
Subgraph Isomorphism Detection with Support for Continuous Labels

Gerardo Perez 1, Ivan Olmos 1 and Jesus A. Gonzalez 2

1 Facultad Ciencias de la Computacion
Benemerita Universidad Autonoma de Puebla

14 sur y Av. San Claudio, Ciudad Universitaria, Puebla, Mexico
{onofre.gerardo, ivanoprkl}@gmail.com

2 Instituto Nacional de Astrofisica, Optica y Electronica,
Luis Enrique Erro No. 1, Sta. Maria Tonantzintla, Puebla, Mexico

jagonzalez@inaoep.mx

Abstract

This paper presents an algorithm for the subgraph
isomorphism detection with support for continuous and
discrete labels. This algorithm consists of three phases:
first, we perform the discretization of continuous labels
through unsupervised discretization methods; in the
second step, the SI-COBRA algorithm is used for the
subgraph isomorphism detection; finally, in the third
phase, we need a simple transformation in order to show
the results with a logical meaning with respect to the
original data.

Introduction

A graph-based representation is a useful technique used in
different areas, such as data mining and machine learning,
which work with structured domains in which we can
not represent their features as a set of attributes. Some
examples of these domains are the links between web
pages, computer network topologies, electrical circuits,
and chemical structures, among others (Cook, Holder, and
Djoko 1995).

For example, in Fig. 1a we can see the electrical circuit
features domain representation using a labeled graph, which
keeps both structure and the necessary information for its
analysis. In this case is difficult to represent the circuit
through a record from a relational database. Similarly, the
chemical structure in Fig. 1b has a natural representation
through graphs.

Figure 1: Structured Domains

When we use this type of representation, one of the
most important tasks is to find common structures in a
graph, or set of graphs, in order to discover interesting

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

behaviors of the data. Another similar task is counting
and detecting the number of instances of a specific graph
in a set of graphs. These tasks are based on finding
similarities between graphs/subgraphs, which is known as
Graph Matching (Cook, Holder, and Djoko 1995).

There are different ways of interpreting the information
represented by the labels of the vertices and edges. In
our approach, the labels of the edges represent an attribute
name or a relationship between a pair of vertices. So, this
type of label will be associate with discrete values, for
example ”weight”, ”high” or ”molecular link”, according
to the represented feature. On the other hand, the labels of
the vertices represent the possible values that the attribute or
relationship can take and for that reason this type of label
may contain both, discrete and continuous values.

There are several algorithms that work with labeled graph
- based representations, such as Subdue (Cook and Holder
1994), AGM (Inokuchi, Washio, and Motoda 2000), FSG
(Kuramochi and Karypis 2002), gSpan (Yan and Han.
2002), SEuS (Ghazizadeh and Chawathe 2002), FSP(Han
and Kamber 2006), Mofa(Borgelt and Berthold 2002),
Edgar(Wörlein et al. 2006), Gaston(Nijssen and Kok 2004),
which deal with the Data Mining problem and others such
as SI-COBRA (Olmos, Gonzalez, and Osorio 2005), which
focus on the subgraph isomorphism detection problem.

However, the graph-based algorithms described before
consider that the values associated with the labels of the
vertices come from discrete attributes. Nevertheless, there
are several domains that have both discrete and continuous
features. Therefore, we can not work with such domains in
an appropriate way.

In Fig. 2a and 2b we can notice that all the numeric values
are different and for this reason there were found no valid
associations (matches) for this example. However, although
there is no accurate association, we can observe that there
are vertices with values (represented by the labels of the
vertices) that are numbers very close to each other, so we
could consider that both values are within the same range
and we could consider these labels as a valid match.

On the other hand, by using a discretization approach, as
we show in figures 2c and 2d, which maps the set of data to
a set of labels represented by discrete intervals and perform
a search for similar structures, it is possible to find valid
associations (matches) for the same example.

56

Proceedings of the Twenty-Third International Florida Artificial Intelligence Research Society Conference (FLAIRS 2010)

Figure 2: Example

Based on the above mentioned, we propose a SI-COBRA
extension called SI-COBRA-C (continuous) algorithm,
which supports both continuous and discrete values in
vertices’ labels and performs the features discretization
through unsupervised discretization methods.

Discretization Methods

The aim of the discretization step is to build a smaller
set of intervals (bins) in which numerical values can be
brought together, trying to identify a relationship among
instances of the same interval. In other words, the problem
of discretization consists of defining 2 things: 1) the number
of intervals (k) and 2) bounds (cut-points) for each interval
generated.

There are different axes to classify the discretization
methods (Dougherty, Kohavi, and Sahami 1995) such
as global, local, supervised, unsupervised, static, and
dynamic. Since the goal of our approach is to perform
an independent discretization process for each continuous
feature, whether or not an class feature exists, we are
interested in unsupervised methods because these do not
require class information.

There are 2 well-known unsupervised discretization
methods called EqualWidth and EqualFrequency which are
easy to implement. These methods divide the range of
observed values into k intervals of equal size or into k
intervals so that each interval contains approximately the
same number of instances, respectively. Nevertheless, these
simple methods do not take into account the dispersion of
data.

On the other hand, there are clustering algorithms that
divide the data into groups of similar objects such as k-
means or EM (Han and Kamber 2006), which calculate
the centroids of the clusters so that these clusters will form
intervals, whose boundaries are determined by the midpoint
between 2 centroids. In clustering methods, we can use
different similarity measures to assign the data to clusters
such as the Euclidean, Manhattan, and Minkowski distances,
etc. (Han and Kamber 2006).

Other techniques are based on density measurements such
as Kernel Density Estimator (Biba et al. 2007) and TUBE
(Schmidberger and Frank 2005), which in a binary way cut
the data set looking for the best cut-points to generate a tree
in which each leaf represents an interval. The advantage
of these methods is that they try to adjust to the real data
distribution, however for some distributions it can generate

a high number of intervals.

All the strategies mentioned above, require a number k
to know how many intervals (maximum or exact) should be
generated. In some of these methods that number is defined
by the user. However, one of our purposes is to calculate the
number of intervals automatically in a process transparent
to the user. In this sense, different approaches have been
proposed (see Figure 3) to determine the value of k for a data
set. The simplest one, known as Ten bins creates 10 intervals
regardless of the distribution, frequency and dispersion of
data. Some authors (Dougherty, Kohavi, and Sahami 1995)
(Biba et al. 2007) (Yang and Webb 2002) (Agre and Peev
2002) have based their work on this value using EqualWidth
and / or EqualFrequency, though not all of them support the
selection of this number of intervals.

Other approaches use rules to define the value of k. For
example, Dougherty (Fig. 3b) (Boulle 2005) and Sturges
(Fig. 3c) (Sturges 1926) use the logarithm of the number of
different data values to define the value of k. On the other
hand, Scott (Fig. 3d) (Scoot 1979) and Freedman-Diaconis
(Fig. 3e) (Freedman and Diaconis 1981) calculate the bin
width (h) based on the standard deviation and interquartile
range respectively and they define k based on the calculated
width. For these reasons, these strategies can be applied to
the EqualWidth method.

There are other methods that use more complex rules
taking into account the data dispersion and minimizing
or maximizing the gain generated by the creation of one
interval, an example of these methods are Birgé (Fig.
3f) (Birgé and Rozenholc 2002) and cross-validated log-
likelihood (Fig. 3g) (Biba et al. 2007), (Schmidberger
and Frank 2005). The Birgé’s formula can be used in
EqualWidth because it generates equal sized intervals. On
the other hand, the cross-validated loglikehood method can
be used in algorithms based on density, EqualWidth (Biba
et al. 2007) (Schmidberger and Frank 2005) and clustering
algorithms.

The methods described above do not always produce an
appropriate partition scheme for a given data set. Therefore,
we can not choose only one method of discretization for any
dataset. Based on the previous, if we require to generate a
number of partitions for any set of arbitrary data, we need
to evaluate different strategies in order to choose the scheme
that best fits the characteristics of the data.

Notation

In this section, we will define some of the concepts used
along the document.

Let G be a labeled graph, let AT be the set of different
attributes in G and let ℵC and ℵD be the number of
continuous and discrete features represented by G. AT is
defined as AT = {AC

⋃
AD}, such that AC = {AC

k |k =
1, . . . ,ℵC} is the continuous features subset of G and AD =
{AD

k |k = 1, . . . ,ℵD} is the discrete features subset of G.

D(AC
k) represents the domain of AC

k . We also define γ as
the function used to obtain the attribute name for a vertex in
AC .

As a result, a graph G will be a 6 - tuple G =

57

Figure 3: Strategies to define the number of intervals

(V, E, LV , LE , α, β), where:

• V =
⋃

k=1,...,ℵC Vk

⋃
VDISC ,V �= ∅, where Vk is the

finite set of vertices coming from AC
k and VDISC is the

finite set of vertices coming from AD .

• E ⊆ V × V , is the finite set of edges, E =⋃
k=1,...,ℵC Ek

⋃
EDISC , Ek = {e = {vi, vj} : vi ∈ Vk

or vj ∈ Vk}, EDISC = {e = {vi, vj} : vi, vj ∈ VDISC}.

• LV =
⋃

k=1,...,ℵC Lk
V

⋃
LDISC

V , where Lk
V = D(AC

k)
is the finite set of labels of vertices coming from Vk ,
LCONT

V = {Lk
V |k = 1, . . . ,ℵC}, and LDISC

V is a finite
set of vertices that comes from VDISC .

• LE = LCONT
E

⋃
LDISC

E , is a finite set of labels of

edges where LCONT
E = {AC

k : γ(Lk
V) = AC

k , ∀k =
1, . . . ,ℵC}, LDISC

E = set of labels of edges from AD.

• α =
⋃

k=1,...,ℵC αk : Vk → Lk
V

⋃
αDISC : VDISC →

LDISC
V , where αk is a function assigning labels to

vertices in Vk and αDISC is the function assigning labels
to vertices in VDISC .

• β =
⋃

k=1,...,ℵC βk : Ek → LCONT
E

⋃
βDISC :

EDISC → LDISC
E , where βk is a function assigning

labels to edges in Ek and βDISC is a function assigning
labels to edges in EDISC .

A subgraph GS of G, denoted by GS ⊆ G, GS =
(V S , ES , LS

V , LS
E , αS , βS) is a graph such that V S ⊆

V, ES ⊆ E, LS
V ⊆ LV , LS

E ⊆ LE , αS ⊆ α and βS ⊆ β.
Given 2 graphs G′ = (V ′, E′, L′

V , L′
E, α′, β′) and G =

(V, E, LV , LE , α, β), we say that G′ is isomorphic to G,
denoted by G′ ∼= G, if there are bijections f : V ′ → V and
g : E′ → E, where:

• ∀v′ ∈ V ′, α′(v′) = α(f(v′))

• ∀{v′i, v
′
j} ∈ E′, β′({v′i, v

′
j}) = β(g({v′i, v

′
j}))

Let G′ and G be two graphs, where G′ is a subgraph
isomorphic to G if there exists any GS ⊆ G such that
G′ ∼= GS .

For example, let G = (V, E, LV , LE , α, β) be the graph
shown in Fig. 4. We can notice two types of features or
attributes according to the labels values associated with the
vertices, so that:

Figure 4: Graph G

• AT = {AC
1

, AC
2

, AD
1

, AD
2
}, AC

1
= a1, AC

2
= a2 because

the labels of the features associated with the vertices a1

and a2 are (continuous) numerical values and AD
1

= a3

because the labels of the vertices associated with feature
a3 are (discrete) characters.

• V = {v1, v2, . . . , v12}, V1 = {v2, v6, v10}, V2 =
{v3, v7, v11} and VDISC = {v1, v4, v5, v8, v9, v12}.

• E = {{v1, v2}, {v1, v3}, ..., {v9, v12}},
E1 = {{v1, v2}, {v5, v6}, {v9, v10}},
E2 = {{v1, v3}, {v5, v7}, ..., {v9, v11}},
EDISC = {{v1, v4}, {v1, v5}, {v5, v8}, {v5, v9}, {v9, v12}}

• LV = {12.0, 307, name1, 11.5, 350, name2, . . . ,12.5 ,70,
nameN} such that LCONT

V = {L1

V , L2

V }, L1

V = {12.0,

11.5 , . . .12.5}, L2

V = {307, 350, . . . ,70}, LDISC
V = {D,

name1, . . . , nameN}

• LE = {a1, a2, a3, r}, LCONT
E = {a1, a2}, LDISC

E =
{a3, r}

• α1 (V2) = 12.0, α2 (V3) = 30.7, α1 (V6) = 11.5, α2 (V7)
= 350, α1 (V10) = 12.5, α3 (V11) = 70, αDISC (V1) = D,
αDISC (V4) = name1

• β1 ({V1, V2}) = a1, β1 ({V5, V6}) = a1, β2 ({V1, V3}) =
a2, β2 ({V9, V11}) = a2, βDISC ({V1, V4}) = a3.

The SI-COBRA-C method

With the aim to solve the subgraph isomorphism detection in
domains with continuous features, we propose the following
algorithm that implements a strategy to deal with this type
of labels through a discretization process.

Before describing how the algorithm works, it is neces-
sary to define γ such that γ : LCONT

V → AC , which is an
auxiliary function to obtain the name of the feature associ-
ated with the vertices in set Vk . In the example shown in Fig.
4, γ(L1

V) = AC
1

, γ(L2

V) = AC
2

.
Algorithm 1 shows the sequence of steps to follow in

order to identify isomorphic subgraphs able to deal with

numerical features. The algorithm first creates the set L̂V

containing the sets of all possible values for each of the
features in G and G′ such that G is the graph to search in
and G′ is the graph to search for.

58

Figure 5: Example of assigning discrete labels

After that, in line 2 of algorithm 1, each of the sets in L̂V

is discretized creating the set L̂V D containing all the labels
for each feature generated by the discretization process. This
set is joined with the discrete labels set in order to have a
unique set as defined in line 3 of the same algorithm.

Once we created the set, we define (in lines 4 and 5) 2 new
graphs GD and G′

D that will be the discretized versions of
the input graphs. Each label represents an discrete interval
and it has two values associated which represent the lower
and upper range. So, the discrete label A-k-i represents the
i-th interval for the k-th feature, such that A-k-i.lower and
A-k-i.upper represent the lower and upper bounds of the
interval, respectively. In Figure 5, we show that the graph
GD maintains the same vertices and edges as G and only
the continuous labels of the vertices are modified.

The discretized graphs GD and G′
D will be the input

graphs to the SI-COBRA algorithm. SI-COBRA generates
Gset containing the set of detected isomorphic graphs.
The labels detected in isomorphic graphs represent discrete
intervals, for which we need to add a process to represent
the data with the original domain feature values (last line of
algorithm 1).

It is important to mention that the last phase is easy to
implement because there is a direct relation between the
vertices of GD and G, and therefore using the function α
we can recover the original values of the vertices.

Algorithm 1 SI-COBRA-C

Input: G,G′

Output: Isomorphic subgraphs found

1: L̂V ← {Lk
V

⋃
L
′j
V |γ(Lk

V) = γ′(L′j
V)}∀k =

1, . . . ,ℵC , j = 1, . . . ,ℵ′C

2: L̂V D ← Discretization(L̂V)

3: LV D ← L̂V D

⋃
LDISC

V

4: GD ← (V, E, LV D, LE, α, β)
5: G′

D ← (V ′, E′, LV D, L′
E , α′, β′)

6: Gset ← SI-COBRA(GD, G′
D)

7: Results(Gset, G)

Algorithm 2 works with the data set included in L̂V . Each
of these sets is discretized independently of the other sets, so
for each set we want to find the method that best fits the data.
Once we generated discrete labels in line 4 of Algorithm 2
we create a unique set which is returned to algorithm 1.

Since we can not choose only one method that works well
for all datasets, our approach is to test different methods and
then perform a comparison of the results generated in order

Algorithm 2 Discretization

Input: L̂V

Output: L̂V D set of discretized labels

1: for k = 1 to |L̂V | do

2: L̂k
V D ← Disc method(Lk

V)
3: end for
4: L̂V D =

⋃
k=1,...,|L̂V D | L̂

k
V D

5: return L̂V D

Algorithm 3 Disc method

Input: L̂k
V

Output: L̂
temp
V D set of discrete labels

1: cutPoints vector of cut-points’ vectors

2: L̂
temp
V D ← ∅

3: cutPoints[1] ← EqualWidth(L̂k
V)

4: cutPoints[2] ← EqualFrequency(L̂k
V)

5: cutPoints[3] ← Clustering(L̂k
V)

6: cutPoints[4] ← Density(L̂k
V)

7: for i = 1 to |cutPoints| do
8: Error[i] ← Evaluation(Lk

V ,cutPoints[i])
9: end for

10: l ← i | Error[i] = min(Error[i]) ∀ i=1,. . .,|Error|
11: for i=1 to | cutPoints[l]|-1 do
12: A-k-i.lower=cutPoints[l][i]
13: A-k-i.upper=cutPoints[l][i+1]

14: L
temp
V D ← L

temp
V D

⋃
{A-k-i}

15: end for
16: return L̂V D

to select the method that best fits the data.
Therefore, in lines 3-6 of algorithm 3 the data set

is discretized by different methods. We will test the
data set with classical methods such as EqualWidth and
EqualFrequency, with a clustering method and a with a
method based on density. Each of these methods generates
a vector containing the cut-points with which we can define
the limits of the intervals. In lines 7-9 of algorithm 3 we
evaluate the intervals generated by each method through the
Evaluation function.

After selecting the method with the lowest error, the labels
are generated to represent discrete intervals. The function
Evaluation measures the variance of each of the intervals
generated and the average sum of these variances define the
error associated with the scheme evaluated. By using the
variance, we look for the scheme in which the data is less

dispersed within the ranges. Therefore error = 1

k

∑k

i=1

var(k) where k = number of intervals, var(k) = variance of
data that falls in the interval k.

Example

We show the following experiment performed
with a simple database called auto-mpg down-
loaded for free from the following website
http://www.ics.uci.edu/ mLearn/MLRepository.html.

59

It is important to mention that the graph-based represen-
tation is not restricted to structured domains, because there
is possible to find an appropriate representation according to
the analyzed domain.

The auto-mpg database is formed by 411 different
data examples. The data base has 9 features, where 6
were selected to perform the experiments. The selected
features were a1 = mpg (continuous), a2 = displacement
(continuous), a3 = horsepower (continuous), a4 = weight
(continuous), a5 = acceleration (continuous) and a6 = name
(discrete), which are shown in Fig. 6. To represent the data
using a graph-based representation we chose a star topology
as shown in Fig. 7 in which each central node represents an
entry in the database and the surrounding vertices represent
the different features.

Figure 6: auto-mpg data

Figure 7: Graph-based representation. Graph G

In this experiment we used 2 methods to perform the
discretization of each feature in order to observe the number
of intervals generated by each of them. The methods used
were EqualWidth using Scott’s rule and Clustering using
Euclidean distance and EM with 10 iterations.

In our experiments, we want to identify all subgraphs
with the following structures: Graph 1 {a1=16.4, a2=306,
a5=12.1} and Graph 2 {a3=130, a4=3500}. In Fig. 8, we
can observe the representation of the graphs to search for.

Figure 8: Graphs to search for. Graphs G1 and G2
respectively

In first place we need to discretize the input graphs in
order to generate their discrete versions, which will be the
input to the SI-COBRA algorithm.

In Fig. 8 we can see the graph-based representation for
the graphs to search for. The outcomes found are shown
in Fig. 9, in which the first column shows the number
of associations found using the input graphs directly, ie.
without using the discretization process. As we can see,
there are no valid results because all the values are different.
In the second and third column, we show the identified valid
associations using clustering and EqualWidth respectively.
We can observe that using a discretization process we can
find matches in which the original values are close to each
other

Figure 9: Results

In the figure 10, we show the discretized graph generated
by the clustering and EqualWidth methods, respectively.

Figure 10: Discretized graphs

By searching on discretized graphs it is possible to
identify valid matches, because we are not looking for a
specific value, we are looking for the interval in which the
searched value falls.

Once we found the isomorphic subgraphs, we recover the
original values of the vertices. In Fig. 11, we show the val-
ues reported as isomorphism subgraph. The table shows the
vertices values that come from the detected isomophism sub-
graph to G2 using EqualWidth and Clustering, respectively.
The shaded line remarks the values of G2 to search for. Al-
though there does not exist a datum that meets the desired
feature, we can see that there are very approximate data val-
ues (with respect to the dimension of the data range).

Figure 11: Isomorphic graphs to G2 using a) EqualWidth
and b) Clustering

60

Conclusions and future work

As we can see, there are different unsupervised discretiza-
tion methods that can be used to get the goal of our ap-
proach. In some cases we can choose different parameters,
such as EqualWidth using Scott’s rule, Freeman- Diaconis’
rule, Birgé’s rule or cross-validation. Similarly, in clustering
methods we can use different similarity measures, which in-
crease the number of possible combinations.

However, we can not try all possible combinations
for each data set, because this would be computationally
expensive. Therefore, we are currently performing different
experiments in order to select some methods, able to cover
as much as possible most of the data distributions, trying that
the number of intervals will not be too large with respect to
the data set.

On the other hand, we are exploring different techniques
that allow us comparing the methods (Evaluation function)
considering the number of necessary intervals, maximizing
the number of data elements in each interval and minimizing
the dispersion for each interval.

The SI-COBRA-C algorithm implements a support for
continuous and discrete labels of vertices, which allow us
work with a larger number of domains formed by such type
of labels.

Another purpose is to work with real world databases to
solve a specific problem, such as the detection of cancer cells
or problems that focus in the detection of specific structures
within a set of graphs.

References

Agre, G., and Peev, S. 2002. On supervised and
unsupervised discretization. Cybernetics And Information
Technologies 2(2):43 – 57.

Biba, M.; Esposito, F.; Ferilli, S.; Mauro, N. D.; and Basile,
T. M. A. 2007. Unsupervised discretization using kernel
density estimation. Proceedings of the 20th International
Joint Conference on Artificial Intelligence 696–701.

Birgé, L., and Rozenholc, Y. 2002. How many bins
should be put in a regular histogram. Technological Report,
Laboratoire Probabilits et Modles Alatoires, Universit
Pierre et Marie Curie, Paris, France.

Borgelt, C., and Berthold, M. R. 2002. Mining molecular
fragments: Finding relevant substructures of molecules. In
Proceedings of the 2002 International Conference on Data
Mining (ICDM02 51 – 58.

Boulle, M. 2005. Optimal bin number for equal frequency
discretizations in supervized learning. Intelligent Data
Analysis 9(2):175 – 188.

Cook, D. J., and Holder, L. B. 1994. Substructure discovery
using minimum description length and background knowl-
edge. Journal of Artificial Intelligence Research 1:231–255.

Cook, D. J.; Holder, L. B.; and Djoko, S. 1995. Knowledge
discovery from structural data. Journal of Intelligence and
Information Sciences 5(3):229–245.

Dougherty, J.; Kohavi, R.; and Sahami, M. 1995. Supervised
and unsupervised discretization of continuous features. In

Proceedings of the Twelfth International Conference on
Machine Learning 194 – 202.

Freedman, D., and Diaconis, P. 1981. On the histogram as
a density estimator: L2 theory. Zeitschrift for Wahrschein-
lichkeitstheorie und verwandte Gebiete 57(4):453 – 476.

Ghazizadeh, S., and Chawathe, S. S. 2002. Seus: Structure
extraction using summaries. In Proc. of the 5th International
Conference on Discovery Science.

Han, J., and Kamber, M. 2006. Data Mining, Concepts and
Techniques. Morgan Kaufmann Publishers, 2nd edition.

Inokuchi, A.; Washio, T.; and Motoda, H. 2000. An
apriori-based algorithm for mining frequent substructures
from graph data. In Proceedings of the 2000 European
Symposium on the Principle of Data Mining and Knowledge
Discovery (PKDD00) 13 – 23.

Kuramochi, M., and Karypis, G. 2002. An efficient
algorithm for discovering frequent subgraphs. Technical
Report, Department of Computing Science, University of
Minnesota.

Nijssen, S., and Kok, J. N. 2004. A quickstart in frequent
structure mining can make a difference. In Proceedings
of the 2004 ACM SIGKDD International Conference on
Kowledge Discovery and Data Mining (KDD04) 647 – 652.

Olmos, I.; Gonzalez, J. A.; and Osorio, M. 2005. Subgraph
isomorphism detection using a code based representation.
Proceedings of the 18th International FLAIRS Conference
474–479.

Schmidberger, G., and Frank, E. 2005. Unsupervised
discretization using tree-based density estimation. In
Proccedings 9th European Conference on Principles and
Practice of Knowledge Discovery in Databases 240–251.

Scoot, D. W. 1979. On optimal and data-based histograms.
Biometrika 66(3):605 – 610.

Sturges, H. A. 1926. The choice of a class interval. J.
American Statistical Association 65 – 66.

Wörlein, M.; Dreweke, E.; Meinl, T.; and Fischer, I. 2006.
Edgar: the embedding-based graph miner. In Proceedings
of the International Workshop on Mining and Learning with
Graphs 5:221 – 228.

Yan, X., and Han., J. 2002. gspan: Graph based substructure
pattern mining. Proceedings of the IEEE, International
conference on Data Mining 51–58.

Yang, Y., and Webb, G. I. 2002. A comparative study of
discretization methods for naive-bayes classifiers. 159–173.

61

