
Improving Query Answering over DL-Lite Ontologies

Riccardo Rosati, Alessandro Almatelli
Dipartimento di Informatica e Sistemistica

Sapienza Università di Roma, Italy

Abstract

The DL-Lite family of Description Logics has been de-
signed with the specific goal of allowing for answer-
ing complex queries (in particular, conjunctive queries)
over ontologies with very large instance sets (ABoxes).
So far, in DL-Lite systems, this goal has been actually
achieved only for relatively simple (short) conjunctive
queries. In this paper we present Presto, a new query
answering technique for DL-Lite ontologies, and an ex-
perimental comparison of Presto with the main previous
approaches to query answering in DL-Lite. In practice,
our experiments show that, in real ontologies, current
techniques are only able to answer conjunctive queries
of less than 7-10 atoms (depending on the complexity of
the TBox), while Presto is actually able to handle con-
junctive queries of up to 30 atoms. Furthermore, in the
cases that are already successfully handled by previous
approaches, Presto is significantly more efficient.

Introduction

The DL-Lite family of Description Logics (Calvanese et al.
2007) has been designed with the specific goal of allow-
ing for answering complex queries (in particular, conjunc-
tive queries) over ontologies with very large instance sets
(ABoxes). The ideas underlying DL-Lite are currently very
popular both in the theoretical KR community (see, e.g.,
(Artale et al. 2009)) and in the more practical world of stan-
dard ontology languages for the Semantic Web (DL-Lite pro-
vides the logical underpinnings of the OWL2 QL language).

The strategy used by most of the existing systems and al-
gorithms for DL-Lite, (e.g., Quonto (Acciarri et al. 2005),
Owlgres (Stocker and Smith 2008), and Requiem (Pérez-
Urbina, Motik, and Horrocks 2009)) is query answering by
query rewriting. More precisely, query answering is per-
formed by first computing a rewriting of the query with re-
spect to the intensional part of the ontology (TBox), thus ob-
taining a so-called perfect reformulation of the initial query.
Such a perfect reformulation is then evaluated over the ex-
tensional part of the ontology (ABox) only. A distinguish-
ing feature of DL-Lite with respect to the other DLs is that
the perfect reformulation of conjunctive queries can be ex-
pressed by first-order queries. This property, also called

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

first-order rewritability of conjunctive queries, is extremely
important, because it allows to delegate the management of
the ABox to a relational database system (RDBMS) and to
solve query answering by shipping the perfect reformula-
tion of the initial query (expressed in the SQL language) to
the RDBMS. This implementation strategy actually allows
to handle ABoxes of very large size (comparable to the size
of a database).

However, the bottleneck of the above algorithms and sys-
tems is constituted by the fact that the perfect reformulation
computed increases exponentially with the number of atoms
of the conjunctive query. Empirical studies have shown that,
while this is not a serious problem for conjunctions of up to
5-7 atoms (depending on the complexity of the TBox), for
larger queries the above algorithms typically either fail in
computing the perfect reformulation in a reasonable amount
of time, or produce a query that is too large (e.g., a union
of thousands of conjunctive queries) to be handled by cur-
rent RDBMSs. This constitutes a serious practical limita-
tion, since experiments have shown that some natural and
interesting conjunctive queries over real ontologies fall into
the class that cannot be handled by current query answering
techniques for DL-Lite.

In this paper we try to overcome the above limitation
of current query answering techniques over DL-Lite on-
tologies. In particular, we present a new algorithm, called
Presto, for the perfect reformulation of unions of conjunc-
tive queries over DL-Lite ontologies. Presto is based on the
following innovative ideas: (i) differently from previous ap-
proaches, Presto does not generate a union of conjunctive
queries, but a nonrecursive datalog program. In fact, the use
of a disjunctive normal form is one of the reasons for the
exponential blow-up of previous techniques, which can thus
be avoided by Presto; (ii) the query expansion rules (based
on resolution) used by previous techniques are deeply op-
timized in Presto. In particular, Presto applies expansion
rules driven by the goal of eliminating existential joins from
the query based on the computation of most general sub-
sumees of concept and role expressions, which turns out to
be a much smarter strategy than previous approaches. As a
consequence of the above innovations, the query produced
by Presto is not exponential anymore with respect to the
number of atoms of the initial conjunctive query, but is only
exponential with respect to the number of eliminable exis-

290

Proceedings of the Twelfth International Conference on the Principles of Knowledge Representation and Reasoning (KR 2010)

tential join variables of the query: such variables are a sub-
set of the join variables of the query, and are typically much
less than the number of atoms of the query.

Then, we present a set of experimental results which show
that: (i) both the time for computing the rewriting and the
size of the query generated by our algorithm are smaller than
the corresponding time and size of all previous approaches;
(ii) the evaluation of our nonrecursive datalog query (after a
translation in SQL) by the RDBMS is computationally much
easier than the evaluation of the queries produced by pre-
vious techniques. In particular, the experiments show that
Presto scales much better than all previous approaches with
respect to the size of the query: in practice, in all ontolo-
gies we have used in our experiments, Presto allows for ef-
fectively computing the perfect reformulation of conjunctive
queries of even 30 atoms (and more), while previous tech-
niques are able to deal with conjunctions of at most 7-10
atoms (depending on the complexity of the TBox).

The above results prove that Presto constitutes a real
advancement with respect to the current techniques for
query answering over DL-Lite ontologies, since it over-
comes the main computational limitation of the DL-Lite ap-
proach to query answering over ontologies, allowing for ef-
fectively answering even very complex (unions of) conjunc-
tive queries over DL-Lite ontologies.

The structure of the paper is the following. In the next
section, we briefly recall the description logics and query
languages used in the paper. Then, we describe the Presto
query rewriting algorithm, and show formal properties of the
algorithm (correctness and computational complexity). Fi-
nally, we report on the experiments conducted with Presto.

Preliminaries

In this section we briefly recall the description logic
DL-LiteR, unions of conjunctive queries, and nonrecursive
datalog queries. We focus on DL-LiteR for ease of presen-
tation, since our technique is actually able to handle other
DL-Lite logics, in particular DL-LiteF , DL-LiteA, and (un-
der a slight extension) the OWL2 profile OWL2 QL.

DL-Lite ontologies We start from three mutually disjoint al-
phabets: an alphabet of concept names, an alphabet of role
names, and an alphabet of constant (or individual) names.
We call basic concept an expression of the form B ::=
A | ∃P | ∃P−, where A is a concept name and P is a
role name, and we call basic role an expression of the form
R ::= P | P−, where P is a role name.

With a slight abuse of notation, we will also make use of
expressions of the form ∃R and ∃R−, where R represents
either a role name P or the basic role P−. In the latter case,
∃R− stands for the basic concept ∃P .

A DL-LiteR TBox assertion is an expression of one of
the following forms (where B1, B2 are basic concepts and
R1, R2 are basic roles): (i) B1 � B2 (concept inclusion);
(ii) R1 � R2 (role inclusion); (iii) B1 � ¬B2 (concept
disjointness); (iv) R1 � ¬R2 (role disjointness).

A DL-LiteR TBox is a set of DL-LiteR TBox assertions.
A membership assertion is a ground atom, i.e., an expres-

sion of the form A(a), P (a, b) where A is a concept name,

P is a role name, and a, b are constant names.
An ABox is a set of membership assertions.
A DL-LiteR ontology is a pair O = 〈T ,A〉 where T is a

DL-LiteR TBox and A is an ABox.

Queries An atom is an expression of the form p(X), where
p is a predicate of arity n and X is a n-tuple of variables or
constants. If no variable symbol occurs in X , then p(X) is
called a ground atom (or fact).

A Datalog rule r is an expression of the form
α :– β1, . . . , βm, where α is an atom, each βi is an atom,
and every variable occurring in α must appear in at least one
of the atoms β1, . . . , βm. The atom α is called the head of
r, while the expression β1, . . . , βm is called the body of r.
The predicate of α is called the head predicate of r. The ar-
ity of r is the number of arguments of the head predicate α.
The variables occurring in α are called the head variables
of r, while the variables only occurring in the body of r are
called the existential variables of r. An existential variable
that occurs only once in r is called an unbound variable,
otherwise it is called an existential join variable (ej-var for
short). Head variables, ej-vars, and constants occurring in
r are the bound terms of r, while unbound variables are the
unbound terms of r.

A Datalog program over an ontology O is a set of Datalog
rules such that, for every rule r of the program, the head
predicate of r is not a predicate (concept or role) used in the
ontology.

A nonrecursive datalog program is a Datalog program
such that there exists an ordering r1, . . . , rn of its rules such
that the head predicate of ri does not occur in the body of
rule rj for every i, j such that 1 ≤ i ≤ j ≤ n. W.l.o.g.,
we assume that all occurrences of the same predicate in a
program have the same arity.

A nonrecursive Datalog (nr-datalog) query over an on-
tology O is a pair (q, Q) such that q is not a predicate of
O and Q is a nonrecursive Datalog program over O. The
arity of a nr-datalog query (q,Q) is the arity of the predi-
cate q in Q. We recall that nr-datalog queries correspond to
first-order positive existential first-order queries (i.e., to pos-
itive relational algebra queries) (Abiteboul, Hull, and Vianu
1995).

A union of conjunctive queries (UCQ) over an ontology O
is a nr-datalog query (q, Q) over O such that: (i) all rules in
Q have q as their head predicate; (ii) for every rule r ∈ Q, all
the predicates occurring in the body of r are predicates of O.
We recall that every nr-datalog query can be unfolded into a
finite UCQ. A conjunctive query (CQ) over an ontology O
is a UCQ over O whose program consists of a single rule.
Finally, a Boolean nr-datalog query is a nr-datalog query of
arity 0.

From now on, to keep notation to a minimum, we will not
explicitly mention the query predicate of nr-datalog queries,
assuming that the query predicate is always q (and of course,
we also assume that q is not used as a predicate by any on-
tology): thus, we will denote the query (q, Q) simply by Q.

Semantics The semantics of a DL is given in terms of in-
terpretations, where an interpretation I = (ΔI , ·I) consists

291

of a non-empty interpretation domain ΔI and an interpreta-
tion function ·I that assigns to each concept C a subset CI
of ΔI , and to each role R a binary relation RI over ΔI . In
particular, we have:

AI ⊆ ΔI

P I ⊆ ΔI × ΔI

(P−)I = {(o2, o1) | (o1, o2) ∈ P I}
(∃R)I = {o | ∃o′. (o, o′) ∈ RI}
(¬B)I = ΔI \ BI

(¬R)I = ΔI × ΔI \ RI

An interpretation I is a model of B � C, where C is
either a basic concept or the negation of a basic concept, if
BI ⊆ CI . Similarly, I is a model of R � E, where R is
a basic role and E is either a basic role or the negation of a
basic role, if RI ⊆ EI .

To specify the semantics of membership assertions, we
extend the interpretation function to constants, by assigning
to each constant a an object aI ∈ ΔI . An interpretation I
is a model of a membership assertion A(a), (resp., P (a, b))
if aI ∈ AI (resp., (aI , bI) ∈ P I).

Given an (inclusion, or membership) assertion φ, and an
interpretation I, we denote by I |= φ the fact that I is a
model of φ. Given a (finite) set of assertions Φ, we denote
by I |= Φ the fact that I is a model of every assertion in Φ.
A model of an ontology O = 〈T ,A〉 is an interpretation I
such that I |= T and I |= A. An ontology is satisfiable if it
has at least one model.

A Boolean nr-datalog query Q is satisfied in an interpre-
tation I if I |= FO(Q), where FO(Q) is the positive exis-
tential first-order sentence corresponding to Q which is ob-
tained by “unfolding” the defined predicates of Q (Abite-
boul, Hull, and Vianu 1995). For instance, if Q is the query

q() :– C(x), p(x, y), R(y, z)
q() :– D(x), S(x, a)
p(x, y) :– R(y, x), D(x), S(y, z)
p(x, y) :– T (x, y)

then FO(Q) is the first-order sentence

(∃x, y, z.C(x)∧
((∃z′.R(y, x) ∧ D(x) ∧ S(y, z′)) ∨ T (x, y)) ∧ R(y, z)) ∨

(∃x.D(x) ∧ S(x, a))

For the sake of simplicity, the reasoning task we will
formally address in this paper is query entailment, i.e.,
query answering restricted to Boolean queries. An ontol-
ogy O entails a Boolean nr-datalog query q, denoted by
O |= q, if q is satisfied in all models of O. Since we
focus on query entailment only, from now on when we
speak about nr-datalog queries we always mean Boolean
nr-datalog queries. We remark, however, that, as in the case
of UCQs (see e.g. (Glimm et al. 2007)), answering arbitrary
(i.e., non-Boolean) nr-datalog queries can be easily reduced
to nr-datalog query entailment.

Given an ABox A, the canonical model of A (denoted
by can(A)) is the interpretation isomorphic to A, i.e., an
interpretation I whose domain is the set of individuals oc-
curring in A and such that: (i) for every individual a oc-
curring in A, aI = a; (ii) for every concept name C,

CI = {a | C(a) ∈ A}; (iii) for every role name R,
RI = {〈a, b〉 | R(a, b) ∈ A}.

Given a TBox T and a query Q, a perfect reformulation
of Q with respect to T is a query Q′ such that, for every
ABox A such that 〈T ,A〉 is satisfiable, 〈T ,A〉 |= Q iff Q′
is satisfied in can(A). Informally, a perfect reformulation
of Q is able to “encode” the TBox T , and thus allows to
answer Q by only looking at the ABox (and considering it
as a relational database, i.e., a single model).

Most general subsumees Given a DL-LiteR TBox T and a
non-empty set of basic concepts B = {B1, . . . , Bn}, a most
general subsumee (MGS) of B in T is a basic concept B
such that: (1) T 	|= B � ⊥ where ⊥ denotes the empty
concept; (2) for each Bi ∈ B, T |= B � Bi; (3) for each
basic concept B′ satisfying the above conditions 1 and 2,
either T 	|= B � B′ or T |= B′ � B.

The above notion of MGS of a set of concept expressions
is the usual one: however, for our purposes we actually need
to extend the above notion of MGS to a set of both concept
and role expressions.

Given a DL-LiteR TBox T and a set of basic concepts and
basic roles P = {B1, . . . , Bn, R1, . . . , Rm} with n ≥ 1,
m > 1, a most general subsumee (MGS) of P in T is a
basic concept ∃R such that:

1. T 	|= ∃R � ⊥;
2. for each basic concept Bi ∈ P , T |= ∃R � Bi;
3. for each basic role Ri ∈ P , T |= R � Ri;
4. for each basic concept ∃S satisfying the above conditions

1–4, either T 	|= ∃R− � ∃S− or T |= ∃S− � ∃R−.

We denote by MGS(P, T) the set of most general sub-
sumees of P in T . It can be easily shown that checking
whether a basic concept is an MGS of P in a DL-LiteR TBox
T can be done in time polynomial in the size of P ∪ T .

The Presto algorithm

We now present Presto, an algorithm that computes the per-
fect reformulation of a UCQ with respect to a DL-LiteR

TBox. The algorithm is displayed in Figure 1. Before delv-
ing into its details, let us provide an informal explanation of
the intuitions behind the algorithm. Presto is based on three
main ideas:

(1) Split every rule into its existential join connected compo-
nents. As explained below in the description of the function
Split , the body of every rule is systematically divided into
subsets of atoms connected by existential join variables, and
every such subset of the query body constitutes the definition
of a new auxiliary predicate. This step is fundamental, since
(as explained at the end of this section) the size of the query
computed by Presto is exponential with respect to the max-
imum number of (eliminable) ej-vars that appear in a single
rule of the query, and applying the above splitting step may
decrease such a number.

(2) Eliminate ej-vars through the use of most general sub-
sumees. This step (formalized by the EliminateEJVar
function) corresponds to a sequence of resolution steps in the

292

previous query rewriting algorithms for DL-Lite, in particu-
lar PerfectRef (Calvanese et al. 2007) and Requiem (Pérez-
Urbina, Motik, and Horrocks 2009), and is based on the use
of the above defined most general subsumees of concept and
role expressions with respect to a TBox. In practice, this
step realizes a crucial optimization of the rewriting rules of
previous methods (in particular, the reduce-rule of the Per-
fectRef algorithm): in Presto, only unifications among terms
that bring to the generation of a “significant” new rule (i.e., a
rule not subsumed by an already generated rule of the query)
are considered. Instead, in the algorithm PerfectRef of (Cal-
vanese et al. 2007), unifications are derived in a “blind” way
from every unifiable pair of atoms, regardless of the conse-
quences of this unification: indeed (as already observed by
(Pérez-Urbina, Motik, and Horrocks 2009)), in many cases
the vast majority of the unification steps performed by Per-
fectRef is superfluous. The idea of aggregating a sequence
of unification and resolution steps, avoiding useless unifi-
cations, is actually the central idea of the Presto algorithm,
and constitutes a dramatic improvement in terms of compu-
tational cost with respect to the above mentioned previous
methods, as will be shown by the experimental results re-
ported in the next section.

(3) Define predicates (views) corresponding to the TBox
expansion of basic concepts and roles. First, the query
is transformed by introducing (through the Rename and
DeleteUnboundVars functions) concept and role expres-
sions, besides concept and role names. Then, for every
concept expression B (respectively, role name R) occur-
ring in the query, a new predicate is introduced (called OA-
predicate in the following): such a predicate is defined in the
query as the union of the concepts (respectively, roles) that
are a specialization of B (respectively, R) in the TBox (this
is realized by the function DefineAtomView). In fact, all
such concepts constitute all the possible rewritings of the
rule atom corresponding to the concept B. (In this step
we also consider the TBox expansion of Boolean proposi-
tions corresponding to an extensional non-emptiness check
of atomic concepts and roles, i.e., the property whether a
concept (or a role) is populated in every model of the on-
tology. Such Boolean propositions are denoted by B0 and
R0 in the following.) The advantage of introducing con-
cept and role views is that the exponential blowup due to the
Cartesian product of the rewritings of the single rule atoms is
avoided. For instance, suppose we want to compute the per-
fect reformulation of a CQ having 10 atoms in its body and
such that each atom has a rewriting of 10 atoms. If we are
forced to produce a UCQ, then we should produce a query
containing at least 1010 CQs, while if we can define an in-
termediate predicate for (the rewriting of) every query atom,
the nr-datalog program thus computed has 102 + 1 rules.

We now define the auxiliary functions used by Presto. In
the following, given a rule r we use the symbols b, b1, b2, . . .
to denote bound terms of r (i.e., head variables, ej-vars, and
constants), we use the symbols u, u1, u2, . . . to denote un-
bound variables, we use the symbols x, x1, x2, . . . to denote
generic variables (which may be either bound or unbound),
we use the symbols a, a1, a2, . . . to denote constants, and we

use the symbols t, t1, t2, . . . to denote generic terms (either
bound or unbound).

An ontology-annotated predicate (OA-predicate for
short) is an expression of the form pk

e such that either e is
a role name and k ∈ {0, 2}, or e is a basic concept expres-
sion and k ∈ {0, 1}. Given a DL-LiteR TBox T , the OA-
predicates of T are all the OA-predicates built using the role
and concept names occurring in T .

The function Rename . Let r be a rule over T . Then,
Rename(r) is the rule obtained from r as follows: (i) every
atom of the form R(t, t1), where R is a role name, is re-
placed by p2

R(t, t1); (ii) every atom of the form A(t), where
A is a concept name, is replaced by p1

A(t). Then, given
a query Q, we define Rename(Q) =

⋃
r∈Q Rename(r).

Thus, the function Rename replaces concept and role names
with OA-predicates in the rule. Notice that, in every OA-
predicate, the superscript represents the arity of the predi-
cate.

The function DeleteUnboundVars . Let r be a rule over T .
Then, DeleteUnboundVars(r) is the rule obtained from r
as follows:

• every atom of the form p2
R(b, u) is replaced by p1

∃R(b);

• every atom of the form p2
R(u, b) is replaced by p1

∃R−(b);

• every atom of the form p2
R(u1, u2) is replaced by p0

R;

• every atom of the form p1
A(u) is replaced by p0

A.

Then, given a query Q, we de-
fine DeleteUnboundVars(Q) =⋃

r∈Q DeleteUnboundVars(r). Thus, the function
DeleteUnboundVars eliminates unbound variables in a
systematic way, through the use of new OA-predicates.

The function DeleteRedundantAtoms . Given a DL-LiteR

TBox T and a rule r, DeleteRedundantAtoms(r, T) elim-
inates the redundant atoms in the body of r with respect to
T , i.e., the atoms that are implied (under T) by other atoms
in the body of r. More precisely:

• if p2
R(t1, t2) and p2

S(t1, t2) occur in r and T |= R � S,
then eliminate p2

S(t1, t2) from r;

• if p2
R(t1, t2) and p2

S(t2, t1) occur in r and T |= R � S−,
then eliminate p2

S(t2, t1) from r;

• if p1
B(t) and p1

C(t) occur in r and T |= B � C, then
eliminate p1

C(t) from r;

• if p2
R(t1, t2) and p1

C(t1) occur in r and T |= ∃R � C,
then eliminate p1

C(t1) from r;

• if p2
R(t1, t2) and p1

C(t2) occur in r and T |= ∃R− � C,
then eliminate p1

C(t2) from r;

• if p0
α and p0

β occur in r and T |= α0 � β0, then eliminate
p0

β from r;

• if p1
B(t) and p0

α occur in r and T |= B0 � α0, then
eliminate p0

α from r;

• if p2
R(t1, t2) and p0

α occur in r and T |= R0 � α0, then
eliminate p0

α from r.

293

Algorithm Presto(Q, T)
input: UCQ Q, DL-LiteR TBox T
output: nr-datalog query Q′
begin

Q′ = Rename(Q);
Q′ = DeleteUnboundVars(Q′);
Q′ = DeleteRedundantAtoms(Q′, T);
Q′ = Split(Q′);
repeat

if there exist r ∈ Q′ and ej-var x in r
such that Eliminable(x, r, T) = true
and x has not already been eliminated from r

then begin
Q′′ = EliminateEJVar(r, x, T);
Q′′ = DeleteUnboundVars(Q′′);
Q′′ = DeleteRedundantAtoms(Q′′, T);
Q′ = Q′ ∪ Split(Q′′)

end
until Q′ has reached a fixpoint;
for each OA-predicate pn

α occurring in Q′
do Q′ = Q′ ∪ DefineAtomView(pn

α, T)
end

Figure 1: The Presto algorithm.

Then, given a query Q, we de-
fine DeleteRedundantAtoms(Q, T) =⋃

r∈Q DeleteRedundantAtoms(r, T). In the above
definition, we have indicated implications of Boolean
propositions using the notation α0 � β0, with α, β basic
concepts or role names. E.g., R0 � A0 stands for the
sentence (∃x, y.R(x, y)) → (∃x.A(x)). Checking the
entailment of such formulas (which is a non-standard form
of TBox reasoning in DLs) can easily be done in DL-LiteR

in polynomial time with respect to the size of the TBox, by
slightly extending the procedure for checking entailment
of ordinary concept and role inclusion assertions (we
omit details on this aspect due to lack of space). Notice
that, after the above elimination of atoms, some ej-vars
may have turned into unbound variables: we assume that
such variables are eliminated by executing the function
DeleteUnboundVars on the query.

The function Split . Given a rule r, Split(r) is the program
that is obtained by splitting r into the connected components
of the ej-graph of r (and using a new auxiliary predicate for
each connected component). The ej-graph of r is an undi-
rected graph whose nodes are the atoms in the body of r and
such that there is an edge between two nodes if the corre-
sponding atoms share an ej-var.

Example. Given the following rule r:

q(x, y) :– p2
R(x, z), p2

S(z, y), p1
∃T (z), p2

T (y, w),
p2

R(w, v), p1
E(v), p2

S(w, x), p2
T (x, t), p2

R(t, a)

where x, y, z, v, w, t are variables and a is a constant, the
ej-connected components of r are:

p2
R(x, z), p2

S(z, y), p1
∃T (z)

p2
T (y, w), p2

R(w, v), p1
E(v), p2

S(w, x)
p2

T (x, t), p2
R(t, a)

and Split(r) is the following program (using the new auxil-
iary predicates q1, q2, q3):

q(x, y) :– q1(x, y), q2(x, y), q3(x)
q1(x, y) :– p2

R(x, z), p2
S(z, y), p1

∃T (z)
q2(x, y) :– p2

T (y, w), p2
R(w, v), p1

E(v), p2
S(w, x)

q3(x) :– p2
T (x, t), p2

R(t, a)

Given a program Q, we define Split(Q) =
⋃

r∈Q Split(r).

The functions Eliminable and EliminateEJVar . Let x be
an ej-var in r, let p1

B1
(x), . . . , p1

Bn
(x) be the unary atoms in

which x occurs, and let

α = {p2
R1

(x, t1), . . . , p2
Rm

(x, tm), p2
S1

(t′1, x), . . . , p2
S�

(t′�, x)}

be the set of binary atoms of r in which x occurs. Further-
more, let P = {B1, . . . , Bn, R1, . . . , Rm, S−1 , . . . , S−� },
and let T be a DL-LiteR TBox.

First, we say that the ej-var x is T -eliminable in r if:

1. x does not occur twice in the same binary atom;
2. at most one constant symbol is contained in the set of

terms {t1, . . . , tm, t′1, . . . , t
′
�};

3. MGS(P, T) is non-empty.

Then, Eliminable(x, r, T) is defined as a Boolean function
that returns true iff x is T -eliminable in r.

Finally, we define the function EliminateEJVar as fol-
lows:

294

• if m = 0 and � = 0, then EliminateEJVar(r, x, T) is
the set of rules {r[α/p0

B] | B ∈ MGS(P, T)}, where
r[α/p0

B] denotes the rule obtained from r by replacing
the set of atoms α in the body of r with the atom p0

B ;
• if m ≥ 1 or � ≥ 1, then EliminateEJVar(r, x, T) is the

set of rules {σ(r[α/p1
∃R−(τ)]) | ∃R ∈ MGS(P, T)},

where: (i) τ = t1 if m ≥ 1, otherwise τ = t′1; (ii)
r[α/p1

∃R−(τ)] denotes the rule obtained from r by replac-
ing the set of atoms α in the body of r with the atom
p1
∃R−(τ); (iii) σ is the variable substitution obtained from

the equalities t1 = t2 = . . . = tm = t′1 = t′2 = . . . = t′�
(i.e., σ(r) denotes the application of the above substitu-
tion to rule r).

Example. Let r be the rule

q :– p2
R3

(x, y), p2
R4

(z, x), p1
A(x), p1

B(z), p1
C(y)

and let T be such that MGS({A, R3, R
−
4 }, T) =

{∃R1,∃R−2 }. Then, Eliminable(x, r, T) = true, and
EliminateEJVar(q, x, T) is the set of rules

{ q :– p1

∃R−1
(y), p1

B(y), p1
C(y) q :– p1

∃R2
(y), p1

B(y), p1
C(y) }

(notice that in this case σ = {z → y}).

The function DefineAtomView . Finally, given an OA-
predicate V and a DL-LiteR TBox T , the function
DefineAtomView(V, T) is defined as follows:

(i) if V = p2
R with R a role name, then

DefineAtomView(V, T) is the set of rules

{p2
R(x, y) :– P (x, y) | P is a role name and T |= P � R} ∪

{p2
R(x, y) :– P (y, x) | P is a role name and T |= P− � R}

(ii) if V = p1
B with B a basic concept, then

DefineAtomView(V, T) is the set of rules

{p1
B(x) :– A(x) | A is a concept name and T |= A � B} ∪

{p1
B(x) :– R(x,) | R is a role name and T |= ∃R � B} ∪

{p1
B(x) :– R(, x) | R is a role name and T |= ∃R− � B}

(iii) if V = p0
N with N concept or role name, then

DefineAtomView(V, T) is the set of rules

{p0
N :– A() | A is a concept name and T |= A0 � N0} ∪

{p0
N :– R(,) | R is a role name and T |= R0 � N0}

Let us now go back to the main algorithm. As shown
by Figure 1, the structure of the algorithm Presto is rather
simple: the input query Q is initially transformed by the
Rename , DeleteUnboundVars , DeleteRedundantAtoms
and Split functions. Then, a cycle is executed whose pur-
pose is to close the query (set of rules) with respect to the
elimination of ej-vars. At every iteration, the query is aug-
mented with new rules obtained from the elimination of an
ej-var from a rule already present in the query.

Example 1 Consider the DL-LiteR TBox (over the concepts
A, A1, A2, A3, B, B1, B2, B3, C, C1, C2, C3 and the roles
U, T, W, V, Q, P, S,R) displayed in Figure 2(a), and con-
sider the conjunctive query q displayed in Figure 2(b). The

nonrecursive datalog program returned by Presto is shown
in Figure 2(c). First, the query obtained after applying the
functions Rename and DeleteUnboundVars is

q(x, y) :– p1
∃S(z), p2

R(x, z), p1
∃T−(w), p1

A1
(z), p2

R(y, w)

Then, the application of the function
DeleteRedundantAtoms deletes the atom p1

A1
(z) (be-

cause the TBox entails the inclusion ∃R− � A1). Next,
the function Split is applied, which splits the query into
the two connected components p1

∃S(z), p2
R(x, z) and

p1
∃T−(w), p2

R(y, w), thus producing the set of rules Q′
corresponding to the rules (R0), (R1) and (R2) which use
the auxiliary predicates q1 and q2. Then, the algorithm
executes a first iteration of the repeat–until cycle, and
picks rule (R1). The function Eliminable identifies z
as an eliminable ej-var in (R1), since it is easy to verify
that MGS({∃S, R−}, T) = {∃T, ∃U−}: therefore, the
function EliminateEJVar(z, (R1), T) returns the rules
(R3) and (R4). At its second iteration, the algorithm picks
rule (R2), and the function Eliminable identifies w as an
eliminable ej-var in (R2), since it is easy to verify that
MGS({∃T−, R−}, T) = {∃T, ∃U−}: therefore, the
function EliminateEJVar(w, (R2), T) returns the rules
(R5) and (R6). Finally, the repeat–until loop ends, because
there are no more eliminable ej-vars in the rules generated
so far, and the function DefineAtomView adds to the
program the other rules shown in Figure 2(c).1

It is immediate to verify that the algorithm always termi-
nates, and that the set of rules Q′ returned by the algorithm
is always a nr-datalog query over T (i.e., Q′ is always non-
recursive). Correctness of the algorithm is established by the
following theorem.

Theorem 2 Let T be a DL-LiteR TBox, let Q be a UCQ and
let Q′ be the nr-datalog query returned by Presto(Q, T).
Then, for every ABox A such that 〈T ,A〉 is a satisfiable
DL-LiteR knowledge base, 〈T ,A〉 |= Q iff Q′ is satisfied in
can(A).

Proof (sketch). The proof heavily relies on the correct-
ness of the algorithm PerfectRef presented in (Calvanese et
al. 2007) (also called “CGLLR algorithm” in (Pérez-Urbina,
Motik, and Horrocks 2009)). The algorithm PerfectRef iter-
atively construct a set of CQs (i.e., a UCQ) by making use
of two rules that produce a new CQ from a previously gen-
erated CQ: the atom-rewrite-rule (step (a) of the algorithm)
and the reduce-rule (step (b)). We refer to (Calvanese et al.
2007) for a detailed description of PerfectRef.

Let Q′c be the query returned by the algorithm PerfectRef
executed on input Q and T . We prove that Q′c is equivalent
to the query Q′p returned by Presto, i.e., in every interpreta-
tion I, the evaluation of Q′c and Q′p in I coincide.

First, the proof that the query Q′p is contained in the query
Q′c is quite easy. We first consider the unfolding of Q′p, i.e.,
the UCQ Q′′p obtained by unfolding all defined predicates

1We remark that, for this query and TBox, the algorithm Perfec-
tRef produces a perfect reformulation which consists of the union
of 650 conjunctive queries.

295

A � A1

A � A3

A1 � B
B2 � A3

B3 � A
B3 � A2

C � A
C � B

C1 � B

C1 � B3

C2 � C
C2 � C1

C3 � B
C3 � B1

∃P � B
∃P � ∃U
∃P � B2

∃R � C1

∃R � ∃U
∃R � A
∃R � ∃S
∃R � C
∃R � A2

∃R− � A3

∃R− � A
∃R− � ∃P−
∃R− � C3

∃T � ∃S
∃T � B3

∃T � B2

∃T− � ∃P
∃T− � A1

∃T− � C
∃U � C
∃U � C2

∃U− � ∃P

T � P
T � P−
T � R
T � R−

T− � S
U � T−
U � S−

(a) TBox

q(x, y) :– S(z, j), R(x, z), T (k, w), A1(z), R(y, w).

(b) Query

(R0) q(x, y) :– q1(x), q2(y)
(R1) q1(x) :– p2

R(x, z), p1
∃S(z)

(R2) q2(y) :– p1
∃T−(w), p2

R(y, w)
(R3) q1(x) :– p1

∃U (x)
(R4) q1(x) :– p1

∃T−(x)
(R5) q2(y) :– p1

∃T−(y)
(R6) q2(y) :– p1

∃U (y)

p1
∃S(x) :– T (, x)

p1
∃S(x) :– U(, x)

p1
∃S(x) :– R(x,)

p1
∃S(x) :– S(x,)

p1
∃S(x) :– T (x,)

p1
∃S(x) :– U(x,)

p1
∃S(x) :– P (x,)

p1
∃T−(x) :– U(x,)

p1
∃T−(x) :– P (x,)

p1
∃T−(x) :– U(, x)

p1
∃T−(x) :– R(x,)

p1
∃T−(x) :– T (x,)

p1
∃T−(x) :– T (, x)

p1
∃U (x) :– T (x,)

p1
∃U (x) :– U(x,)

p1
∃U (x) :– P (x,)

p1
∃U (x) :– R(x,)

p1
∃U (x) :– U(, x)

p1
∃U (x) :– T (, x)

p2
R(x, y) :– U(x, y)

p2
R(x, y) :– T (x, y)

p2
R(x, y) :– R(x, y)

p2
R(x, y) :– U(y, x)

p2
R(x, y) :– T (y, x)

(c) Nonrecursive datalog query produced by Presto

Figure 2: TBox, query, and rewriting of Example 1.

296

in Q′p. Obviously, we have that Q′p and Q′′p are equivalent.
Then, we prove that for every CQ rp in Q′′p there exists a
CQ rc in Q′c such that rp is equal to rc up to variable names,
which easily follows from the definition of Presto and the
CGLLR algorithm. This implies that rp is contained in rc,
which in turn proves that Q′p is contained in Q′c.

Then, we show that Q′c is contained in Q′′p . This part of
the proof is less trivial, since there are CQs in Q′c that are not
equal (up to variable renaming) to any CQ in Q′′p . For every
such CQ rc, we prove that there exists a CQ rp in Q′′p such
that rc is contained in rp. More precisely, we prove that, for
every rc ∈ Q′c, there exists a CQ rp ∈ Q′′p such that rc is b-
contained in rp, i.e., there exists a homomorphism from rp

to rc that maps bound variables of rp to bound terms of rc.
The proof is by induction on the structure of Q′c. We con-
sider a bottom-up inductive definition of Q′c in which (Q′c)i

is the UCQ computed by CGLLR after i iterations. The base
case is immediate. As for the inductive case, let rc be the CQ
added by CGLLR at its i+1-th iteration. then, there are two
possible cases:
(1) rc has been generated by the atom-rewrite-rule from a
CQ r′c ∈ (Q′c)i using a TBox inclusion I . In this case, by
the inductive hypothesis it follows that there exists a CQ
r′p ∈ Q′′p such that the atom-rewrite-rule can be applied
to r′p using the same TBox inclusion I: let rp be the CQ
thus obtained. Now, it is immediate to verify that the usage
of OA-predicates in Q′p guarantees that Q′′p is closed under
application of the atom-rewrite-rule: hence, rp belongs to
Q′′p . Moreover, by definition of the atom-rewrite-rule (which
does not eliminate ej-vars, thus it cannot introduce new un-
bound variables), it follows that rc is b-contained in rp;
(2) rc has been generated by the reduce-rule from a CQ
r′c ∈ (Q′c)i. In this case, there are two possible cases: (2.a)
the reduce-rule does not eliminate an ej-var, i.e., it does not
introduce a new unbound variable. In this case, by the in-
ductive hypothesis, there exists r′p ∈ Q′′p such that r′c is b-
contained in r′p. Now, it is immediate to see that r′c is also
b-contained in rp, hence the thesis follows; (2.b) the reduce-
rule eliminates an ej-var, i.e., it introduces a new unbound
variable. In this case, it can be proved that there exists a cor-
responding rule rp generated by the EliminateEJVar step
such that rc is b-contained in rp. The proof of this property
is again by induction on the structure of Q′c, and a crucial
role in this proof is played by the notion of MGS.

We have thus proved that Q′c is equivalent to Q′p. Then,
since Q′c is a perfect reformulation of Q′ ((Calvanese et al.
2007, Lemma 39)) and in turn Q′ is equivalent to Q, it fol-
lows that Q′p is a perfect reformulation of Q.

We denote with Q′s is the nr-datalog query computed by
Presto after the first Split step (i.e., right before entering the
repeat-until cycle); moreover, #elim(r) denotes the number
of eliminable ej-vars in rule r. The following property fol-
lows from the fact that every auxiliary function can be com-
puted in polynomial time, due to the computational com-
plexity of TBox reasoning in DL-LiteR.

Theorem 3 Presto(Q, T) runs in polynomial time with re-
spect to the size of the TBox, and in exponential time with re-

spect to maxr∈Q′s{#elim(r)}. The same upper bounds hold
for the size of the query returned by Presto(Q, T).

Experimental results

We now report on a set of experiments on both query rewrit-
ing and query answering using Presto. The goal of these ex-
periments is to compare Presto with the previous techniques
for query answering and rewriting in DL-Lite.

Our experiments have been executed on the ontolo-
gies and queries used in the experimental evaluations
of previous approaches: in particular, we have consid-
ered: (A) the experimental setting used in (Pérez-Urbina,
Motik, and Horrocks 2009); (B) the experimental setting
used in (Kontchakov et al. 2009); (C) the well-known
LUBM ontology benchmark (swat.cse.lehigh.edu/
projects/lubm/); (D) a newly created ontology. Due to
space limits, here we provide detailed results only on tests
(A) and (D). In some cases, we have additionally tested more
complex queries than the ones already available, to verify
the effectiveness of Presto on such queries. We have con-
ducted our experiments on a Pentium dual core 2.00GHz
CPU, with 2GB RAM and Windows Vista OS.

Query rewriting: comparison with Quonto and
Requiem

To test the pure query rewriting abilities of the Presto ap-
proach (i.e., ignoring the cost of evaluating queries over the
ABox), we have used the experimental setting of (Pérez-
Urbina, Motik, and Horrocks 2009), which presents a de-
tailed comparison between (different versions of) Requiem
and an implementation of the PerfectRef query rewriting
algorithm of (Calvanese et al. 2007). We have consid-
ered the three versions of the Requiem algorithm which
are currently available (see www.comlab.ox.ac.uk/
projects/requiem), our implementation of Presto, and
the query rewriting module currently used in the Quonto
system (called QPerfRef in the following), which is an op-
timized version of the PerfectRef algorithm of (Calvanese
et al. 2007). (At this stage of our experiments, we have
not considered Owlgres (Stocker and Smith 2008), since
its rewriting technique is similar to PerfectRef.) Moreover,
we have considered the same ontologies and queries used
in (Pérez-Urbina, Motik, and Horrocks 2009), adding some
more complex queries.

Here we present only an excerpt of the results of this anal-
ysis. In particular, Figure 3 displays the results obtained
about six different ontologies (V, S, P1, P5X, A, U) of differ-
ent complexity: for each ontology, several different conjunc-
tive queries (Q1–Q7) of increasing size have been consid-
ered. In the figure, the empty cells correspond to the cases in
which the rewriting was not returned after 30 minutes (times
are expressed in milliseconds).

The table clearly shows the effectiveness of Presto. Ex-
cept from few (simple) queries, Presto is almost always
better than all the other techniques, in terms of both the
time needed for computing the rewriting and the size of the
rewriting generated. Moreover, the results show that Presto
scales much better than all other techniques.

297

Ontology Query ID
QPerfRef Requiem RequiemF RequiemG PRESTO QPerfRef Requiem RequiemF RequiemG PRESTO

V Q1 15 15 15 15 16 1 1 1 15 1
V Q2 10 10 10 10 11 31 15 15 15 15
V Q3 72 576 72 72 28 47 328 655 468 15
V Q4 185 185 185 185 43 94 78 125 125 15
V Q5 30 30 30 30 14 140 16 31 15 16
V Q6 1850 1850 1850 1850 53 920 2341 6428 8909 15
V Q7 7200 7200 7200 7200 83 3323 36596 114599 327463 15
S Q1 6 6 6 6 7 1 1 1 15 1
S Q2 2 160 2 2 3 1 109 140 47 1
S Q3 4 480 4 4 5 46 1248 1779 171 1
S Q4 4 960 4 4 5 16 2341 3463 47 15
S Q5 8 2880 8 8 7 47 51481 75349 296 16
S Q6 8 8 9 32 60153 16
S Q7 16 16 12 78 164611 16
P1 Q1 2 2 2 2 3 15 1 1 1 1
P1 Q2 2 2 2 2 3 16 1 1 1 1
P1 Q3 2 2 2 2 3 31 1 1 1 1
P1 Q4 2 2 2 2 3 32 15 16 16 1
P1 Q5 2 2 2 2 3 47 15 16 31 15

Number of rules/CQs of the generated query Time (msec) to generate the query

P1 Q5 2 2 2 2 3 47 15 16 31 15
P1 Q6 2 32 2 32 3 94 7098 7286 7238 15
P1 Q7 2 64 2 64 3 171 168379 172549 172218 16

P5X Q1 10 14 14 14 11 15 16 16 15 1
P5X Q2 50 77 25 25 16 46 46 63 63 1
P5X Q3 250 390 58 58 16 125 297 499 639 15
P5X Q4 1254 1953 179 179 16 749 6476 12247 16880 15
P5X Q5 6330 9766 718 718 16 7239 223955 427426 567713 15
P5X Q6 32338 16 114233 16
P5X Q7 16 16

A Q1 558 114 27 27 69 171 62 94 78 1
A Q2 1739 74 50 50 52 592 47 63 94 1
A Q3 4741 104 104 104 55 2200 94 140 374 15
A Q4 6589 285 224 224 93 2340 156 234 374 15
A Q5 66068 624 624 624 71 35365 672 1248 2247 16
A Q6 2496 2496 2496 91 9221 18799 36443 15
A Q7 131 31
U Q1 5 2 2 2 6 1 1 1 1 1
U Q2 1 148 1 1 1 1 78 93 47 1
U Q3 12 224 4 4 8 31 156 234 15 16
U Q4 5 1628 2 2 6 1 1998 4430 78 16
U Q5 25 2960 10 10 11 31 9953 18157 297 16
U Q6 40 2368 16 16 14 47 7322 14238 725 16U Q6 40 2368 16 16 14 47 7322 14238 725 16
U Q7 560 33152 224 28 296 1734331 121888 16

Figure 3: Results for query rewriting.

298

Figure 4: Results for query answering (query rewriting and evaluation).

299

We remark that some of these ontologies are actually ex-
pressed in a language that is slightly more expressive than
DL-LiteR, due to the presence of qualified existential con-
cepts on the right-hand side of concept inclusion assertions.
Differently from both Requiem and QPerfRef, the Presto al-
gorithm is not optimized to handle qualified existential con-
cepts, therefore, to deal with such expressions in Presto,
an encoding of qualified existential concepts using auxiliary
role names and role inclusions is needed, which causes an in-
crease in the size of the TBox and of the ontology alphabet.
Nevertheless, the results show that Presto is able to compete
with the methods that explicitly handle qualified existential
concepts.

Notice also that, in some cases, even if the size of the
rewriting computed by both Requiem and QPerfRef is small,
these algorithms take a considerable amount of time to com-
pute the rewriting. Roughly, this is due to the fact that, dif-
ferently from Presto, even when the number of actual so-
lutions (conjunctive queries) is not high, the search space
scanned by such algorithms may be very large, i.e., a huge
number of candidate solutions may be generated.

Query answering: comparison with Quonto

Finally, in order to test the overall effectiveness of our ap-
proach for query answering, we have experimented the eval-
uation of the queries generated by Presto (after a transla-
tion in SQL) on some of the most popular current RDBMSs
(IBM DB2, PostgreSQL, and MySQL). To this aim, we have
produced a modified version of the Quonto system based on
the Presto query rewriting algorithm: we call Quonto-Presto
such a system. We have compared the query answering per-
formance of Quonto-Presto with the original Quonto system
on the various versions of the LUBM ontology (which pro-
vides large ABoxes) and on an ontology explicitly created
for this purpose (the TBox of such an ontology is the one re-
ported in Figure 2(a)). Figure 4 displays the results obtained
on the latter ontology. For each of the queries displayed in
the first column of the table, each row reports the total query
evaluation time (query rewriting plus evaluation of the SQL
translation of the query on the DBMS). Empty cells repre-
sent the cases in which Quonto did not produce any answer
before the timeout of 30 minutes. These results are relative
to the tests performed using MySQL Server 5.1 (however,
analogous results have been otained with the other DBMSs
mentioned above).

The results clearly show that not only Presto allows for a
more efficient query rewriting than QPerfRef, but also the
evaluation of (the SQL translation of) the queries generated
by Presto is more efficient than the evaluation of the UCQs
generated by QPerfRef. In other words, our results show
that the increased complexity in the structure of the query
(from UCQ to nr-datalog query) does not actually compro-
mise the gain obtained by Presto in terms of size of the
rewritten query. These results have been confirmed by the
query evaluation tests that we have performed on the various
versions of the LUBM ontology: with the exception of few
cases (corresponding to very short queries and/or queries
with no join variables, where Quonto is already very effi-
cient), Quonto-Presto outperforms Quonto.

Conclusions

In this paper we have presented a new query rewriting
method for DL-Lite. We believe that our technique is ex-
tremely significant, since it overcomes serious limitations of
the previous query answering techniques for DL-Lite. Presto
allows for providing a new upper bound on the size of the
perfect reformulation of a UCQ in DL-Lite: this result has
not only a theoretical significance, but also a strong practical
impact, since it allows for effectively solving the problem of
answering “real” complex queries over DL-Lite ontologies,
as witnessed by our experiments.

The present work can be extended in several directions.
First of all, the present version of Presto can be certainly op-
timized in many ways. For instance, the algorithm can be
improved in the case when there are no role inclusion as-
sertions in the TBox (e.g., for DL-LiteF TBoxes): in fact,
the problem of computing perfect reformulations in this set-
ting is significantly simplified by this assumption. An ap-
proach in this direction has been pursued in (Kontchakov et
al. 2009), although under a strategy that mixes query an-
swering by query rewriting with ABox preprocessing.

From the theoretical viewpoint, it would be interesting
to see whether the ideas underlying Presto can be applied
to DLs more expressive than DL-Lite: although it is well-
known that CQs are not first-order rewritable in such DLs,
it could be possible in principle to generalize Presto to im-
prove query rewriting and query answering in such logics.

Finally, the current implementation of query answering
based on Presto, which we used to run our experiments, is at
a very early stage and needs several optimizations (e.g., in
the translation scheme from nr-datalog to SQL queries).

References

Abiteboul, S.; Hull, R.; and Vianu, V. 1995. Foundations of
Databases. Addison Wesley Publ. Co.
Acciarri, A.; Calvanese, D.; De Giacomo, G.; Lembo, D.;
Lenzerini, M.; Palmieri, M.; and Rosati, R. 2005. QUONTO:
QUerying ONTOlogies. In Proc. of AAAI 2005, 1670–1671.
Artale, A.; Calvanese, D.; Kontchakov, R.; and Za-
kharyaschev, M. 2009. The DL-Lite family and relations.
J. of Artificial Intelligence Research 36:1–69.
Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini, M.;
and Rosati, R. 2007. Tractable reasoning and efficient query
answering in description logics: The DL-Lite family. J. of
Automated Reasoning 39(3):385–429.
Glimm, B.; Horrocks, I.; Lutz, C.; and Sattler, U. 2007.
Conjunctive query answering for the description logic
SHIQ. In Proc. of IJCAI 2007, 399–404.
Kontchakov, R.; Lutz, C.; Toman, D.; Wolter, F.; and Za-
kharyaschev, M. 2009. Combined FO rewritability for con-
junctive query answering in DL-Lite. In Proc. of DL 2009.
Pérez-Urbina, H.; Motik, B.; and Horrocks, I. 2009. A
comparison of query rewriting techniques for DL-lite. In
Proc. of DL 2009.
Stocker, M., and Smith, M. 2008. Owlgres: A scalable owl
reasoner. In Proc. of OWLED 2008.

300

