
An Analysis of Blocking Methods for Private Record Linkage

Brian Etienne
Univ. of Massachusetts Dartmouth

Dartmouth, MA 02747

Michelle Cheatham∗ and Pawel Grzebala
Wright State University

Dayton, OH 45324

Abstract

The field of Big Data Analytics has led to many impor-
tant advances; however, these analyses often involve linking
databases that contain personal identifiable information, and
this raises privacy concerns. The sensitive information of in-
dividuals can be stolen by attackers and identities can be ex-
ploited. The field of Private Record Linkage seeks to mitigate
these risks. Our previous work in this area has established the
effectiveness of a fuzzy string similarity metric for linking
records while the data within those records remains encrypted
both on disk and in memory. The work presented here further
contributes to the PRL field by analyzing the performance of
various blocking methods on encrypted names that attempt to
optimize the number of comparisons between the queries and
database while maintaining a high rate of accuracy.

Introduction
Privacy is very difficult to maintain with the capabilities
of technology today. Consider a database that holds per-
sonal identifiable information such as names, social secu-
rity numbers, credit card numbers, addresses, and more. This
database can easily be hacked and the confidential data can
land in the hands of the wrong person if the right precau-
tions are not taken. Situations like this have occurred many
times before. For example the Target hack in 2013 (tar ), the
attack on United States Postal Service in 2014 (USP ), and
the Blue Cross Blue Shield hack in 2015 (blu ). In all these
cases, confidential information of many people were stolen.
The goal of this work is to provide a solution to this problem.

This project investigates a scenario in which a company
that maintains a database containing information about in-
dividuals wishes to allow customers who have paid for ac-
cess to the database to query it. Unlike most work related to
PRL, the database owner and the querying party trust one
another, and neither is concerned with the other learning
what information is in the database and what records are be-
ing queried for. However, the database owner is concerned
about an unauthorized party gaining access to the computer
on which the database is stored and so desires to keep the
information within the database encrypted both on disk and

∗Corresponding author: michelle.cheatham@wright.edu
Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

in memory. A symmetric encryption key is shared with au-
thorized parties, who use that key to encrypt their query and
it is the encrypted values that are used to query the database.

Our previous work on this topic has shown that comput-
ing the Dice similarity metric between sets of encrypted bi-
grams of the two strings to be compared yields good per-
formance for this use case (Grzebala and Cheatham 2016).
For example, the name “John” is converted into the set of
bi-grams [“Jo” “oh” “hn”]. Each bi-gram is encrypted us-
ing the AES symmetric encryption algorithm and the set of
encrypted bi-grams is used to query the database. The de-
gree of similarity between the two names being compared is
determined by the Dice Similarity Coefficient, which calcu-
lates the degree of overlap between the two sets of encrypted
bi-grams. Q-grams (in this case q=2) are a suitable similarity
metric for fuzzy matching because a misspelling or mistyp-
ing of a name will only change a few of the q-grams, and
there will therefore still be a high degree of overlap.

That previous work compared the name being queried for
to the name field for every record in the database using the
Dice similarity on the bi-grams. This is a fairly expensive
process. In this work we focus on enhancing the perfor-
mance and scalability of the record linkage by using block-
ing methods to keep the number of expensive comparisons to
a minimum by discounting records with names that clearly
do not match the query, while maintaining high precision
and recall. Specifically, this work addresses the following:

1. Which blocking method is most suitable when querying
first and last names?

2. Does the optimal threshold change if blocking is used?
3. Does the utility of blocking change if mistakes such as

typos or OCR errors are present in the data?
4. Does the utility of blocking change as the number of mis-

takes in the data changes?

Our goal is to establish a set of guidelines for PRL practi-
tioners who wish to use blocking techniques. Our focus here
is on string data; we plan to consider numeric data in future
work.

Related Work
There have been numerous approaches to solving the gen-
eral problem of record linkage based on person names. A

The 2016 AAAI Fall Symposium Series:
Privacy and Language Technologies 

Technical Report FS-16-04

244



comprehensive overview of several name matching tech-
niques was provided by Snae in (Snae 2007). Snae describes
four different types of name matching algorithms and com-
pares them in terms of accuracy and execution time. The
results indicated that there is no single best method for
name matching and the proper choice depends on the spe-
cific application needs. This work doesn’t take into con-
sideration the important aspect of our study, which is link-
ing records while keeping them encrypted. That topic is
addressed somewhat in (Dusserre, Quantin, and Bouzelat
1994), which proposes a secure one-way hash to protect the
string fields for PRL, but this approach only supports ex-
act matching of strings. Churches and Christen proposed the
use of encrypted Soundex or Metaphone phonetic encodings
of names for private record linkage (Churches and Christen
2004). These comparisons are still based on exact match, but
it is the exact match on the phonetic spelling of the names,
which mitigates the impact of common misspellings. In the
same paper, they also propose encrypted q-grams as a viable
approach for fuzzy string matching of encrypted strings. Our
work in (Grzebala and Cheatham 2016) empirically evalu-
ated the efficacy of these approaches on a realistic dataset
and found only the q-gram approach to be viable. This de-
scription is necessarily abbreviated, but a more in-depth re-
view can be found in (Christen 2012a).

Blocking (also called indexing) methods attempt to group
similar strings together such that not every record needs
to be compared when responding to a query. These tech-
niques have been studied for a long time in the plaintext
(unencrypted) context. A survey can be found in (Chris-
ten 2012b). In general, privacy-preserving blocking meth-
ods have received much less attention from researchers than
have privacy-preserving similarity metrics. The primary
work on privacy-preserving blocking methods of which we
are aware is (Al-Lawati, Lee, and McDaniel 2005), which
proposes a third-party based approach using secure hashing
of TF-IDF weight vectors. The work presented here differs
from previous efforts in that in analyzes the performance
of a wider variety of blocking methods in the presence of
many different types of corruptions commonly present in
databases, as described in the following section.

Approach
The blocking methods explored here are Soundex, Meta-
phone, prefix and suffix. Soundex and Metaphone are pho-
netic encoding algorithms. While Soundex was shown to
perform poorly as a string similarity metric for PRL (Grze-
bala and Cheatham 2016), it is quick to compute and could
be useful blocking key. Both Soundex and Metaphone break
the database into blocks containing similar sounding names.
Every name in the database is encoded by the phonetic algo-
rithm and then encrypted using the AES symmetric encryp-
tion algorithm. All names with the same encrypted value
of the phonetic algorithm are organized into a block. Pre-
fix based blocking uses the first n characters of a name as the
blocking key, where n is a parameter to the blocking method.
The prefixes are encrypted. The suffix approach is similar,
except it uses the last n characters of the name.

The data used for this project was generated using the

GeCo Data Generator (Tran, Vatsalan, and Christen 2013).
This tool is capable of generating PII such as names, phone
numbers, social security numbers, credit card numbers, etc.
that is based on real world data. GeCo is also capable of
corrupting data in various ways: keyboard edits (replacing a
character with one nearby on the keyboard), character edits
(adding, deleting, or transposing characters), optical char-
acter recognition (OCR) edits, and phonetic edits. This tool
also allows the user to set the number of corrupted records,
the number of corruptions applied to a record, and the num-
ber of modifications applied to each record attribute.

GeCo was used to generate a dataset with 10,000 records.
Each record contains a first name, last name, gender, social
security number, and credit card number. This dataset was
then corrupted using each of the four corruption types de-
scribed above, as well as a mix of all four types of corrup-
tion, for a total of five variations. Two sets of each varia-
tion were created: one that contained one modification per
attribute and a second that contained two modifications per
attribute. Each of the 10 corrupted datasets contained 10%
corruption, i.e. 1,000 records were randomly corrupted.

A query for each name in the dataset was simulated by
attempting to match the uncorrupted record to its corrupted
version. The records in the uncorrupted dataset were blocked
according to the method currently being analyzed. Then
the blocking key for each record in the corrupted dataset
was computed using the same blocking algorithm. The cor-
rupted record was then compared to each of the uncorrupted
records with the same blocking key. This comparison was
done based on bi-grams of the names using the Dice Simi-
larity Coefficient, as described in Section 1. If the similarity
value was equal to or exceeded a specified threshold value,
the names being compared were considered a match and the
records were linked. If the two records did indeed have the
same name, the match was considered a true positive. Oth-
erwise, it was considered a false positive. If the similarity
value did not exceed the specified threshold for the match-
ing record, the case was considered a false negative. This
analysis was done for both first and last names.

Analysis
The soundex, metaphone, prefix, and suffix blocking meth-
ods were evaluated based on the number of comparisons per-
formed, recall, and precision. In this section we analyze the
performance of the different blocking methods with respect
to the research questions specified in Section I.
Observation 1: Prefix blocking is preferable for both first
and last names

Table 1: Recall/Comparison Ratio calculated with a thresh-
old of 0.95

245



Figure 1: This figure shows the recall and precision for first
names against different threshold values for the corrupted
datasets containing one modification per attribute

Prefix blocking with length 4 was most suitable for link-
ing records on both first and last names. This was determined
by calculating the ratio of recall to number of comparisons
as shown in Table I. This ratio represents the number of suc-
cessfully linked records per comparison. This test was done
for every corrupted dataset, and prefix blocking with length
4 always resulted in the highest recall/comparison ratio. It
effectively doubled the performance of Soundex and Meta-
phone. The performance of suffix blocking was closer but
still inferior. As a result, prefix blocking of length 4 was used
for all further tests.

Observation 2: Prefix blocking does not change the optimal
threshold

The effect of threshold value on precision and recall was
also explored. Figure 1 shows the result of this experiment
for first names; the results for last names show a similar pat-
tern. The upper graph in each pair reflects when prefix block-
ing of length 4 was used, and the lower graph when no block-
ing was used. As expected, higher thresholds lead to lower
recall and higher precision for all corruption types, whether
or not blocking is used. Also notable is that, while recall is
slightly higher and precision is slightly lower without block-
ing, the relative precision and recall at different thresholds
are the same whether or not blocking is used. To find the
optimal threshold value, the f-measure was calculated. The
threshold value resulting in the highest f-measure was 0.95.
This was the case regardless of whether or not blocking was
used and regardless of corruption type.

Observation 3: The impact of different corruption types de-
pends on the nature of the string fields being linked

We now look more closely at the performance in the pres-
ence of different types of corruption. We again use prefix
blocking with length 4 and a threshold of 0.95. Each record
has at most one modification. Precision at this threshold is
perfect in the case of first names and almost perfect in the
case of last names (Figure 2). We therefore turn our atten-
tion to recall and the number of comparisons required.

Figure 2: This figure shows the precision percentages for
first and last names when using prefix blocking of length
4 and no blocking at a threshold of 0.95 on the corrupted
datasets containing one modification per attribute.

Figure 3: This figure shows the recall percentages for first
and last names when using prefix blocking of length 4 and
no blocking at a threshold of 0.95 on the corrupted datasets
containing one modification per attribute.

Analyzing recall (Figure 3) reveals something interesting:
the most challenging type of corruption depends on the na-
ture of the string field being linked. In the case of first names,
the recall was highest for phonetic and OCR edits and lowest
for character edits, while for last names the exact opposite
was true. This is not an impact of blocking but rather due
to the characteristics of first and last names. First names are
on average shorter than last names, and corruptions that can
change the number of bi-grams (e.g. phonetic changes like
ai → a or OCR errors like d → cl) therefore have a larger
effect on first names than last.

Unlike recall, the relative number of comparisons made
using prefix blocking of length 4 did not vary based on cor-
ruption type – the pattern in both the top and bottom of
Figure 4 is the same. However, the number of comparisons
made did vary greatly between first and last names – the
number of comparisons for last names was an order of mag-
nitude smaller. This is again due to the average length of first
versus last names, combined with the fact that there is more
diversity among last names than among first names. Using
the first four letters of a last name as a blocking key therefore
creates more diverse blocks to organize names than it would
for first names which are both more common and shorter. It
is these situations in which blocking is most useful.
Observation 4: Blocking does not change performance even

246



Figure 4: This figure shows the number of comparisons for
first and last names when using prefix blocking of length 4
and a threshold of 0.95 on the corrupted datasets containing
one modification per attribute.

Figure 5: This figure shows the recall percentage for first
and last names with 1 and 2 modifications when using prefix
blocking of length 4 and no blocking at a 0.95 threshold.

when more mistakes are present, but there is less flexibility
Figures 5 and 6 show that, as expected, recall and pre-

cision are significantly lower if names have two mistakes
rather than only one. The drop is due to more false neg-
atives. Of particular interest here is that the results using
blocking and those without are essentially the same – no ex-
tra price is paid in the two corruption per name case when
blocking is applied. Meanwhile, Figure 7 shows that block-
ing saves even more comparisons when names contain more
mistakes. This is because any mistake in the first four char-
acters of a name will cause the record to be put in a different
block. Since many names have similar origins and phonetic
roots, making random changes such as character, keyboard,
or OCR edits significantly increases the numbers of blocks,
thereby reducing the number of names in each block.

At first this seems promising – blocking can reduce the
number of comparisons without sacrificing accuracy, even
in the presence of multiple errors per record. However, the
recall in the non-blocking case can be raised (at the expense
of further worsening precision) by increasing the thresh-
old value. We discuss this in more detail in (Grzebala and
Cheatham 2016). This flexibility is useful for applications
in which recall is more important than precision. No such
flexibility is possible when prefix blocking is used because
exact match of the prefix (i.e. a 1.0 threshold) is always used
when locating a record’s block.

Figure 6: This figure shows the precision percentage for
first and last names with 1 and 2 modifications using pre-
fix blocking of length 4 and no blocking at a 0.95 threshold.

Figure 7: This figure shows the number of comparisons of
first and last names with 1 and 2 modifications when using
prefix blocking of length 4 and a threshold of 0.95.

Conclusions
This work explores the performance of various blocking
techniques that can be used on encrypted strings to im-
prove the scalability of name-based PRL applications. Sev-
eral guidelines for practitioners are suggested: prefix block-
ing of length 4 is the best of the approaches analyzed for
both first and last names, the threshold for the underlying
similarity metric does not need to be modified when prefix
blocking is used, and the number of comparisons is reduced
by three orders of magnitude for first names and four for last
names. Practitioners should be aware that the impact of dif-
ferent types of mistakes varies when blocking is used and
there is less flexibility to trade recall for precision.

Acknowledgments: This work was partially supported by the
NSF Research Experience for Undergraduates Site Award
“Cyber Security Research at Wright State University” (CNS
1560315) and by the Lexis Nexis corporation.

References
Al-Lawati, A.; Lee, D.; and McDaniel, P. 2005. Blocking-
aware private record linkage. In Proceedings of the 2nd in-
ternational workshop on Information quality in information
systems, 59–68. ACM.
Bluecross blueshield hacked; 10.5m patients affected.
http://www.washingtontimes.com/news/2015/sep/10/excellus-

247



bluecross-blueshield-hacked-105m-patients/. Accessed:
2016-07-22.
Christen, P. 2012a. Data matching: concepts and techniques
for record linkage, entity resolution, and duplicate detection.
Springer Science & Business Media.
Christen, P. 2012b. A survey of indexing techniques for scal-
able record linkage and deduplication. IEEE transactions on
knowledge and data engineering 24(9):1537–1555.
Churches, T., and Christen, P. 2004. Some methods for
blindfolded record linkage. BMC Medical Informatics and
Decision Making 4(1):1.
Dusserre, L.; Quantin, C.; and Bouzelat, H. 1994. A one way
public key cryptosystem for the linkage of nominal files in
epidemiological studies. Medinfo. MEDINFO 8:644–647.
Grzebala, P., and Cheatham, M. 2016. Private record link-
age: Comparison of selected techniques for name match-
ing. In International Semantic Web Conference, 593–606.
Springer.
Snae, C. 2007. A comparison and analysis of name match-
ing algorithms. International Journal of Applied Science.
Engineering and Technology 4(1):252–257.
Target credit card hack: What you need to know.
http://money.cnn.com/2013/12/22/news/companies/target-
credit-card-hack/. Accessed: 2016-07-22.
Tran, K.-N.; Vatsalan, D.; and Christen, P. 2013. Geco: an
online personal data generator and corruptor. In Proceedings
of the 22nd ACM international conference on Information &
Knowledge Management, 2473–2476. ACM.
China suspected of breaching u.s. postal service computer
networks. http://www.washingtonpost.com/news/federal-
eye/wp/2014/11/10/china-suspected-of-breaching-u-s-
postal-service-computer-networks/. Accessed: 2016-07-22.

248


