, a 
large public dataset of click-streams data from the logs of 
an online news portal. With this experiment, we 
empirically observed that (1) our algorithm has a better 
scalability than the Deogun et al. algorithm adapted for the 

same task and (2) that the time required for mining 
sequential rules seems to be proportional to the number of 
association rules. We can expect that our algorithm will 
perform better on datasets in which the percentage of 
association rules that are sequential rules is higher, as 
fewer rules will be rejected. On this point, it is encouraging 
that in our experiment this percentage was always between 
10 and 20 %. Finally, we have presented an application of 
the algorithm in an intelligent tutoring agent. Thanks to the 
algorithm, the agent can now learn relationships between 
events common to several of its executions. This 
application illustrated one use of the algorithm. However, 
possible applications are numerous, as it can be applied to 
any sequence databases.  
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