Decidability of a Description Logic over Infinite-Valued Product Logic

Marco Cerami and Francesc Esteva and Félix Bou
Artificial Intelligence Research Institute
Spanish National Research Council (IIIA-CSIC)
Campus UAB, s/n
Bellaterra, 08193, Spain
{cerami, esteva, fbou}@iiia.csic.es

Abstract
This paper proves that validity and satisfiability of assertions in the Fuzzy Description Logic based on infinite-valued Product Logic with universal and existential quantifiers (which are non-interdefinable) is decidable when we only consider quasi-witnessed interpretations. We prove that this restriction is neither necessary for the validity problem (i.e., the validity of assertions in the Fuzzy Description Logic based on infinite-valued Product Logic is decidable) nor for the positive satisfiability problem, because quasi-witnessed interpretations are particularly adequate for the infinite-valued Product Logic. We give an algorithm that reduces the problem of validity (and satisfiability) of assertions in our Fuzzy Description Logic (restricted to quasi-witnessed interpretations) to a semantic consequence problem, with finite number of hypothesis, on infinite-valued propositional Product Logic.

1. Introduction
Obtaining methods and tools suited to give a high-level description of the world and to implement intelligent systems plays a key role in the area of Knowledge Representation and Reasoning systems. Description Logics (DLs) are knowledge representation languages (particularly suited to specify formal ontologies), which have been studied extensively over the last two decades; a comprehensive reference manual of the field is (Baader et al. 2003). But in real applications the knowledge used is usually imperfect and has to address situations of uncertainty and vagueness. From a real world viewpoint, it is easy to find domains where concepts like “patient with a high fever” and “person living near a pollution source” have to be considered. The vagueness aspect has suggested to model DL concepts as fuzzy sets. Fuzzy Sets and Fuzzy Logic were born to deal with the problem of approximate reasoning (Zadeh 1965; 1975). Their first developments were characterized by the applications that gave rise to various semantic approaches to this problem.

In recent times, formal logic systems have been developed for such semantics, and the logics based on triangular norms (t-norms) have become the central paradigm of fuzzy logic. The development of this field of research is intimately linked to the book “Metamathematics of Fuzzy Logics” (Hájek 1998), which shows the connection of fuzzy logic systems with many-valued residuated lattices based on continuous t-norms. There are three basic continuous t-norms: minimum, Łukasiewicz and product t-norm; basic is used in the sense that all continuous t-norms can be obtained from these three ones using the “ordinal sum” construction. For each one of these three t-norms a propositional and a first order logical system have been studied in the literature.

We point out that in this paper we deal with logics given by the standard semantics in the fuzzy tradition, and not by the general semantics (cf. (Hájek 1998)). The language of these logics takes as primitive connectives the multiplicative conjunction \(\odot \), its residuum implication \(\Rightarrow\) and the falsum constant \(\bot \); while the intended semantics of \(\odot \) is the corresponding t-norm \(*\), the semantics of \(\Rightarrow\) is given by the residuum of the t-norm

\[
x \Rightarrow y := \max\{z \in [0,1] : x \ast z \leq y\},
\]

and \(\bot \) is interpreted as 0. It is well known that simply using these three connectives we can define a new constant \(\top \) as well as new connectives \(\land \) and \(\lor \) whose intended semantics are 1 and the lattice operations over \([0,1]\) with its natural order; moreover, it is common to introduce a negation \(\neg \) defined by \(\neg \varphi := \varphi \rightarrow \bot \), and the biconditional \(\leftrightarrow \) defined by \(\varphi \leftrightarrow \psi := (\varphi \Rightarrow \psi) \odot (\psi \Rightarrow \varphi) \). Complete (for finite theories) Hilbert style axiomatizations for the propositional logics defined by the three basic continuous t-norms can be found in (Hájek 1998); it is also proved there that the problem of a formula being valid in these propositional logics is, in the three cases, NP-complete. On the other hand, the behaviour of the first order logics\(^1\) introduced by these three t-norms is not so nice: while in the minimum case a recursively axiomatizable logic is obtained, this is not true for the other two: Łukasiewicz t-norm introduces a \(\Pi_2 \)-complete logic and product t-norm is even worst introducing a non-arithmetic one (Montagna 2001).

Since classical DL \(ALC \) can be seen as a fragment of first order classical logic, Hájek proposed in (Hájek 2005) to introduce the fuzzy version, one for each t-norm, of this DL as a fragment of its first order fuzzy logic. In this paper we will use the notation \(*
\) to denote the fuzzy DL defined by

\(^1\)The intended semantics of the quantifiers \(\forall \) and \(\exists \) corresponds to the infimum and the supremum (of a subset of \([0,1]\)), and hence it is a generalization of the semantics in the classical case.
In his paper, Hájek defines a concept C to be 1-satisfiable in $\neg ^*\text{ALC}$ in case that there is some interpretation and some object a in the domain of the interpretation such that the truth value associated with $C(a)$ is 1. This definition can be generalized in the obvious way to r-satisfiability (for every $r \in [0,1]$). We stress that we are not considering the problem whether a given concept is 1-satisfiable in a interpretation in the sense of being 1-satisfiable in all objects of the domain of the interpretation. Analogously to the satisfiability case, Hájek also defines a concept C to be valid in $\neg ^*\text{ALC}$ if for every interpretation and every object a in the domain of the interpretation the truth value of $C(a)$ is 1. We will use the notation Sat^* and Val^* to denote the set of concepts that are, respectively, r-satisfiable and valid in $\neg ^*\text{ALC}$.

The main result in (Hájek 2005) says that if $*$ is Łukasiewicz t-norm, then the sets Sat^* and Val^* are decidable; an easy consequence of this fact is that for every $r \in [0,1]$, Sat^*_r is also decidable. The proof consists on two claims. The first claim is a general one: for every t-norm, the problems of 1-satisfiability and validity in finite interpretations are decidable problems. This is proved using a reduction of the problem to the propositional fuzzy logic given by the corresponding t-norm; the idea behind this reduction is the fact that finite interpretations can be codified using a finite number of propositional formulas. The second claim is a particular one of Łukasiewicz: for every $r \in [0,1]$, a concept is r-satisfiable iff it is r satisfiable in some finite interpretation. The proof of this fact is based on the notion of witnessed interpretation: an interpretation $I = (\Delta^T,^I)$ is witnessed in case that

\[(\exists R.C)^T(a) = R^T(a, b) \ast C^T(b), \]

\[(\forall R.C)^T(a) = R^T(a, b) \Rightarrow C^T(b). \]

Using these two clauses it is obvious that concepts r-satisfiable in a witnessed interpretation are also r-satisfiable in a finite model; and in the case of Łukasiewicz t-norm it is well known (Hájek 2007) that first order formulas (in particular this applies to DL concepts) r-satisfiable are r-satisfiable in a witnessed interpretation.

In this paper we will restrict to the case of product t-norm. First of all, we want to provide an example which motivates why is it worth considering product t-norm in order to built fuzzy DL languages.

Example 1 (Restaurant Finder). Consider the following ABox about a restaurant finder:

- **individuals in our KB are the restaurants:** rest1, rest2, rest3, rest4,
- **concepts in our KB are:** Near and Good, with the usual intuitive interpretation,
- moreover, we have the following set of assertions: $A = \{(\text{rest}1 : \text{Near} = 0.8), (\text{rest}2 : \text{Near} = 0.6), (\text{rest}3 : \text{Near} = 0.4), (\text{rest}4 : \text{Near} = 0.2), (\text{rest}1 : \text{Good} = 0.6), (\text{rest}2 : \text{Good} = 0.7), (\text{rest}3 : \text{Good} = 0.2), (\text{rest}4 : \text{Good} = 0.8)\}.$

In the following table we show what happens when we process the above ABox by means of each one of the three basic t-norms in order to search for a restaurant that is both near and good, i.e. in which degree the four restaurants of the example are instances of the concept Near \ast Good, where \ast stands for one of the basic t-norms.

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>rest1</td>
<td>0.4</td>
<td>0.6</td>
<td>0.48</td>
</tr>
<tr>
<td>rest2</td>
<td>0.3</td>
<td>0.6</td>
<td>0.42</td>
</tr>
<tr>
<td>rest3</td>
<td>0</td>
<td>0.2</td>
<td>0.08</td>
</tr>
<tr>
<td>rest4</td>
<td>0</td>
<td>0.2</td>
<td>0.16</td>
</tr>
</tbody>
</table>

As we can see, in the case of Łukasiewicz t-norm, beyond certain distance there is no difference between restaurants, because the distance makes every value collapse to 0. In the case of Gödel t-norm, the resulting value is not a combination of the two values at the beginning, but one of them, regardless it refers to quality or distance. Nevertheless, we consider important to have minimum t-norm expressible in the language, since it is strictly related with the hierarchy of concepts. In the product case, each restaurant that falls within the distance range we have chosen to check, has an assigned value that depends on both distance and quality. In this example product t-norm seems to be more adequate for modeling purposes than the other two basic t-norms.

The problem of decidability of a DL based on product t-norm has already been addressed by Straccia and Bobillo in (Bobillo and Straccia 2007) and in (Bobillo and Straccia 2009), but they restrict their attention to satisfiability with respect to witnessed models. Hence, they do not consider the more general case we deal in this paper.

The aim of this paper is, in fact, to prove that if $*$ is the product t-norm, then the problem Val^* is decidable. Thus, although the first order logic is non arithmetical we will see that the $\neg ^*\text{ALC}$ is much more tractable. Besides the validity problem, in this paper we also consider the problems
which are 1-satisfiable, but never in a witnessed interpretation (cf. (Hájek and Cintula 2006)). Thus, in order to deal in this occasion we cannot use witnessed interpretations. The proof of our result follows the same pattern than Hájek’s (called quasi-witnessed). We point out that in our frame

succeeded to prove decidability only under the additional

deed enough in order to deal with the product t-norm case.

The proof of our result follows the same pattern than H

proved decidability over the sets QSat and QVal already int

2. Preliminaries

In this preliminary section we firstly introduce the syntax

and semantics of *−ALE. The syntax is the same one for

∗−ALE tended semantics behind concepts in *−ALE.

Definition 2. Let * be a t-norm and let ⇒ be its residuum. Then, an *−interpretation Ι := (ΔI, I) consists of a (crisp) set ΔI (called the domain of Ι) and an interpretation function I, which maps every concept C to a function CI : ΔI → [0, 1], every role name R to a function RI : ΔI × ΔI → [0, 1] and such that, for every concepts C, D, every role name R and every element a ∈ ΔI, it holds that:

\[\begin{align*}
\bot^I(a) & = 0 \\
\top^I(a) & = 1 \\
(C \sqcap D)^I(a) & = C^I(a) \cdot D^I(a) \\
(C \rightarrow D)^I(a) & = C^I(a) \rightarrow D^I(a) \\
(\forall R.C)^I(a) & = \inf\{R^I(a, b) : b \in \Delta^I \} \\
(\exists R.C)^I(a) & = \sup\{R^I(a, b) : b \in \Delta^I \}
\end{align*} \]

Definition 3. An *−interpretation Ι is quasi-witnessed when it satisfies condition (witξ) and

\[(\forall R.C)^I(a) = R^I(a, b) \Rightarrow C^I(b). \]

In the rest of the paper we will focus on the product t

t-norm, which will be denoted as Π. Thus, from now on the reader can always assume that * and ⇒ are the functions from [0, 1]2 into [0, 1] defined by

\[x \cdot y := x \cdot y \text{ and } x \Rightarrow y := \begin{cases} 1 & \text{if } x \leq y \\ \text{otherwise} & \end{cases} \]

We will use the notations Sat, Val to denote the sets Sat

restricted to quasi-witnessed interpretations. We stress that the aim of this paper is to prove the following theorem.

Theorem 4 (Product Case). For every r ∈ [0, 1], the set QSat, is decidable; and the set QVal is also decidable.

First of all we notice that for every r, s ∈ [0, 1], QSatr = QSat, s. This is an immediate consequence of the fact that for every r ∈ R+, the function x ↦ x^x is an order isomorphism and a homomorphism of the operations * and ⇒. We will use the notation QSat to indicate the set of concepts that are immediately satisfiable (i.e., 0.5 satisfiable). Therefore, in this paper we only need to deal with the sets QSat0, QSat1, QSat, and QVal. Moreover, using that

• C ∈ QSat0 iff ¬C ∈ QSat0, and
• C ∈ QSat1 iff C ∪ ¬C /∈ QVal,

it follows that it would be enough to prove that QSat1 and QVal are decidable. It is obvious that all statements in this paragraph also hold if we replace QSat with Sat0, QSat with Sat1, QSat0 with Sat0, and QVal with Val.

The future sections of this paper will be devoted to prove Theorem 4. The proof consists on a reduction of the problems QSat and QVal to a consequence problem of the infinite-valued propositional Product Logic.

In the rest of this section we notice that Theorem 4 can be used to prove that the problem Val (without restricting to quasi-witnessed interpretations) is decidable. This is a consequence of Proposition 5. The proof of this proposition is given in an appendix because it is a technical proof based on first order fuzzy logics, with no particular relationship to fuzzy DLs.

Proposition 5. Let C be a concept. Then,

\[C \in Val \text{ iff } C \in QVal. \]

Theorem 6 (Product Case). The problems Sat and Val are decidable.

Proof. It follows from Theorem 4 and Proposition 5. □

3. The Reduction to the Propositional Case

In order to prove that r-satisfiability in a quasi-witnessed Π-interpretation is decidable we are going to codify quasi-witnessed Π-interpretations by some finite number of formulas in the propositional product logic; using this finite

\[(\forall R.C)^I(a) = R^I(a, b) \Rightarrow C^I(b). \]
codification we will not know how to recover the same initial II-interpretation, but we will be able to build a II-interpretation with the same associated truth value. Here it will be crucial the fact that the mappings $x \mapsto x'$ are isomorphisms of $[0, 1]_\Pi$ (for every $i \in \omega$).

First of all, let us a fix an infinite set Ind = \{a_i : i \in \omega\}, whose elements will be called individuals or constants. An assertion is any propositional combination of expressions of the forms $C(a)$ and $R(a, b)$ where C is a concept, R is a role name and a, b are individuals.

Before introducing the algorithm, we need some previous definitions.

Definition 7.1. Nesting degree of quantifiers in C (or $C(a)$) is defined inductively: $nest(A) = 0$, if A is an atomic concept name; if C and D are concepts, then $nest(C \square D) = nest(C \rightarrow D) = max(nest(C), nest(D))$; finally, if C is a concept and R a role name, then $nest(\forall R.C) = nest(\exists R.C) = nest(C) + 1$.

2. Generalized atoms are quantified concepts, i.e. concepts of the form $\forall R.C$ or $\exists R.C$, where C is a propositional combination of concepts and generalized atoms; the latter will be called generalized atoms of C. We will also use the term generalized atom for instances of quantified concepts, the context will clarify the precise meaning.

Definition 8 (Labelling). Let C be a concept. The labelling function is the function which associates to every occurrence D of a subconcept in C an element of \mathbb{N}_k^\leq (where k is the nesting degree of the concept C) defined by the conditions:

1. $l(C)$ is the empty sequence \emptyset,
2. if D is a propositional combination of concepts D_1, \ldots, D_n, then $l(D_i) := l(D)$ for every $i \leq n$.
3. if D is $\forall R.D'$ or $\exists R.D'$, then $l(D')$ is the concatenated sequence $l(D), n$, where n is the minimum number m such that the sequence $l(D), m$ has not been used to label any occurrence in C.

In order to illustrate the notions defined in the last definitions, as well as further definitions, we propose an example that will be used throughout the paper.

Example 9. Consider the concept

$$C := \forall R.\exists R.A \sqcap \neg \forall R. (\exists R.A \sqcap \exists R.A)$$

where A is an atomic concept. Then,

1. concept C has nesting degree 2.
2. the generalized atoms in C are: $\forall R.\exists R.A, \forall R.(\exists R.A \sqcap \exists R.A)$ and $\exists R.A$.
3. the labelling function associated with occurrences in C is given by the genealogical tree

\[
\begin{array}{c|c|c}
A & 2, 1 & A & 2, 2 \\
\exists R.A & 2 & \exists R.A & 2 \\
\forall R.(\exists R.A \sqcap \exists R.A) & \emptyset & \forall R.(\exists R.A \sqcap \exists R.A) & \emptyset \\
\forall R.\exists R.A & 0 & \neg \forall R.(\exists R.A \sqcap \exists R.A) & \emptyset \\
C & \emptyset & C & \emptyset
\end{array}
\]

Here we have used the notation $D : \sigma$ to indicate that the labelling of occurrence D is the sequence σ.

Next, for every concept C we are going to recursively associate two finite sets T_C and Y_C of assertions.

Definition 10 (Algorithm). Given a concept C_0, we construct finite sets T_{C_0} and Y_{C_0} of assertions. The construction takes steps 0, . . . , n where n is the nesting degree of the concept C_0. At each step some generalized atoms are processed; and at each step we add some new constants from Ind and some new formulas to T_{C_0} and Y_{C_0} and we transfer some assertions of concepts for processing in the next step. The assertions produced in step i will have nesting degree $n - i$; after step n is completed the algorithm stops.

At step 0, we simply transfer the assertion $C_0(d)$ to be further processed in step 1; and we say that constant d has level 0. For $i > 0$, step i selects the generalized atoms in formulas transferred from step $i - 1$ and processes them. We know that the generalized atoms just selected have the form $Q.R.C(d_\sigma)$, where $Q \in \{\forall, \exists\}$. R is a role. C a concept with nesting degree $\leq n - i$, d_σ is a constant produced in the previous step and σ is the label of the generalized atom we are considering. For each generalized atom α, at step i we firstly do the following:

- If α is $\forall R.C(d_\sigma)$, then produce a new constant $d_{\sigma,n}$ and add to T_{C_0} the assertion

$$\forall R.C(d_\sigma) \equiv (R(d_{\sigma,n}, d_{\sigma,n}) \rightarrow C(d_{\sigma,n})) \sqcap \neg \forall R.C(d_\sigma)$$

- If α is $\exists R.C(d_\sigma)$, then produce a new constant $d_{\sigma,n}$ and add to T_{C_0} the assertion

$$\forall R.C(d_\sigma) \rightarrow (R(d_{\sigma,n}, d_{\sigma,n}) \rightarrow C(d_{\sigma,n}))$$

We will say that $d_{\sigma,n}$ is a constant associated to R, d_σ.

Now, we consider each α of the present step and do the following:

- If α is $\forall R.C(d_\sigma)$ and $d_{\sigma,m}$ is any constant associated to R, d_σ, then add to T_{C_0} the assertion

$$\forall R.C(d_\sigma) \rightarrow (R(d_{\sigma}, d_{\sigma,m}) \rightarrow C(d_{\sigma,m}))$$

- If α is $\exists R.C(d_\sigma)$ and $d_{\sigma,m}$ is any constant associated to R, d_σ, then add to T_{C_0} the assertion

$$\exists R.C(d_\sigma) \rightarrow (R(d_{\sigma}, d_{\sigma,m}) \rightarrow C(d_{\sigma,m}))$$

- If α is $\forall R.C(d_\sigma)$, then add to Y_{C_0} the assertion

$$\neg \forall R.C(d_\sigma) \rightarrow (R(d_{\sigma}, d_{\sigma,n}) \rightarrow C(d_{\sigma,n}))$$

Example 11. Following Definition 10, the assertions belonging to T_C are:

- $\forall R.(\exists R.A(d) \equiv (R(d, d_1) \rightarrow \exists R.A(d_1))) \sqcup \neg \forall R.(\exists R.A(d))$
- $\forall R.(\exists R.A \sqcap \exists R.A(d) \equiv (R(d, d_2) \rightarrow (\exists R.A \sqcap \exists R.A)(d_2))) \sqcup \neg \forall R.(\exists R.A \sqcap \exists R.A)(d_2)$
- $\exists R.A(d) \rightarrow (R(d, d_2) \rightarrow A(d_2))$
- $\exists R.(\exists R.A(d) \rightarrow (R(d, d_1) \rightarrow (\exists R.A \sqcap \exists R.A))(d_1))$
- $\exists R.A(d_1) \equiv (R(d_1, d_{1,1}) \sqcap A(d_{1,1}))$
- $\exists R.A(d_2) \equiv (R(d_2, d_{2,1}) \sqcap A(d_{2,1}))$

206
5. Proposition 14. Let C_0 be a concept, and let T_{C_0} and Y_{C_0} be the two finite sets associated by Definition 10. For every $r \in [0, 1]$, the following statements are equivalent:

1. C_0 is satisfiable with truth value r in a quasi-witnessed II-interpretation,
2. there is some propositional evaluation e over the set Prop such that $e(\text{pr}(C(d_0))) = r$, $e(\text{pr}(T_{C_0})) = 1$, and $e(\psi) \neq 1$ for every $\psi \in \text{pr}(Y_{C_0})$.

From now on we will say that a propositional evaluation e is quasi-witnessing relatively to C_0 (quasi-witnessing, for short) when it satisfies that $e(\text{pr}(T_{C_0})) = 1$, and $e(\psi) \neq 1$ for every $\psi \in \text{pr}(Y_{C_0})$.

As a consequence of this last proposition we are now able to prove Theorem 4. This is so because by Proposition 14 we know that

- $C \in \text{QSat}_3$ iff $\text{pr}(Y_{C_0})$ is not derivable, in the propositional product logic, from the set $\{\text{pr}(C(d_0))\} \cup \text{pr}(T_{C_0})$.
- $C \in \text{QVal}$ iff $\text{pr}(C(d_0)) \lor \text{pr}(Y_{C_0})$ is derivable, in the propositional product logic, from the set $\text{pr}(T_{C_0})$.

Hence, we have a reduction of these problems to the semantic consequence problem, with a finite number of hypothesis, in the propositional product logic. This problem can be formalized as the problem of deciding, given two propositional formulas φ and ψ, whether ψ is a semantic consequence of φ, i.e., whether, each propositional evaluation which gives value 1 to φ, also gives value 1 to ψ. In (Hajek 2006, Theorem 3) it is proved that such problem is in PSPACE for the expansion of product logic with truth constants, but, since a formula without truth constants can be considered as a formula of the expanded language in which do not appear truth constants, this result also holds for the product logic without truth constants. Thus, the proof of Proposition 14 is the only missing step in order to prove Theorem 4.

4. From DL interpretations to propositional evaluations

The purpose of this section is to show the downwards implication of Proposition 14. Let us assume that for a given concept C_0, there is a quasi-witnessed II-interpretation I and an object a such that $C_0^r(a) = r$ for some $r \in [0, 1]$. The following definition tells us a way to obtain a propositional evaluation satisfying the requirements in Proposition 14.

Definition 15. Let I be a quasi-witnessed interpretation, a an object of the domain and C_0 a concept. Let us consider T_{C_0}, Y_{C_0} as the sets of assertions obtained from the concept C_0 by applying Definition 10. We assume that the individual a_0 has been interpreted in I as the object a; for each step, assume that constants in previous steps have been interpreted in T. For each generalized atom α processed in that step, do the following:

$(\forall 1)$. If $\alpha = \forall R.C(d_\sigma)$ and there exists $u \in \Delta_I^r$ such that $R^+(d_\sigma^r, u) \Rightarrow C^+(u) = \inf_{d_\sigma^r \in \Delta_I^r} \{R^+(d_\sigma^r, d) \Rightarrow C^+(d)\}$, then interpret the constant $\alpha_{\beta, a}$ as u (calling the expansion of Δ_I^r by these constants again Δ_I^r).
(∀α) If α = ∀R.C(d_{α}) and there is no u ∈ Δ^I such that R^I(d^I_{α}, u) ⇒ C^I(u) = inf_{d' ∈ Δ^I} \{ R^I(d'^I_{α}, d) ⇒ C^I(d) \}, then choose an element u ∈ Δ^I such that 0 < R^I(d^I_{α}, u) ⇒ C^I(u) < 1. Such an element exists since, being I a quasi-witnessed interpretation, we have, on the one hand, that, for each u ∈ Δ^I, R^I(d^I_{α}, u) ⇒ C^I(u) > 0 and, on the other hand, if there was no element u ∈ Δ^I such that R^I(d^I_{α}, u) ⇒ C^I(u) < 1, then \inf_{d' ∈ Δ^I} \{ R^I(d'^I_{α}, d) ⇒ C^I(d) \} = 1 = R^I(d^I_{α}, u) ⇒ C^I(u) against the supposition. Once chosen the element u, interpret the constant d_{α,n} as u (calling the expansion of Δ^I by these constants again Δ^I).

(∃α) If α = ∃R.C(d_{α}), then choose an element u ∈ Δ^I witnessing α and interpret the constant d_{α,n} as u (calling the expansion of Δ^I by these constants again Δ^I).

Finally, for every generalized atom and every atomic formula α, occurring in T, define e_T(pr(α)) = α^I.

Using and modifying an example reported in (Bobillo and Straccia 2009), we provide the following instance of the above definition.

Example 16. Consider the interpretation I such that:

1. Δ^I = \{ a, b, c, e, f \} \cup \{ e_i | i ∈ ω \{ 0 \} \}.
2. There is a binary relation r such that r(b, c) = r(e, f) = 1, r(a, b) = r(a, e) = 0.5, r(a, c) = 0.5, and R(x, y) = 0, when x, y is any other pair of elements of the domain.
3. There is a unary predicate s such that s(c) = s(f) = 0.5 and s(a) = 0 for any other element x of the domain.

So, if we take R^I = r, A^I = s, d^I = a, d^I = b, d^I = c, d^I = e and d^I = f, then it is easy to check that:

1. I is a quasi-witnessed model of concept C,
2. e_T(pr(φ)) = 1, for each φ ∈ T_C,
3. e_T(pr(ψ)) < 1, for each ψ ∈ Y_C.

With the following Lemma and Proposition, we are going to prove that all propositional evaluations obtained in this way are quasi-witnessing.

Lemma 17. Let I be a quasi-witnessed interpretation, C_0 a concept, and let us consider T_{C_0}, Y_{C_0} as the sets of assertions obtained from the concept C_0 by applying Definition 10. Then, the propositional evaluation e_T is quasi-witnessing relatively to C_0.

Proof. We will show the result considering, case by case, the five kinds of proposition we can find in pr(T_{C_0}) and pr(Y_{C_0}).

1. Consider the assertion (∀R.C(d_{α}) ≡ (R(d_{α}, d_{α,n}) → C(d_{α,n})) ∨ ¬∀R.C(d_{α})), then:

(∀1) if, following Definition 15, we have interpreted the constant d_{α,n} as an element u ∈ Δ^I such that R^I(d^I_{α}, u) ⇒ C^I(u) = inf_{d' ∈ Δ^I} \{ R^I(d'^I_{α}, d) ⇒ C^I(d) \}, then we have that e_T(pr(∀R.C(d_{α})) ≡ (R(d_{α}, d_{α,n}) → C(d_{α,n})) ∨ ¬∀R.C(d_{α})) = (e_T(pr(∀R.C(d_{α}))) ∨ ¬e_T(pr(∀R.C(d_{α})))) = ((∀R.C)^I(d^I_{α})) ≡ (R^I(d_{α}, d_{α,n}) → C^I(d_{α,n})) ∨ ¬((∀R.C)^I(d^I_{α})) = (∀R.C)^I(d^I_{α})).

(∀2) if there is no u ∈ Δ^I such that R^I(d^I_{α}, u) ⇒ C^I(u) = inf_{d' ∈ Δ^I} \{ R^I(d'^I_{α}, d) ⇒ C^I(d) \}, then, since I is a quasi-witnessed interpretation, we have that, necessarily, ∀R.C^I(d^I_{α}) = 0 and, hence, e_T(pr(∀R.C(d_{α}))) = 1. However, since, by Definition 15, we have interpreted the constant
Proposition 18. Let I be a quasi-witnessed interpretation, $C_0(a_0)$ a $\Pi\text{-ALE}$-assertion and T,Y the sets of assertions produced from $C_0(a_0)$ applying Definition 10, then, for every $\alpha \in T \cup Y$, it holds that $e_T(\alpha)$ is a quasi-witnessing propositional evaluation.

Proof. We will prove the Lemma by induction on the construction of α.

1. If α is an atomic formula, it is straightforward from Definition 15.

2. If α is a generalized atom, it is straightforward from Lemma 17.

3. If α is of the form $\delta \ast \gamma$ where δ,γ are either atomic formulas or generalized atoms and \ast is a propositional operator, suppose, by inductive hypothesis, that $e_T(\delta) = \delta^T$ and $e_T(\gamma) = \gamma^T$. Hence, $e_T(\alpha) = e_T(\alpha \ast \gamma) = e_T(\delta) \ast e_T(\gamma) = \delta^T \ast \gamma^T = (\delta \ast \gamma)^T = \alpha^T$.

Hence, for every proposition α in $P(T) \cup Y$, it holds that $e_T(\alpha) = \alpha^T$. In particular, $e_T(\alpha) = \alpha^T$.

This finishes the proof of the downwards implication of Proposition 14.

5. From propositional evaluations to DL interpretations

The aim of this section is to prove the upwards implication of Proposition 14. Let us assume that there is a propositional evaluation quasi-witnessing relatively to C_0 such that $e_T(C_0(d)) = r$ for some $r \in \{0,1\}$. First of all, we provide a way to obtain a quasi-witnessed Π-interpretation from a quasi-witnessing propositional evaluation with the above features.

Definition 19. Let α be an assertion, T and Y the sets of concepts and axioms produced from α applying Definition 10, let $pr(T), pr(Y)$ be the sets of propositions obtained by applying Definition 12 and let e be a quasi-witnessing propositional evaluation. Then we define the witnessed part T^w_e of our first order interpretation T_e as the following expansion of T^w_e:

1. The domain Δ^T_w is obtained by adding to Δ^T_w an infinite set of new individuals $\{d_\sigma| \sigma \in \omega \setminus \{0\}\}$, for each $d_\sigma \in \Delta^T_w$, but not for d.

2. if C is an atomic concept, and $pr(C(d))$ occurs in $P(T)$, then $C^T_w(d_\sigma) = (C^T_w(d_\sigma))^I$.

3. For each role R:
 (a) if R appears in an universally quantified formula, then:
 i. if $e(\forall R.C(d)) \neq e(\forall R.(d_\sigma, d_\sigma,n) \rightarrow C(d_\sigma))$, then:
 A. $R^T_w(d_\sigma, d_\sigma,n) = (R^T_w(d_\sigma, d_\sigma,n))^I$, for every $i \in \omega \setminus \{0\}$.
 B. $R^T_w(d_\sigma, d_\sigma,n) = (R^T_w(d_\sigma, d_\sigma,n))^I$, for every $i, j \in \omega \setminus \{0\}$.
 ii. if $e(\forall R.C(d)) = e(\forall R.(d_\sigma, d_\sigma,n) \rightarrow D(d_\sigma))$, then $R^T_w(d_\sigma, d_\sigma,n) = (R^T_w(d_\sigma, d_\sigma,n))^I$, for every $i, j \in \omega \setminus \{0\}$, if $i = j$ and $R^T_w(d_\sigma, d_\sigma,n) = 0$.
 (b) if R appears in an existentially quantified formula, then $R^T_w(d_\sigma, d_\sigma,n) = (R^T_w(d_\sigma, d_\sigma,n))^I$, for every $i, j \in \omega \setminus \{0\}$, if $i = j$ and $R^T_w(d_\sigma, d_\sigma,n) = 0$.

In order to illustrate Definition 21, we provide an example of the quasi-witnessed interpretation arising from $pr(T_C)$ and $pr(Y_C)$.
Example 22. Let \(e \) be the same propositional evaluation as in the previous example, then, following Definition 19, we obtain the following interpretation:

\[
\begin{array}{c c c c c c}
\bullet & \bullet & \bullet & \bullet \\
\times & \times & d_1 & d_3 \\
\times & \times & d_2 & d_4 \\
\end{array}
\]

In this case it is worth pointing out that this interpretation is indeed a model of \(C \).

Lemma 23. Let \(D(d_\alpha) \in \text{Sub}(C) \) and \(e \) a quasi-witnessing propositional evaluation, then, for each \(i \in \omega \setminus \{0\} \), it holds that \(D^2(d_\alpha) = (D^2(d_\alpha))^i \).

Proof. The proof is by induction on the nesting degree of \(C \).

(0) An assertion with nesting degree equal to 0 is either an atomic concept or a propositional combination of atomic concepts:

1. If \(C \) is an atomic concept, then it is straightforward from Definition 21.
2. Let \(C = E \star F \), where \(E, F \) are atomic concepts and \(\star \in \{\rightarrow, \Box\} \). Suppose, by inductive hypothesis, that the claim holds for two concepts \(E, F \), then:

\[
\begin{align*}
(E^2 \star F^2)(d_\alpha) &= E^2(d_\alpha) \star F^2(d_\alpha) \\
&= (E^2(d_\alpha))^i \star (F^2(d_\alpha))^i \\
&= (E^2 \star F^2)(d_\alpha))^i
\end{align*}
\]

(k+1) Let \(D(d_\alpha) \) be a generalized atom with nesting degree equal to \(k + 1 \) and suppose, by inductive hypothesis, that, for each generalized atom \(E(d_{\sigma,n}) \) with nesting degree equal to \(k \), it holds that \(E^k(d_{\sigma,n}) = (E^k(d_{\sigma,n}))^i \), then:

1. If \(D(d_\sigma) = \exists R.E(d_\sigma) \), then, by Definition 21, \(D^2(d_\sigma) = \sup_{d \in D^2} \{ R^2(d, d) \cdot E^2(d) \} \) and, by inductive hypothesis, Definition 10 and Definition 21, \(R^2(d_\sigma, d_{\sigma,n}) \cdot E^2(d_{\sigma,n}) = (R^2(d_\sigma, d_{\sigma,n}))^i \cdot (E^2(d_{\sigma,n}))^i = (R^2(d_\sigma, d_{\sigma,n}))^i \cdot (E^2(d_{\sigma,n}))^i = (D^2(d_{\sigma,n}))^i \).
2. If \(D(d_\sigma) = \forall R.E(d_\sigma) \), and \(\exists (\forall R.E(d_\sigma)) \) is well-defined, then, by Definition 21, \(D^2(d_\sigma) = \inf_{d \in D^2} \{ R^2(d, d) \Rightarrow E^2(d) \} = (R^2(d_\sigma, d_{\sigma,n}))^i \Rightarrow (E^2(d_{\sigma,n}))^i = (R^2(d_\sigma, d_{\sigma,n}))^i \Rightarrow (E^2(d_{\sigma,n}))^i = (D^2(d_{\sigma,n}))^i \).
3. If \(D(d_\sigma) = \forall R.E(d_\sigma) \), and \(\forall (\forall R.E(d_\sigma)) \) is well-defined, then, by Definition 21, \(D^2(d_\sigma) = \inf_{d \in D^2} \{ R^2(d, d) \Rightarrow E^2(d) \} = (D^2(d_{\sigma,n}))^i \).

Proposition 24. Let \(e \) be a quasi-witnessing propositional evaluation, then, for every assertion \(\alpha, e(pr(\alpha)) = \alpha^{2^k} \).

Proof. The proof is by induction on the nesting degree of \(\alpha \).

(0) An assertion with nesting degree equal to 0 is either an atomic concept or a propositional combination of atomic concepts:

1. If \(\alpha \) is an atomic concept, then it is straightforward from Definition 19.
2. Let \(\alpha = C \star D \), where \(C, D \) are concepts and \(\star \in \{\rightarrow, \Box\} \). Suppose that the inductive hypothesis holds for two concepts \(C, D \), then, by Definition 12 we have that, for each propositional operator \(\star \):

\[
\begin{align*}
(C \star D)^{2^k} &= C^{2^k} \star D^{2^k} \\
e(pr(C)) \star e(pr(D)) \\
e(pr(C)) \star e(pr(D)) \\
e(pr(C \star D))
\end{align*}
\]

(k+1) Let \(\alpha \) be a generalized atom with nesting degree equal to \(k + 1 \) and suppose, by inductive hypothesis, that, for each generalized atom \(\beta \) with nesting degree \(\leq n \), occurring within the scope of the quantifier of \(\alpha \), it holds that \(e(pr(\beta)) = \beta^{2^k} \).

1. If \(\alpha = \exists R.C(d_\alpha) \), then, by Definition 10 we have that \(e(pr(\alpha)) = e(pr(R(d_\alpha, d_{\sigma,n}) \square C(d_{\sigma,n}))) \) and, by Definition 19 and inductive hypothesis, we have that \(e(pr(R(d_\alpha, d_{\sigma,n}) \square C(d_{\sigma,n}))) = R^{2^k}(d_\alpha, d_{\sigma,n}) \cdot C^{2^k}(d_{\sigma,n}) \). Let \(d \in D^{2^k} \) be any constant different from \(d_{\sigma,n} \), then either \(d \) is associated to \(R, a \) or not. In the first case, since, by Definition 10, \(e(pr(R(d_\sigma, d) \square C(d))) \Rightarrow e(pr(\alpha)) = 1 \), then \(R^{2^k}(d_\sigma, d) \cdot C^{2^k}(d) \leq e(pr(\alpha)) \). In the second case, by Definition 19, \(R^{2^k}(d_\sigma, d) \cdot C^{2^k}(d) = 0 \Rightarrow C^{2^k}(d_{\sigma,n}) \leq e(pr(\alpha)) \) and, by Definition 12 and inductive hypothesis, we have that \(e(pr(\alpha)) = R^{2^k}(d_\sigma, d_{\sigma,n}) \Rightarrow C^{2^k}(d_{\sigma,n}) \leq e(pr(\alpha)) \).

2. If \(\alpha = \forall R.C(a) \) and \(e(pr(\alpha)) = e(pr(R(d_\alpha, d_{\sigma,n}) \rightarrow C(d_{\sigma,n}))) \), then, by Definition 19 and inductive hypothesis, we have that \(e(pr(\alpha)) = R^{2^k}(d_\sigma, d_{\sigma,n}) \Rightarrow C^{2^k}(d_{\sigma,n}) \). Let \(d \in D^{2^k} \) be any constant different from \(d_{\sigma,n} \), then either \(d \) is associated to \(R, a \) or not. In the first case, since, by Definition 10, \(e(pr(\alpha)) \rightarrow e(pr(R(d_\sigma, d) \rightarrow C(d))) = 1 \), then \(e(pr(\alpha)) \leq R^{2^k}(d_\sigma, d) \Rightarrow C^{2^k}(d) \). In the second case, by Definition 21, \(R^{2^k}(d_\sigma, d) \Rightarrow C^{2^k}(d) = 0 \Rightarrow C^{2^k}(d_{\sigma,n}) \leq e(pr(\alpha)) \) and, by Definition 12 and inductive hypothesis, we have that \(e(pr(\alpha)) = R^{2^k}(d_\sigma, d_{\sigma,n}) \Rightarrow C^{2^k}(d_{\sigma,n}) \leq e(pr(\alpha)) \).

3. If \(\alpha = \forall R.C(a) \) and \(e(pr(\alpha)) \neq e(pr(R(d_\alpha, d_{\sigma,n}) \rightarrow C(d_{\sigma,n}))) \), then, by Definition 10 we have that \(e(pr(\alpha)) = e(pr(R(d_\sigma, d_{\sigma,n}) \neq 0) \Rightarrow R^{2^k}(d_\sigma, d_{\sigma,n}) \Rightarrow C^{2^k}(d_{\sigma,n}) \geq 0 \). Since, by Lemma
23, we have that, for each $i \in \omega \setminus \{0\}$, $R^T_{\varnothing}(d_\sigma, d_{\sigma,n}) \Rightarrow C^T_{\varnothing}(d_{\sigma,n}) = (R^T_{\varnothing}(d_\sigma, d_{\sigma,n}) \Rightarrow C^T_{\varnothing}(d_{\sigma,n}))^i$, then $e(\varnothing) = 0 = \inf_{i \in \omega \setminus \{0\}} \{(R^T_{\varnothing}(d_\sigma, d_{\sigma,n}) \Rightarrow C^T_{\varnothing}(d_{\sigma,n}))^i \} = \inf_{i \in \omega \setminus \{0\}} \{R^T_{\varnothing}(d_\sigma, d_{\sigma,n}) \Rightarrow C^T_{\varnothing}(d_{\sigma,n})\} = \inf_{d \in D^T_{\varnothing} \{R^T_{\varnothing}(d_\sigma, d) \Rightarrow C^T_{\varnothing}(d)\} = a_0^T_{\varnothing}$.

The result is straightforward for propositional combinations of atomic concepts and generalized atoms with nesting degree equal to $k + 1$.

In particular, $e(\varnothing)(a_0) = C^T_0 \{a_0\}$. \hfill \Box

This finishes the last step in the proof of Proposition 14, and so the last step in the proof of Theorem 4.

6. Further remarks and conclusions

In this paper we have proved that Val is decidable. As a consequence we get that the positive satisfiability problem Sat_+ is also decidable, because C is positive satisfiable iff $\neg C$ is not valid.

Among the problems considered in this paper we point out that it remains open whether Sat_+ is decidable or not. As a consequence of Theorem 4 it would be enough to prove that $C \in \text{Sat}_+$ iff $C \in \text{QSat}_+$, in order to conclude that Sat_+ is decidable.

There are also several important open questions that have not been addressed in this paper. First of all, it is still unknown a characterization of the computational complexity of the problem Val (here proved to be decidable). We notice that the reduction here considered is an exponential one, and so not helping for complexity issues. Another important open question is whether reasoning in this logic using TBoxes is decidable or not.

The crucial step in the proof we have given is Proposition 14, and the proof really depends on the fact of considering the product t-norm. On the other hand, in (Hájek 2005) it was seen that the analogous of this result based on witnessed interpretations is true for every t-norm. Thus, an interesting question here is whether this Proposition 14 holds or not for an arbitrary t-norm.

Finally, it is interesting to point out the minimum t-norm \ast is the only basic t-norm for which it is unknown whether the problem Val* is decidable or not. A positive answer to this problem will allow to attempts to generalize the decidability of the three basic t-norms to an arbitrary t-norm (we remind that they are obtained as ordinal sums of the three basic ones), but up to now this question remains open.

Funding

The authors thank Eurocores (LOMOREVI Eurocores Project FP006/FFI2008-03126-E/FILO), Spanish Ministry of Education and Science (project MULOG2 TIN2007-68005-C04-01, project ARINF TIN2009-14704-C03-03, project Agreement Technologies CONSOLIDER CSD 2007-0022), and Catalan Government (2009SGR-1433/34). Marco Cerami has been supported by grant JAEpredoc, n.074 of CSIC.

Acknowledgments

Special acknowledgments are due to Lluís Godo for his comments.

Appendix: Proof of Proposition 5

In this appendix we prove Proposition 5. Indeed, we are going to prove a stronger result; we will see in Theorem 29 that the first order logic given by $[0,1]_\omega$ coincides with the one given by its one-generated subalgebra. First of all, we notice that every non trivial one-generated subalgebra generates the same first order logic since all these subalgebras are σ-isomorphic. Theorem 29 is stronger than Proposition 5 because (i) all interpretations over a one-generated subalgebra are trivially quasi-witnessed, and (ii) it is well known that concepts can be seen as particular cases of first order formulas.

In (Hájek 1998, Theorem 5.4.30) the authors prove that $[0,1]_n$-tautologies coincide with the common L_n-tautologies for $n \geq 2$, i.e., coincide with the common tautologies of the finite subalgebras of $[0,1]_n$. In (Esteve, Godo, and Noguera 2010) the authors prove that the result is not valid for a logic of a t-norm different from Łukasiewicz. But Hájek’s result can be read in another way since L_n are the one-generated subalgebras of $[0,1]_n$ whose generator is a rational number. What we prove in this appendix is that this reading of Hájek’s result can be generalized to First Order Product Logic.

In order to prove this result we first prove some lemmas and provide some definitions. Firstly we prove the following lemma that uses only residuation condition, and thus it is also true for any MTL-chain (prelinear resized chain).

Lemma 25. In any Π-chain the following inequalities hold:

1. $(x \iff x') \ast (y \iff y') \leq (x \iff y) \iff (x' \iff y')$.
2. $(x \iff x') \ast (y \iff y') \leq (x \ast y) \iff (x' \ast y')$.
3. $\inf_{i \in I} \{ x_i \iff y_i \} \leq \inf_{i \in I} \{ x_i \} \iff \inf_{i \in I} \{ y_i \}$.
4. $\inf_{i \in I} \{ x_i \iff y_i \} \leq \sup_{i \in I} \{ x_i \} \iff \sup_{i \in I} \{ y_i \}$.

Proof. The proofs are easy consequences of residuation property

$x \ast y \leq z \iff x \leq y \Rightarrow z$. (res) In particular we point out that $x \ast (x \Rightarrow y) \leq y$. Next we prove each one of the items.

1. By symmetry it is enough to prove that $(x' \Rightarrow x) \ast (y \Rightarrow y') \leq (x \Rightarrow y) \Rightarrow (x' \Rightarrow y')$; and this is a consequence of residuation.
2. By symmetry it is enough to prove that $(x \Rightarrow x') \ast (y \Rightarrow y') \leq (x \ast y) \Rightarrow (x' \ast y')$; and this is a consequence of residuation.
3. Since we are considering a chain, we can suppose, without loss of generality, that $\inf_{i \in I} \{ y_i \} \leq \inf_{i \in I} \{ x_i \}$. Thus, $\inf_{i \in I} \{ x_i \} \iff \inf_{i \in I} \{ y_i \} = \inf_{i \in I} \{ x_i \} \Rightarrow \inf_{i \in I} \{ y_i \}$. It is obvious that it is enough to prove that

$$\inf_{i \in I} \{ x_i \Rightarrow y_i \} \leq \inf_{i \in I} \{ x_i \} \Rightarrow \inf_{i \in I} \{ y_i \},$$
and this is an easy consequence of residuation because for every \(i \in I \),
\[
\inf_{i \in I} \{ x_i \Rightarrow y_i \} \star \inf_{i \in I} \{ x_i \} \leq (x_i \Rightarrow y_i) \star x_i \leq y_i.
\]

4. Without loss of generality we can assume that
\[
\sup_{i \in I} \{ y_i \} \leq \sup_{i \in I} \{ x_i \}. \quad \text{Thus,} \quad \sup_{i \in I} \{ x_i \} \Rightarrow \sup_{i \in I} \{ y_i \} = \sup_{i \in I} \{ x_i \} \Rightarrow \sup_{i \in I} \{ y_i \}.
\]
It is obvious that it is enough to prove that
\[
\inf_{i \in I} \{ x_i \Rightarrow y_i \} \leq \sup_{i \in I} \{ x_i \} \Rightarrow \sup_{i \in I} \{ y_i \}.
\]
This is true because if \(a = \inf_{i \in I} \{ x_i \Rightarrow y_i \} \), then for every \(i \in I \),
\[
a \star x_i \leq y_i;
\]
and hence,
\[
a \star \sup_{i \in I} \{ x_i \} = \sup_{i \in I} \{ a \star x_i \} \leq \sup_{i \in I} \{ y_i \}.
\]

The proof we give for Theorem 29 is based on a continuity argument, and resembles the one given in (Hájek 1998, Theorem 5.4.30). The main difference is that while Hájek introduces a distance between models on the same domain, in this paper we consider a dual notion, which we call similarity and denote by \(S \). In the case of Łukasiewicz since the duality, there is no essential difference between considering a distance or a similarity, but this is not the case for Product Logic, where it is crucial to consider a similarity.

Definition 26 (Similarity). Let \(\Gamma \) be a predicate language with a finite number of predicate symbols \(P_1, \ldots, P_n \), and let \(M, M' \) be two models over \(\{0,1\}_I \) on the same domain \(M \) such that \(r_{P_1} \) and \(r'_{P_1} \) are the interpretations of the predicate symbols in \(M \) and \(M' \) respectively.

1. For each predicate symbol \(P \in \Gamma \) with arity \(ar(P) \), we define
\[
S(r_{P_1}, r'_{P_1}) := \inf_{a \in M^{ar(P)}} \{ r_{P_1}(a) \Leftrightarrow r'_{P_1}(a) \}
\]
\[
= \inf_{a \in M^{ar(P)}} \left\{ \min \{ r_{P_1}(a), r'_{P_1}(a) \} \right\}
\]
2. Moreover, we define
\[
S(M, M') := S(r_{P_1}, r'_{P_1}) \cdots S(r_{P_n}, r'_{P_n}).
\]

Definition 27. We define the complexity \(\tau(\varphi) \) of a formula \(\varphi \) as follows:
1. \(\tau(\varphi) = 0 \), if \(\varphi \) is atomic or \(\bot \),
2. \(\tau(\varphi \star \psi) = 1 + \max \{ \tau(\varphi), \tau(\psi) \} \), if \(\varphi \in \{ \lnot, \rightarrow, \ldots \} \),
3. \(\tau(Qx \varphi) = \tau(\varphi) \), if \(Q \in \{ \forall, \exists \} \).

This complexity captures the number of nested propositional connectives in the formula.

Lemma 28. Assume \(\Gamma \) is a predicate language with \(n \) predicate symbols. Let \(M \) and \(M' \) be two first order structures over \(\{0,\ 1\}_I \) on the same domain \(M \), and let \(\varphi \) be a first order formula. Then, for all \(\varepsilon \in \{0,1\} \),
\[
\text{if } S(M, M') > \varepsilon, \text{ then, for each evaluation } v, \|\varphi\|_{M,v} \Leftrightarrow \|\varphi\|_{M',v} \geq \varepsilon.
\]

Proof. It is enough to prove that if \(M \) differs from \(M' \) only by the interpretation of one predicate symbol \(P \), then
\[
(C_\varphi) \text{ for all } \varepsilon \in \{0,1\}, \text{ if } S(M, M') > \varepsilon, \text{ then, for each evaluation } v, \|\varphi\|_{M,v} \Leftrightarrow \|\varphi\|_{M',v} \geq \varepsilon.
\]

We show that this condition \((C_\varphi)\) holds by induction on the length of the formula \(\varphi \).

- If \(\varphi \) is either atomic or \(\bot \), then it is obvious.
- Let us suppose \(\varphi = \psi \star \chi \) with \(\star \in \{ \sqcap, \rightarrow, \ldots \} \), and \(S(M, M') > \varepsilon \). Then, \(S(M, M') > \max \{ \varepsilon, \varepsilon \} \). Using the inductive hypothesis for \(\varepsilon \), we get that
\[
\|\psi\|_{M,v} \Leftrightarrow \|\psi\|_{M',v} \geq \varepsilon
\]
\[
\|\chi\|_{M,v} \Leftrightarrow \|\chi\|_{M',v} \geq \varepsilon.
\]

Hence, by the first two items in Lemma 25 we get that
\[
\|\varphi\|_{M,v} \Leftrightarrow \|\varphi\|_{M',v} \geq \varepsilon.
\]

By the last two items in Lemma 25 it follows that
\[
\|\varphi\|_{M,v} \Leftrightarrow \|\varphi\|_{M',v} \geq \varepsilon.
\]

Hence, the lemma is proved.

We are now ready to prove the generalization of Proposition 5.

Theorem 29. A first-order formula \(\varphi \) is a \(\{0,1\}_I \)-tautology if and only if it is a tautology in any one-generated subalgebra of \(\{0,1\}_I \).

Proof. The result is an obvious consequence of the previous lemma. Suppose that \(\varphi \) is not a \(\{0,1\}_I \)-tautology, then there is a structure \(M \) and an evaluation \(v \) such that \(\|\varphi\|_{M,v} \neq \varepsilon \). Take \(s \in \{0,1\} \) such that \(s^n > \varepsilon \). Then, \(S(M, M') > s^n \). Now we define the structure \(M' = (M, r'_{P_1}, \ldots, r'_{P_n}) \) over the algebra \((s) \). An easy computation shows that \(S(r_{P_1}, r'_{P_1}) > s \) for every predicate symbol \(P \), hence, \(S(M, M') > s \). By Lemma 28, \(\|\varphi\|_{M,v} \Leftrightarrow \|\varphi\|_{M',v} \geq \varepsilon \). This together with the fact that \(\|\varphi\|_{M,v} < \varepsilon \) implies that \(\|\varphi\|_{M',v} \neq 1 \). This finishes the proof.

\(\Box \)
References

