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Abstract

A vision-based machine learner is presented that learns char-
acteristic hand and object movement patterns for using cer-
tain objects, and uses this information to recreate the ”imag-
ined” object when the gesture is performed without the ob-
ject. To classify the gestures/objects, Hidden Markov Models
(HMMs) are trained on the moment-to-moment velocity and
shape of the object-manipulating hand. Object identification
using the Forward-Backward algorithm achieved 89% iden-
tification accuracy when deciding between 6 objects. Two
methods for rotating and positioning imaginary objects in the
frame were compared. One used a modified HMM to smooth
the observed rotation of the hand, with mixtures of Von Mises
distributions. The other used least squares regression to de-
termine the object rotation as a function of hand location, and
provided more accurate rotational positioning. The method
was adapted to real-time classification from a low-fps web-
cam stream and still succeeds when the testing frame rate is
much lower than training.

1. Introduction

Social pretend play facilitates mutual understanding of
imagined or hypothetical situations by allowing psuedo-
tangible interaction with objects that do not exist. In chil-
dren, pretend play is not observed until advanced cognitive
faculties, such as the ability to ascribe two potentially con-
flicting sets of properties to the same object, develop (Lillard
1993; Howes 1985; Elder and Pederson 1985). Incorporat-
ing others into pretend play is an even more difficult task.
Children do not typically begin to engage in social pretend
play until after they have mastered both complex social play
and solitary pretend play (Howes 1985). In social pretend
play, especially pretense without objects, bodily activity fa-
cilitates interaction between participants (Lillard 1993). Al-
though pretend play is a complex human behavior, a ma-
chine learner can implement some of the basic skills needed
to accomplish such a task.

A robotic learner that can recognize pantomimed actions
may be able to imitate such actions and interact with the
suggested objects (Chella, Dindo, and Infantino 2006). A
visual representation of the object would make it easier for
the learner to understand where someone was pretending
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an object to be. A robot that learned through observation
could be taught a variety of actions in a short amount of
time. These traits make such a learner easy to incorporate
in a robotic toy that can engage in a child’s pretend play or
a video game based on pantomimed actions. Additionally,
a robotic learner that classifies objects not by their physical
properties but by how they are used may have an advantage
over other systems when learning object affordances (Mon-
tesano et al. 2008).

A vision-based machine learner is presented that can
exhibit some of the most basic features of pretend play,
namely, using learned properties of objects and actions to
reason about where someone is pretending an object is. It
learns characteristic hand and object movement patterns for
using certain objects, then uses this information to recre-
ate the ”imagined” object when the gesture is performed
without the object. This research is a new hybridization of
gesture recognition using Hidden Markov Models (HMMs)
(e.g., (Lee and Kim 1999)), and augmented reality, which
tracks imaginary objects but typically assumes rather than
decides what object is being manipulated (Azuma 1997).

This machine learner uses HMMs to learn several actions
by observing gesture patterns in videos of the action per-
formed with an object. HMMs are common tools for ges-
ture recognition because they rely on probabilistic rather
than deterministic reasoning and because of their ability to
make predictions in real time (Starner and Pentland 1997).
It also learns how the object is positioned and rotated with
respect to the hand. When shown video of one of the ac-
tions being performed without an object, the learner will
choose which HMM most likely describes that action and
fill in an image of the imagined object. The accuracy of
the learner’s action classifications of recorded was tested. In
addition, the learner’s real-time classification abilities were
observed. Two different approaches to rotating the imagined
object image, one based on least squares regression and the
other based on the von Mises distribution, were compared
to determine which provided more accurate rotation. Cor-
rect positioning and rotation, which are part of the problem
of registration in augmented reality systems (Azuma 1997),
are necessary for realistic interaction with imagined objects.

By making use of HMMs, this work was adaptable to real-
time recognition; the present work introduces experiments
testing whether HMMs trained offline with videos could per-
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form the same recognition in real-time with a much-reduced
frame rate.

Related Works

Hidden Markov Models have been used since 1992 for hu-
man action recognition (Yamato, Ohya, and Ishii 1992).
Variations on Hidden Markov Models are commonly used
to tackle specific challenges in gesture recognition. Param-
eterized HMMs, for example, recognize gestures that can
vary in parameters like direction and size (Wilson and Bo-
bick 1999). Coupled HMMs can model actions with several
underlying processes that interact at the same time but may
have different state structures (Brand, Oliver, and Pentland
1997). Unmodified HMMs (Starner and Pentland 1997) and
desk-based monocular cameras have been used for recog-
nizing sign language (Starner, Weaver, and Pentland 1998).
Color-based skin segmentation, especially with Kalman fil-
ters for hand tracking, are effective for isolating hands in
video sequences even if the hands are in front of the face
(Imagawa, Lu, and Igi 1998).

Head mounted displays have been used to allow people to
interact with virtual spaces in real time (Butz et al. 1999),
but no such work involves robots interacting with virtual
objects. Typically, robots learn about object affordances
through direct interaction (Sinapov and Stoytchev 2007),
though some work has involved humans interacting with vir-
tual objects to teach robots how to interact with real world
objects (Bentivegna and Atkeson 2000).

2. Methods

The machine learner must perform several sub-tasks to ac-
complish the overall goal of identifying pretend actions and
filling in pretend objects. First, for each action, an HMM
is trained from a video of a person performing that action
with an appropriate object. The active hand must be iso-
lated in each frame of the video so information about the
discrete state of the hand can be used in an HMM. Once
trained, the HMMs are used to identify an action from either
a recorded video or from a real-time image stream. A bi-
nary image of the imagined object is placed in the recorded
frames. Methods based on least squares regression and the
von Mises distribution are compared to see which provides
a more accurate orientation of the object.

Isolating the Active Hand

In order to recognize the actions studied here, an image of
the active hand (the hand in direct contact with the object)
must be isolated so features about its shape and position can
be extracted. RGB images taken from the camera are con-
volved with a sharpening filter. The sharpened images are
converted to Y’UV color space to perform color segmenta-
tion based on skin color. Color spaces that account for both
luminance and chrominance such as Y’UV have a high rate
of accurate classification of skin color. In addition, Y’UV
color space is robust to many shades of skin, both dark and
light (Kakumanu, Makrogiannis, and Bourbakis 2007). For
this experiment, skin colors are found in the range Y’ < 0.8,

-0.2 < U < 0, V > 0, which covers bright, mostly pink and
red colors (Figure 1).

After the color thresholds create a binary image of the
skin colored segments, the image is dilated and eroded to
create contiguous segments. Of these skin segments, the ac-
tive hand and the face tend to be the largest two segments.
The face is assumed not to move in the video, so once it is
found in the first frame, the skin segments in that region can
be ignored in subsequent frames. Actions were performed
with the active hand starting to the lower left of the face,
though not always in the same position. Thus the two largest
skin segments in the first frame were compared, and the seg-
ment higher and further right in the frame was determined to
be the face. After the first frame, the facial skin segments are
blacked out, leaving the hand the largest skin segment. Prop-
erties about the active hand were extracted from this largest
segment.

Defining the Actions

HMMs use discrete states to probabilistically describe an
action over time (Baum et al. 2007). Here, the shape and
motion of the hand determine the discrete states. Each state
has three features – the hand shape (either open or closed),
the hand’s vertical motion between frames, and the hand’s
horizontal motion between frames. Motion is classified as
either positive, negative, or still. These eighteen discrete
states define the transition and emission matrices that make
up the model for each action. The HMMs were trained us-
ing the Baum-Welch algorithm (Baum et al. 2007) to per-
form expectation-maximization (Dempster, Laird, and Ru-
bin 1977). One HMM was trained from each of the eighteen
training videos.

In order to decide which of six possible actions is occur-
ring at a given time, the Forward-Backward algorithm de-
termines which of the six models is most likely to describe
the actions leading up to the current time. The actions ex-
plored here are brushing teeth, drinking from a cup, hitting
something with a hammer, petting a stuffed dog, scooping
with a shovel, and writing with a marker. The likelihoods
for all eighteen models were propagated forward. At each
time step, the average likelihood for each action was com-
puted from the likelihoods of the three models for that ac-
tion. Like HMMs, the Forward-Backward algorithm can up-
date in constant time (Starner and Pentland 1997), making it
useful for real time applications.

Placing an Object Image

The final task for the pretending machine learner is to place
an image of an object in each video frame. The image
should be placed in the space where the performer is pre-
tending there is an object, and it should be positioned and
rotated realistically. To do this, the machine learner must
learn how the object should be positioned and rotated with
respect to the hand’s position and rotation. Positioning is
learned by observing videos of an action performed with an
object. Least squares regression finds a function mapping
hand centroid position to the displacement of the object cen-
troid from the hand centroid.
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Figure 1: Stages of the skin segmentation process for one video frame (1). Skin colored regions are detected with a filter (2).
The face region is blocked out, leaving the hand as the largest skin colored region (3).

Determining correct object rotation is not as simple as
finding the rotation of the hand and rotating the object to
the same degree. Hand rotation measurements based on the
orientation of the hand’s major axis are often noisy, espe-
cially when different light highlights on the hand can ob-
scure its true shape in a skin filter. In preliminary testing,
hand angles were often interpreted as offset by 90 degrees
from their true angle. A mixture of two von Mises distribu-
tions, a variant of the normal distribution for use in rotational
coordinates (Bishop 2006), was fit to hand rotation data col-
lected under known rotations to model these discrepancies.
It was expected that the distribution would have two peaks
when modeling actions with a consistent angle of rotation,
one at the correct angle and another at the 90 degree offset,
because the rotation reading might occasionally jump 90 de-
grees when the segmented hand curled into a fist was close
to square. For actions with varying rotation over time, the
distribution was expected to have peaks at the most common
angles and at their 90 degree offsets. A modified Kalman-
like filter over time was used to smooth the hand rotation
data and provide a more accurate estimate of actual rotation.
The transitional model for this dynamic Bayesian model was
trained on video of a hand rotating over time; a von Mises
distribution for the rotational change from one moment to
the next was fit to this data to obtain a transitional model that
could smooth the frame-to-frame readings of the hand rota-
tion. The observation model, the aforementioned mixture
of two Von Mises distributions, was then fit to recordings
of the hand under known rotations. Functions for the von
Mises distribution were obtained through a publicly avail-
able circular statistics toolbox (Berens and Velasco 2009).

When this smoothing over time was still not enough to
provide consistent rotational readings (see experiment), a
different approach was tried. For the set of actions stud-
ied here, it was hypothesized that object rotation could be
inferred from the hand’s centroid position rather than from
its angle of rotation, which changed slightly but consistently
with each rotation. It was hypothesized that this change over
time would be less susceptible to skin segmentation noise,
because while finding the rotation of a major ellipses of a
color blob can be highly susceptible to noise and inconsis-
tencies at the edges, the centroid is an average of many pix-
els of data, which tends to wash out errors. Pretend mo-
tions that suggest an action or object are often stereotyped

and repetitive (Acredolo and Goodwyn 1988), so object ro-
tations are likely to follow a consistent pattern as the hand
cycles through the stages of the motion. The rotation pattern
can then be generalized by using least squares regression to
find a mapping from hand centroid position to the angle of
object rotation.

3. Experiments

Training

Using a Logitech Quickcam Orbit AF grabbing 640 × 480

pixels at 30 fps, three people each recorded six twenty sec-
ond videos, which were used to train the HMMs. Partici-
pants performed the following actions while holding an ob-
ject appropriate to the action: drinking from a cup, petting
a stuffed dog, swinging a hammer, writing with a marker,
scooping with a shovel, and brushing teeth with a tooth-
brush. In each frame of the training videos, the active hand
was isolated using the skin segmentation algorithms. An
HMM was trained for each action based on the discretized
videos.

In addition to training the HMMs, the videos with ob-
jects were used to gather information about how each object
should be positioned and rotated with respect to the hand.
Least squares regression and the von Mises distribution pro-
vided two possible approaches to object rotation, the first
based on hand position and the second based on hand rota-
tion.

Offline Testing

The three participants performed the same six actions for
twenty seconds without the accompanying objects. The
forward-backward algorithm was used to calculate the like-
lihood of each HMM model. The recorded videos were then
used as the basis for creating two separate videos with the
imaginary object filled in – one using the von Mises smooth-
ing, and another using least squares regression, as described
above.

In order to judge the comparative accuracy of the least
squares and von Mises rotation methods, the recorded ob-
jectless videos were filled in with the image of the correct
object for that video. Two new sets of videos were made,
one using each rotation method. An independent coder
judged whether the least squares rotation or von Mises ro-
tation looked more accurate given the hand’s orientation in
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a random sample of 40 frames from each of the eighteen
videos.

Online testing

Though the forward-backward algorithm can in theory prop-
agate the likelihood of each model forward in time in con-
stant time as images are being recorded from the camera,
in practice a reduced frame rate resulted from attempting to
perform these calculations as the camera was running while
still providing a real-time update. Each model was therefore
tested in real-time to determine whether the frame dropping
required to provide real-time feedback (producing a practi-
cable frame rate of roughly 4 fps) would affect recognition.

4. Results

HMM Classification

In the eighteen videos with imagined objects, the system
chose the correct action sixteen times, yielding an 89% cor-
rect classification rate. The two mistaken classifications both
misclassified an action as scooping; the true actions were
brushing and petting.

The likelihood of each action model at each frame was
tracked when videos were recorded in real-time (Figure 2)
. By the end of 80 frames, the correct action was identified
in each video. For some actions, such as hammering and
shoveling, the correct model achieved a clearly higher like-
lihood than the others in less than 20 frames. For other ac-
tions, such as tooth brushing, it took longer, about 50 frames,
for the correct action model to become apparent. In all the
videos except one, the correct action became apparent after
50 frames or less. In the writing video, however, writing
was the most likely action at the end of 80 frames, but in the
majority of frames, shoveling was more likely. The two had
very similar likelihoods throughout the recording.

Rotation Method Comparison

An independent coder judged that the least squares method
provided more accurate rotations than the von Mises method
in 464 out of 720 random frames (Figure 3). These results
indicate that least squares provides statistically more accu-
rate rotation (p = 0.001). However, least squares did not
always provide more accurate rotations than the von Mises
method. For the stuffed dog, von Mises was judged more
accurate in 97.5% of frames. Von Mises was also judged
more accurate in more frames for the marker, but this dis-
parity is well within the realm of chance (p > 0.1). Least
squares rotation was used to reproduce the videos from each
participant with the imagined objects filled in. (Figure 4)

5. Discussion

An HMM-based machine learner provides accurate classifi-
cation of actions performed without objects based on train-
ing of the same actions performed with objects. Of the two
proposed approaches to rotating the image of the imagined
object, the least squares method is preferable to the von
Mises based smoothing. The instance of positioning the
stuffed dog was the only object for which the von Mises

Figure 2: Likelihood estimates over time for real-time
videos of hammering (top), shoveling (middle), and brush-
ing (bottom) with imagined objects.
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Figure 4: Imagined marker filled in using least squares regression. Analysis of object and hand positioning and rotation data
from one participant generalized to allow accurate filling in for three participants.

Figure 3: Least squares regression and von Mises distribu-
tion approximations for imagined object rotation.

Object Least Squares Von Mises

Cup 119 1

Dog 3 117

Marker 57 63
Hammer 83 37

Shovel 97 23

Toothbrush 105 15
Method Total 464 256

Table 1: Independent coder assessments of least squares and
von Mises rotation accuracy.

distribution provided significantly more accurate rotation.
The tracked hand in this case was the hand holding the dog,
which remained still throughout the video. The von Mises
distribution may have provided more accurate results be-
cause the hand tended to maintain a constant angle of ori-
entation, so the smoothing could be more effective. The
least squares regression primarily worked because the mo-
tions in question were repetitive and stereotyped. These at-
tributes, however, are common to young children’s social
pretend play.

Approaches that attempt to derive the properties of miss-
ing objects from the bottom up may not perform as well as
approaches that account for repetition, stereotyped behav-
ior, and context. The von Mises approach, which performed
poorly, attempted to smooth the rotational data obtained di-
rectly from the visual input. In contrast, the least-squares
method took advantage of the limited number of possible ob-
ject positions during these repetitive motions. The observed
shift in children’s pretend play in which they move from re-
quiring a placeholder object to being able to pretend without
any placeholder (Elder and Pederson 1985) may therefore be
a function of moving from bottom-up, perceptually driven
cognition, where the placeholder object can fill in some of
the missing perceptual details, to top-down thinking driven
largely by contextual expectations.

The real-time experiment demonstrates the relative ro-
bustness of this approach in situations where training condi-
tions are significantly different from testing conditions. The
training data for the recognition algorithm contained objects,
but all testing was done without them. HMM model likeli-
hood comparison is an attractive approach when testing must
occur under different conditions than training; the correct
model does not need to see the same observations it was
trained with to make accurate classifications, so long as it
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fits better than the other models. This approach is also ro-
bust against large changes in frame rate. Training was done
with videos captured at a high frame rate, but testing was
done with real time images captured at a lower frame rate.
The velocity of the hand from frame to frame plays only a
minor role in the model decisions. That is, the HMM tran-
sition probabilities would be different under different frame
rates, but models trained with high frame rates still perform
reasonably well under much lower frame rates.

Several improvements can be made to this system to make
it more robust to a variety of situations and actions. Several
assumptions were made about the nature of the environment
and the actions performed. The environment was controlled
so that only one person was visible to the camera at a time.
Actions were designed so that a performer only had one
hand moving at a time and did not need to move any other
body parts besides arm and hand. A more robust learner
could possibly learn more physically involved actions and
ignore potential background actions. As the learner learns
more actions, it may become harder for it to distinguish be-
tween actions with similar motion patterns. Parallel HMMs
may be used instead to model complex actions with both
arms moving at the smae time and improve recognition ro-
bustness in even small state spaces (Vogler and Metaxas
1999). The ultimate goal for this learner is to build a robot
arm that can interact with an imaginary object in the pre-
tended space. A robotic learner, especially one that may be
used to develop toys or video games, should be able to com-
pensate for these variations in action.
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