

CMRULES: An Efficient Algorithm for Mining Sequential Rules
Common to Several Sequences

Philippe Fournier-Viger1, Usef Faghihi1, Roger Nkambou1, Engelbert Mephu Nguifo2

1Department of Computer Sciences, University of Quebec in Montreal, 201, avenue du Président Kennedy, Montréal, Canada
2Department of Mathematics and Computer Sciences, Université Blaise Pascal Clermont 2, BP 125, 63173 Aubière, cedex, France

{fournier viger.philippe, faghihi.usef}@courrier.uqam.ca, nkambou.roger@uqam.ca, mephu@isima.fr

Abstract
We propose CMRULES, an algorithm for mining sequential
rules common to many sequences in sequence databases
not for mining rules appearing frequently in sequences. For
this reason, the algorithm does not use a sliding window
approach. Instead, it first finds association rules to prune the
search space for items that occur jointly in many sequences.
Then it eliminates association rules that do not meet
minimum confidence and support thresholds according to
the time ordering. We evaluated the performance of
CMRULES in three different ways. First, we provide an
analysis of its time complexity. Second, we compared its
performance on a public dataset with a variation of an
algorithm from the literature. Results show that CMRULES
is more efficient for low support thresholds, and has a better
scalability. Lastly, we report a real application of the
algorithm in a complex system.

 Introduction
Discovering temporal relationships between events stored
in large databases is important in many domains, as it
provides a better understanding of the relations between
events, and sets a basis for the prediction of events. For
example, in international trade, one could be interested in
discovering relations between the appreciation of
currencies to make trade decisions. Various methods have
been proposed for mining temporal relations between
events in databases (see for example Laxman & Sastry,
2006, for a survey).
 In the field of data mining, one of the most popular set
of techniques for discovering temporal relations between
events in discrete time series is sequential pattern mining
(Agrawal & Srikant, 1995), which consists of finding
sequences of events that appear frequently in a sequence
database. However, knowing that a sequence of events
appear frequently in a database is not sufficient for the
prediction of events. For example, it is possible that some
event y appears frequently after an event x but that there
are also many cases where x is not followed by y. In this
case, predicting that y will occur if x occurs on the basis of

Copyright © 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

a sequential pattern x,y could be a huge mistake. Thus, for
prediction, it is desirable to have patterns that indicate how
many times x appeared before y and how many times x
appeared and y did not. But adding this information to
sequential patterns cannot be done easily as sequential
patterns are lists of events that can contain several events –
not just two, as in the previous example– and current
algorithms have just not been designed for this.
 The alternative to sequential pattern mining that address
the problem of prediction is sequential rule mining
(Mannila et al., 1997; Das et al., 1998; Harms et al., 2002;
Hamilton et al., 2005; Hsieh et al., 2006; Deogun & Jiang,
2005). A sequential rule (also called episode rule, temporal
rule or prediction rule) indicates that if some event(s)
occurred, some other event(s) are likely to occur with a
given confidence or probability Sequential rule mining has
been applied in several domains such as stock market
analysis (Das et al., 1998; Hsieh et al., 2006), weather
observation (Hamilton & Karimi, 2005) and drought
management (Harms et al, 2002; Deogun & Jiang, 2005).
 The most famous approach for sequential rule mining is
that of Mannila et al. (1997) and other researchers
afterward that aim at discovering partially ordered sets of
events appearing frequently within a time window in a
sequence of events. Given these “frequent episodes”, a
trivial algorithm can derive sequential rules respecting a
minimal confidence and support (Mannila et al., 1997).
These rules are of the form X Y, where X and Y are two
sets of events, and are interpreted as “if event(s) X appears,
event(s) Y are likely to occur with a given confidence
afterward”. However, their work can only discover rules in
a single sequence of events. Other works that extract
sequential rules from a single sequence of events are the
algorithms of Hamilton & Karimi (2005), Hsieh et al.
(2006) and Deogun & Jiang (2005), which respectively
discover rules between several events and a single event,
between two events, and between several events
 Contrarily to these works that discover rules in a single
sequence of events, a few works have been designed for
mining sequential rules in several sequences (Das et al.,
1998; Harms et al., 2002). For example, Das et al. (1998)
discovers rules where the left part of a rule can have
multiple events, yet the right part still has to contain a
single event. This is a serious limitation, as in real-life

410

Proceedings of the Twenty-Third International Florida Artificial Intelligence Research Society Conference (FLAIRS 2010)

applications, sequential relationships can involve several
events. Moreover, the algorithm of Das et al. (1998) is
highly inefficient as it tests all possible rules, without any
strategy for pruning the search space. To our knowledge,
only the algorithm of Harms et al. (2002) discovers
sequential rules from sequence databases, and does not
restrict the number of events contained in each rule. It
searches for rules with a confidence and a support higher
or equal to user-specified thresholds. The support of a rule
is here defined as the number of times that the right part
occurs after the left part within user-defined time windows.
 However, one important limitation of the algorithms of
Das et al., (1998) and Harms et al. (2002) comes from the
fact that they are designed for mining rules occurring
frequently in sequences. As a consequence, these
algorithms are inadequate for discovering rules common to
many sequences. We illustrate this with an example.
Consider a sequence database where each sequence
corresponds to a customer, and each event represents the
items bought during a particular day. Suppose that one
wishes to mine sequential rules that are common to many
customers. The algorithms of Das et al. (1998) and Harms
et al. (2002) are inappropriate since a rule that appears
many times in the same sequence could have a high
support even if it does not appear in any other sequences.
A second example is the application domain of this paper.
We have built an intelligent tutoring agent that records a
sequence of events for each of its executions. We wish that
the tutoring agent discovers sequential rules between
events, common to several of its executions, so that the
agent can thereafter use the rules for prediction during its
following execution.
 In this paper, we address this problem by proposing an
algorithm specifically designed for mining sequential rules
common to many sequences, and that does not restrict the
number of events in each rule. Because it has a different
purpose, the algorithm does not rely on a sliding-window
approach. Instead it finds associations rules between items
to prune the search space to items that occur jointly in
many sequences. Then it eliminates association rules that
do not meet minimum confidence and support thresholds
according to the time ordering. In this paper, we prove that
this correctly discovers all sequential rules if parameters
for mining association rules are chosen correctly.
 The paper is organized as follows. The next section
gives a brief overview of the problem of association rule
mining, defines the problem of mining sequential rules
common to many sequences, and analyzes the relation
between sequential rules and association rules. Next the
third section presents our algorithm based on association
rule mining, a proof that if the confidence and support are
chosen correctly the set of all sequential rules is found, and
an analysis of the algorithm’s time complexity. The fourth
section presents an evaluation of the algorithm with a real
dataset and an application in a complex system for
providing help to students during learning activities.
Finally, the last section draws a conclusion.

Background and Problem Definition
Association rule mining (Agrawal et al., 1993) is a popular
knowledge discovery technique for discovering
associations between items from a transaction database.
Formally, a transaction database D is defined as a set of
transactions T={t1,t2…tn} and a set of items I={i1, i2,…in},
where t1,t2,…,tn I. The support of an itemset X I for a
database is denoted as sup(X) and is calculated as the
number of transactions that contains X. The problem of
mining association rules from a transaction database is to
find all association rules X→Y, such that X,Y I,
X∩Y= , and that the rules respect some minimal
interestingness criteria. The two interestingness criteria
initially proposed (Agrawal et al. 1993) are that mined
rules have a support greater or equal to a user-defined
threshold minsup and a confidence greater or equal to a
user-defined threshold minconf. The support of a rule
X→Y is defined as sup(X Y) / |T|. The confidence of a
rule is defined as conf(X→Y) = sup(X Y) / sup(X).
Since |T| ≥ sup(X) for any X I, the relation conf(r) ≥
sup(r) hold for any association rule r.

Association rules are mined from transaction databases.
A generalization of a transaction database that contains
time information about the occurrence of items is a
sequence database (Agrawal & Srikant, 1995). A sequence
database SD is defined as a set of sequences S={s1, s2…sn}
and a set of items I={i1, i2,…in}, where each sequence sx is
an ordered list of transactions sx={X1, X2, … Xn} such that
X1, X2, …Xn I .

We propose the following definition of a sequential rule
to be discovered in a sequence database. A sequential rule
X Y is a relationship between two itemsets X,Y such that
X,Y I and X∩Y = . The interpretation of a rule X Y is
that if the items of X occur in some transactions of a
sequence, the items in Y will occur in some transactions
afterward from the same sequence. Note that there is no
ordering restriction between items in X and between items
in Y. We define two interestingness measures for such a
rule, which are an adaptation for multiple sequences of the
measures used for other sequential rule mining algorithms
(Mannila et al., 1997; Das et al., 1998; Harms et al., 2002).
The first measure is the rule’s sequential support and is
defined as: seqSup(X Y) = sup(X■Y) / |S|. The second
measure is the rule’s sequential confidence and is defined
as: seqConf(X Y) = sup(X■Y) / sup(X). Here, the
notation sup(X■Y) denotes the number of sequences from
a sequence database where all the items of X appear before
all the items of Y (note that items from X or from Y do not
need to be in the same transaction). The notation sup(X)
represents the number of sequences that contains X. Since
|S| ≥ sup(X) for any X ⊆ I , the relation seqConf(r) ≥
seqSup(r) holds for any sequential rule r. We define the
problem of mining sequential rules common to several
sequences as the problem of finding all sequential rules
from a sequence database such that their sequential support
and sequential confidence are respectively higher or equal
to some user-defined threshold minSeqSup and
minSeqConf. As an example, figure 1 shows a sequence

411

database containing four transactions and some sequential
rules found with minSeqSup = 0.5 and minSeqConf = 0.5.

Figure 1: A sequence database (left) and sequential rules

found (right).

 Note that the problem of mining sequential rules is
largely different from the one of mining sequential
patterns, since there is no time ordering inside itemsets of
sequential rules. Therefore it is not possible to simply
adapt a sequential pattern mining algorithm for generating
these sequential rules.

Instead, the algorithm that we proposed in this paper is
based on the observation that if we ignore or remove the
time information of a sequence database SD, we obtain a
transaction database SD’. For each sequence database SD
and its corresponding transaction database SD’, each
sequential rule r: X Y of S has a corresponding
association rule r’: X→Y in S’. Since sup(X■Y) is always
lower or equal to sup(X Y) the relationships (1) sup(r’) ≥
seqSup(r) and conf(r’) ≥ seqConf(r), hold for any
sequential rule r and its corresponding association rule r’.

An Algorithm for Mining Sequential Rules
Based on the previous observations of the relationship
between sequential rules and association rules, we propose
the following algorithm for mining sequential rules. The
algorithm is presented in figure 2. We name this algorithm
CMRULES. Figure 3 shows a sample execution with a
sequence database containing four sequences.

Figure 2: The CMRULES algorithm

 The algorithm takes as input a sequence database and
the minSeqSup and minSeqConf thresholds and outputs the
set of all sequential rules in the database respecting these
thresholds. CMRULES starts by ignoring the sequential

information from the sequence database to obtain a
transaction database (fig. 2 and 3. Step 1). It then applies
an association rule mining algorithm to discover all
association rules from this transaction database with
minsup = minSeqSup and minconf = minSeqConf (fig. 2
and 3. Step 2). Then, CMRULES calculates the sequential
support and sequential confidence of each association rule
by scanning the sequence database, and then eliminate the
rules that do not meet the minSeqSup and minSeqConf
minimum thresholds (fig. 2 and 3. Step 3). The set of rules
that is kept is the set of all sequential rules.

Figure 3: A sample execution of the CMRULES algorithm

Proof of Completeness
We now show that the CMRULES can find all sequential
rules. To prove this, we have to demonstrate that the set of
association rules contains the set of all sequential rules.
This is proven next.
Theorem 1. The algorithm discovers all sequential rules
for a given minSeqConf and minSeqSup if we choose
minconf ≤ minSeqConf and minsup ≤ minSeqSup.
Proof. To prove this, we can consider the sequential
support and sequential confidence interestingness measures
separately, without loss of generality.

Let’s first consider the sequential support. Suppose
there is a sequential rule r such that seqSup(r) ≥ minSeqSup
and minsup > sup(r’) (we suppose that the corresponding
association rule is not frequent). We know that sup(r’) ≥
seqSup(r). Therefore, it follows that minsup > sup(r’) ≥
seqSup(r) ≥ minSeqSup. Thus, minsup ≥ minSeqSup.
Therefore, if we choose minSeqSup ≥ minsup there will be
no such rule r.

Now consider the sequential confidence. Suppose there
is a sequential rule r such that seqConf(r) ≥ minSeqConf
and that minconf > conf(r’). We know that conf(r’) ≥
seqConf(r). Therefore minconf > conf(r’) > seqConf(r) ≥
minSeqConf. Therefore, if we choose minSeqConf ≥
minconf there will be no such rule r.
Corollary 1. The algorithm is more effective if we choose
minconf = minSeqConf and minsup = minSeqSup.

INPUT : a sequence database, minSeqSup, minSeqConf
OUTPUT : the set of all sequential rules
PROCEDURE:
1. Consider the sequence database as a transaction database
2. Find all association rules from the transaction database by

applying an association rule mining algorithm such as Apriori
(Agrawal et al., 1993). Select minsup minSeqSup and
minconf minSeqConf.

3. Scan the original sequence database to calculate the sequential
support and sequential confidence of each association rule
found in the previous step. Eliminate each rule r such that:

a. seqSup(r) < minSeqSup
b. seqConf(r) < minSeqConf

4. Return the set of rules

412

Proof: In association rules mining, the lower minsup or
minconf is, the more rules can be found, and the more
computation can be required. Therefore, for our algorithm
it is best to select the highest possible value for minsup and
minconf that will discover association rules containing all
desired sequential rules. In Theorem 1, we found that these
values are bound by minSeqConf and minSeqSup, to have a
guarantee that all sequential rules will be found. Therefore,
the highest value that one can give to minconf and minsup
are respectively minSeqConf and minSeqSup.

Implementing Step 3 Efficiently
We now describe how to implement Step 3 of the
CMRULES algorithm efficiently. The naive approach
would be to take each sequence and check if each
association rule X→Y is contained in it to calculate the
sup(X■Y) value that is necessary for calculating the
sequential confidence and sequential support. Checking if a
rule is contained in a sequence is done in linear time (a
sequence can be scanned one time from left to right to see
if X occurs, and Y occurs afterward). However, checking if
each rule is contained in each sequence is inefficient. We
describe next how to minimize the number of sequences to
be checked for each rule. But we first need to explain how
association rule mining is performed.

To generate association rules, one needs to apply an
algorithm such as Apriori (Agrawal et al., 1993).
Algorithms for association rule mining proceed in two
steps (Agrawal et al., 1993). They first discover frequent
itemsets, and then use them to generate association rules. A
frequent itemset is an itemset that appear more than

 times in a transaction database. The support of an
itemset is defined as the number of transactions that
contains it. Generating association rules is then done by
selecting pairs of frequent itemsets X and Y such that X
Y, to generate rules of the form X→Y-X (see Agrawal et
al., 1993 for a fast algorithm).

Now, to implement efficiently step 3 of CMRULES, we
need to modify the frequent itemset mining algorithm so
that each itemset X found is annotated with the set of
transactions that contains it. This is a trivial modification
for an algorithm such as Apriori (Agrawal et al., 1993) (in
the case of Apriori, this variation is known as Apriori-TID;
cf. Agrawal et al., 1993). Having this extra information
about frequent itemsets, Step 3 can be performed
efficiently by checking each rule X→Y only against the
sequences that contain its left itemset X. This will allow
calculating correctly the sequential support and sequential
confidence of the rule, since sup(X■Y) can be calculated
by checking only with the sequences containing X (by the
definition of sup(X■Y), and the other terms for calculating
the sequential support and confidence (sup(X) and |S|) are
known. In our tests, this simple optimization improved step
3’s performance by up to 50%.

Reducing Memory Consumption
It is possible to merge Step 2 and Step 3 of CMRULES so
that each association rule that is generated is immediately
checked for its sequential support and confidence. This
allows considering only one association rule at a time in
central memory. Therefore, the set of all association rules
does not need to be stored. This greatly reduces memory
consumption and also makes the algorithm faster.
Moreover, sequential rules can be saved to disk
immediately after being found, and if one wish to keep
association rules, these latter can also be written to the disk
at the same time. This implementation strategy greatly
reduces the memory requirement of the algorithm.

Analysis of the Time complexity
We here provide a brief analysis of the time complexity of
CMRULES. First, the time complexity of converting a
sequence database in a transaction database (Step 1 of) is
linear with respect to the number of sequences and their
size.
 The time complexity of Step 2 is more difficult to
establish. It depends on the association rule mining
algorithm that is used. As explained previously, mining
association rule is done in two steps: mining frequent
itemsets and generating rules. The first step is the most
costly (Agrawal et al., 1993), so it is adequate to ignore the
second step for estimating time complexity. If we use the
Apriori algorithm for mining frequent itemsets, the time
complexity is Ο(d2 n) where d is the number of different
items and n is the number of transactions in the database
(see Hegland, 2007 for a proof). In our implementation, we
used Apriori-TID a variation that performs slightly better
for some datasets (Agrawal et al., 1993) and has a similar
time complexity (Hegland, 2007).

Step 3 of CMRULES checks each candidate rule against
the set of sequences that contains its antecedent (as
explained). In the best case and worst case, there are
respectively |S| × minsup sequences, and |S| sequences to
be checked for each rule. Checking if a rule is contained in
a sequence is done in linear time. Thus, the time
complexity of step 3 is linear with respect to the number of
sequences that contain the antecedent of each rule, the size
of each sequence and the total number of rules.

Evaluation of the Algorithm
We have implemented CMRULES in the Java
programming language. We describe next its evaluation
with a real dataset, and an application of the algorithm.

Evaluation of the Algorithm with the Kosarak
Dataset
To evaluate the performance of the algorithm, we
compared its performance with a second algorithm on a
real dataset. The second algorithm is the one of Deogun et
al. (2005). Although this latter was proposed for mining
sequential rules in a single sequence, it is easy to adapt it

413

for the case of mining rules common to multiple
sequences. We have adapted it, and implemented it in the
Java programming language. Since space is limited, we
will only briefly describe our adaptation.
 The algorithm proceeds as follow. It first finds all rules
where the left and right sides contain a single item. This is
done by counting the support of each items of size one by
scanning the sequence database one time. Then, for each
pair of frequent items x,y appearing in at least minSeqSup
same sequences, the algorithm generate candidates rules
{x} y} and {y} x}. These rules are then evaluated by
calculating their sequential support and confidence to see if
they respect minSeqSup and minSeqConf. Calculating the
sequential support and confidence is done exactly as in
Step 3 of our algorithm. Once, these rules are found, the
algorithm then recursively find larger candidate rules by
combining rules of smaller size in a level-wise manner
(similar to Apriori). This is done by two separate
processes. Left-side expansion is the process of taking two
candidate rules X Y and Z , where X and Z are
itemsets of size n sharing n-1 items, to generate a new
larger candidate rule X . Right-side expansion is the
process of taking two candidate rules Y X and Y Z,
where X and Z are itemsets of size n sharing n 1 items, to
generate a new larger candidate rule Y X Z. After
candidate rules are generated by left/right side expansion
their sequential support and confidence are calculated by
scanning sequences. To prune the search space for
candidate rules, it can be shown easily that expanding the
left side of a rule not respecting minSeqSup will not result
in valid sequential rules, and that expanding the right side
of a rule not respecting minSeqSup or minSeqConf will not
generate valid sequential rules. Also, by using a
lexicographic ordering of items in itemsets, it can be
shown that no candidate rule will be generated twice. It is
important to note that the algorithm of Deogun et al. is
designed to find a subset of all the sequential rules (that is
not a lossless representation of all sequential rules), and
that we have adapted it to find all sequential rules.
 To compare the performance of both algorithms, we
have used Kosarak, a public dataset available from
http://fimi.cs.helsinki.fi/data/. It contains 990 000 click-
stream data from the logs of online news portal. In a first
experiment, we selected the 70 000 first sequences of the
dataset. These sequences contain an average of 7.97 items
each, from a set of 21 144 different items. We applied the
algorithms on this dataset with minSeqConf = 0.3 and with
minSeqSup = 0.02, 0.019, ..., 0.003.
 Figure 4.a shows the time required for running
CMRULES and the time for executing the adaptation of
the Deogun et al. algorithm (Algo 2). From this figure we
can see that for high support, both algorithms have similar
performance. But for lower support thresholds CMRULES
is much faster. For example, whereas for minSeqSup = 0.02
both algorithms provides similar performance, for
minSeqSup = 0.004 our algorithm is more than five times
faster. This shows that CMRULES has a better scalability.

 During the experiment, we also measured the number of
association rules and sequential rules discovered for each
value of minSeqSup. Figure 4.b illustrates these results.
The number of sequential rules ranged from 11 to 20 % of
all the association rules. This shows that the percentage of
sequential rules can be quite high in real datasets. For
example, for a minSeqSup of 0.02, there is 312 association
rules and 64 sequential rules (20.51 %), and for a
minSeqSup of 0.003, there is 21 947 association rules and 2
512 sequential rules (11.44%). We also observed that
execution time of our algorithm seems to grow
proportionally to the number of association rules. Lastly,
we observed that the time for converting the sequence
database in a transaction database (step 1 of our algorithm)
is negligible (around 300 ms). We have performed other
experiments on Kosarak that have shown the same trends.
Due to space limitation they are not described in this paper.

Figure 4: Result of experiment with the Kosarak dataset

Application of the Algorithm in an Intelligent
Tutoring Agent
To further evaluate the algorithm and demonstrate its
utility, we used it for a real application. We integrated the
algorithm in an intelligent tutoring agent named CTS
(Faghihi et al., 2010), designed for providing assistance to
learners during learning activities in virtual environments.
CTS is currently used for CanadarmTutor (Kabanza et al.,
2010), a simulator-based tutoring system for learning to
operate the Canadarm2 robotic arm, deployed on the
international space station. During training sessions, CTS
interacts with learners through a dialogue comprising hints,
questions and explanations. CTS takes pedagogical
decisions by relying on rules encoded in a structure named
“the Behavior Network”, authored by humans (Faghihi et
al., 2010).
 We have integrated the algorithm in CTS to provide it
with the capability of learning relations between events. To
do so, we have modified CTS so that it records each of its

414

executions in a sequence database. Each sequence contains
the information that CTS perceived and the decisions that
it took during one execution. We have also modified CTS
so that it applies the algorithm after each execution to
discover sequential rules common to several executions.
We conducted a short experiment in which we performed
100 executions of CTS. During these executions, we
responded to the questions posed by CTS. This resulted in
a sequence database of 100 sequences with an average
length of 25 itemsets. The algorithm was executed after
each execution starting from the fourth execution. On
average, sequential rules represented 31.05 % of all
association rules, and the average number of sequential
rules was 27. The execution time of the algorithm was
short (less than 50 ms). CTS found several relevant
sequential rules such as “the learner move the wrong joint

 the learner makes the robotic arm pass too close to the
space station” and “the learner lacks motivation the
learner is inactive”. CTS then used the learned rules to
adapt its behavior by making suggestions to learners such
as to review the arm manipulation procedure or by
generating encouragements. Overall, we observed that the
behavior of CTS improved. However, we have not yet
measured quantitatively how this new version of CTS
influences the learning of students. We briefly describe
here this experiment to illustrate an application of the
algorithm. The reader can refer to a full paper describing
this application for more details (Faghihi et al., 2010).

Conclusion
This paper presented CMRULES, an algorithm for mining
sequential rules common to several sequences in sequence
databases.

Because the algorithm is based on association rule
mining it is very efficient if one wishes to discover both
association rules and sequential rules in a database, as both
are discovered at the same time. Moreover, it is possible to
enhance the capability of CMRULES by choosing a
particular association rule mining algorithm having this
capability. For instance, if one implements CMRULES by
using an incremental association rule mining algorithm
such as the one of Cheung et al. (1996), the result would be
an incremental algorithm for mining sequential rules.
Besides this type of extensions, many others are possible
by modifying the code for checking if a rule is included in
a sequence. For example, one could easily modify the
definition of sup(X■Y) so that the antecedent and
consequent of a rule have to occur within a given time
frame, as it is proposed in the works of Mannila et al.
(1997), Das et al. (1998) and Harms et al. (2002).

We evaluated the performance of our algorithm in three
different ways. We first analysed its time complexity.
Second, we measured its performance with Kosarak, a
large public dataset of click-streams data from the logs of
an online news portal. With this experiment, we
empirically observed that (1) our algorithm has a better
scalability than the Deogun et al. algorithm adapted for the

same task and (2) that the time required for mining
sequential rules seems to be proportional to the number of
association rules. We can expect that our algorithm will
perform better on datasets in which the percentage of
association rules that are sequential rules is higher, as
fewer rules will be rejected. On this point, it is encouraging
that in our experiment this percentage was always between
10 and 20 %. Finally, we have presented an application of
the algorithm in an intelligent tutoring agent. Thanks to the
algorithm, the agent can now learn relationships between
events common to several of its executions. This
application illustrated one use of the algorithm. However,
possible applications are numerous, as it can be applied to
any sequence databases.

References
Agrawal, R., Imielminski, T., & Swami, A. 1993. Mining
Association Rules Between Sets of Items in Large Databases,
SIGMOD Conference, 207-216
Agrawal, R. & Srikant, R. 1995. Mining Sequential Patterns.
Proc. Int. Conf. on Data Engineering, pp. 3-14.
Cheung, D.W., Han, J., Ng. V. & Wong., Y. 1996. Maintenance
of discovered association rules in large databases: An incremental
updating technique. Proc. ICDE 1996, 106-114.
Das., G., Lin, K.-I., Mannila, H., Renganathan, G., & Smyth, P.
1998. Rule Discovery from Time Series. Proc. 4th Int. Conf. on
Knowledge Discovery and Data Mining.
Deogun, J.S. & Jiang, L. 2005. Prediction Mining – An
Approach to Mining Association Rules for Prediction. Proc. of
RSFDGrC 2005 Conference, 98-108.
Faghihi, U., Fournier-Viger, P., Nkambou, R. & Poirier, P., 2010.
The Combination of a Causal Learning and an Emotional
Learning Mechanism for Improved Cognitive Tutoring Agent.
Proceedings of IEA AIE 2010 (in press).
Kabanza, F., Nkambou, R. & Belghith, K. 2005. Path-planning
for Autonomous Training on Robot Manipulators in Space. Proc.
19th Intern. Joint Conf. on Artificial Intelligence, 35-38.
Hamilton, H. J. & Karimi, K. 2005. The TIMERS II Algorithm
for the Discovery of Causality. Proc. 9th Pacific Asia Conference
on Knowledge Discovery and Data Mining, 744-750.
Harms, S. K., Deogun, J. & Tadesse, T. 2002. Discovering
Sequential Association Rules with Constraints and Time Lags in
Multiple Sequences. Proc. 13th Int. Symp. on Methodologies for
Intelligent Systems, pp. .373-376.
Hegland, M. 2007. The Apriori Algorithm – A Tutorial.
Mathematics and Computation. Imaging Science and Information
Processing, 11:209-262.
Hsieh, Y. L., Yang, D.-L. & Wu, J. 2006. Using Data Mining to
Study Upstream and Downstream Causal Realtionship in Stock
Market. Proc. 2006 Joint Conference on Information Sciences.
Laxman, S. & Sastry, P. 2006. A survey of temporal data mining.
Sadhana 3: 173-198.
Mannila, H., Toivonen & H., Verkano, A.I. 1997. Discovery of
frequent episodes in event sequences. Data Mining and
Knowledge Discovery, 1(1): 259-289.

415

