
Reasoning about Deterministic Actions with Probabilistic Prior
and Application to Stochastic Filtering

Hannaneh Hajishirzi and Eyal Amir
Department of Computer Science

University of Illinois at Urbana-Champaign
{hajishir, eyal}@illinois.edu

Abstract

We present a novel algorithm and a new understanding of rea-
soning about a sequence of deterministic actions with a prob-
abilistic prior. When the initial state of a dynamic system is
unknown, a probability distribution can be still specified over
the initial states. Estimating the posterior distribution over
states (filtering) after some deterministic actions occurred is
a problem relevant to AI planning, natural language process-
ing (NLP), and robotics among others. Current approaches
to filtering deterministic actions are not tractable even if the
distribution over the initial system state is represented com-
pactly. The reason is that state variables become correlated
after a few steps. The main innovation in this paper is a
method for sidestepping this problem by redefining state vari-
ables dynamically at each time step such that the posterior for
time t is represented in a factored form. This update is done
using a progression algorithm as a subroutine, and our algo-
rithm’s tractability follows when that subroutine is tractable.
Our results are for general deterministic actions and in par-
ticular, our algorithm is tractable for one-to-one and STRIPS
actions. We apply our reasoning algorithm about determinis-
tic actions to reasoning about sequences of probabilistic ac-
tions and improve the efficiency of the current probabilistic
reasoning approaches. We demonstrate the efficiency of the
new algorithm empirically over AI-Planning data sets.

Introduction

Many applications in AI involve stochastic dynamic systems
and answering queries about them. Examples of such appli-
cations are Natural Language Processing (NLP), robotics,
AI planning, autonomous agents, speech recognition, and
commonsense query answering. Inference in a stochastic
dynamic system is the problem of estimating the systems’
state given a sequence of actions and partial observations.
This type of inference is called filtering in stochastic dy-
namic systems (it is usually called progression when no
probabilities are involved).

When applied to real-world problems, many of these
applications have very large state spaces, uncertain initial
states, and uncertain effects of actions. Therefore, it is cru-
cial to choose a representation that is compact and models
the stochasticity of the domain, a representation that also
enables efficient inference.
Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In recent years, there is a growing interest in using action-
centered languages for representing dynamic systems in AI
planning, NLP, and robotics. Planning Domain Definition
Language (PDDL)(McDermott 2000) expresses semantics
of actions by describing their preconditions and effects and
represents the dynamics of the system. Situation calculus
(Reiter 2001) represents changing scenarios with a series of
first-order logical formulas. PDDL and Situation calculus
are traditionally without probabilities. To model stochas-
ticity, they are augmented with probabilistic choice actions
which choose deterministic executions and a probability dis-
tribution over initial states.

Current approaches to probabilistic filtering with PDDL
or situation calculus (e.g., (Reiter 2001; Bacchus, Halpern,
and Levesque 1999; Hajishirzi and Amir 2008)) use tradi-
tional filtering methods as subroutines for reasoning about
sequences of deterministic actions with probabilistic priors.
These traditional methods are inefficient or imprecise for de-
terministic sequences. Some approaches marginalize over
all possible initial states (exponential in the number of vari-
ables) to compute the posterior probability of a query. In
others (e.g., Dynamic Bayesian Networks (DBNs) (Dean
and Kanazawa 1988)) all the state variables become fully
correlated after a few steps even if they are independent at
time 0, resulting in a posterior representation of size expo-
nential in the number of variables. Others use logical regres-
sion and repeat t−1 regressions for every new added action,
so are inefficient for long sequences of actions.

The main contribution of this paper is an understanding of
conditional-independence structure preservation over time
in systems with deterministic actions and stochastic priors
over initial states. Our new understanding leads to a new ex-
act algorithm for reasoning about sequences of deterministic
actions with a probabilistic prior over the initial states. The
algorithm is tractable for 1:1 and STRIPS actions, following
results of (Amir and Russell 2003).

We use a propositional version of probabilistic situation
calculus that is extended with a graphical model prior for
representing dynamic systems. In particular, the initial
knowledge is represented with a prior distribution over state
variables (in a Bayesian Network (BN) (Pearl 1988) format)
and transitions are modeled naturally as stochastic choices
among deterministic actions. Our algorithm uses a deter-
ministic progression subroutine and represents the posterior

456

Proceedings of the Twelfth International Conference on the Principles of Knowledge Representation and Reasoning (KR 2010)

at time t with a BN whose structure and conditional proba-
bilities are identical to those of the BN at time 0, but whose
nodes have a new meaning.

Specifically, every node in the BN representation of poste-
rior at time t corresponds to a propositional logical formula
that represents a set of world states. For example, when a
binary node Xi (time 0) takes value 1, then it represents the
set of world states that satisfy Xi = 1. At time t, a binary
node Φt

i would be a logical formula over x1, ..., xn at time t.
When this binary node takes value 1, then it represents the
set of world states that satisfy Φt

i = 1. The BN comprised
of such nodes at time t represents the posterior distribution
over states at time t.

Finally, we apply our exact filtering algorithm to reason
about sequences of probabilistic actions. Our theoretical and
empirical results show that our new algorithm improves the
efficiency of the sampling algorithm (Hajishirzi and Amir
2008) for filtering with probabilistic actions. The improve-
ment is due to the fact that we remove the expensive subrou-
tine of regressing to time zero at every time step and just use
progression.

Related Work

(Reiter 2001) and (Bacchus, Halpern, and Levesque 1999)
present exact algorithms to answer a query given a sequence
of actions, and observations in a dynamic system repre-
sented in a probabilistic situation calculus form. Both algo-
rithms marginalize over all the possible initial states and all
the possible deterministic sequences to compute the proba-
bility of a world state at time t. Both algorithms assign prob-
ability to every world state individually, while our method
uses a BN to compactly represent the prior distribution.

First order MDPs (Boutilier, Reiter, and Price 2001) use
probabilistic situation calculus to represent the dynamics of
the system. They introduce a dynamic programming ap-
proach for solving MDPs by describing the optimal value
function and policies in a logical format. Their approach
uses a logical regression subroutine which results in a com-
binatorial explosion even for simple deterministic actions.

(Domshlak and Hoffmann 2006; Domshlak and Hoff-
mann 2007) use a framework similar to ours for represent-
ing dynamic systems. They represent the belief state at
each time step with a weighted logical formula and answer
queries about variables at time step t using weighted model
counting, similar to our approach. Unlike our method, they
do not compute a compact representation of the belief at
each time step.

A DBN compactly represents a dynamic system using a
BN for time 0 and a graphical representation of a transition
model between times t and t + 1. DBNs focus on condi-
tional independence assumption whereas our representation
focuses on decomposition of actions into deterministic ac-
tions. Traditional methods for exact inference algorithms
in DBNs (Murphy 2002) are not tractable because all the
state variables become correlated after a few steps even for
deterministic transitions. (Pfeffer 2001) presents an exact
tractable inference algorithm for a class of DBNs with no
observations. This method assumes that the DBN is decom-

Φ

Φ

Φ Φ

Φ

Figure 1: (left) BN at time 0 with state variables X1 . . . Xn,
(right) New BN constructed at time T with new BN bases
Φ1 . . . Φn. BN0 and BNT have identical structure.

posed into separable subsystems. In contrast, our exact in-
ference is applicable to deterministic inseparable DBNs.

Definitions and Background

In this section, we first define the semantics and language
of our model. We later describe logical filtering (Amir and
Russell 2003) that we use as a subroutine in our novel filter-
ing algorithms.

Probabilistic Action Model

In this section, we define Probabilistic Action Model (PAM)
for representing dynamic systems. This is modeled con-
veniently in a propositional version of probabilistic situa-
tion calculus (Reiter 2001), extended with a graphical model
prior in the form of a BN. More formally,
Definition 1. A Probabilistic Action Model (PAM) is a tuple
〈X, S, P 0, A, DA, T, PA〉.
• X is a finite set of state variables.
• S is the set of world states s = 〈x1 . . . x|X|〉, where each

xi is a truth assignment to state variable Xi ∈ X , for
every 1 ≤ i ≤ |X|.

• P 0 is a prior probability distribution over the world states
at time 0 (represented with a BN).

• A, DA are finite sets of probabilistic and deterministic ac-
tion names, respectively.

• T : S ×DA → S is a transition function for deterministic
actions.

• PA : DA×A×S → [0, 1] is a probability distribution over
possible deterministic executions of probabilistic actions
in a given world state.
Every state variable in this representation is considered

as a logical proposition (takes either true or false), and it
represents a set of world states. Every full joint assignment
to state variables represents a world state. A logical formula
over state variables represents a set of world states.
Definition 2 (Action specification). Every determinis-
tic action is represented with effect rules of the form
“a causes F if G” describe the preconditions G and effects
F of the action. The preconditions and effects are repre-
sented compactly with logical formulas (propositional com-
binations of variable names).

457

Notice that the effect rules for a deterministic action
should not contradict with each other i.e., all the rules that
are activated in a world state s should result in a unique state
s′. We allow for disjunctions in the effects as long as the
action is still deterministic (e.g., the effect cannot include
a disjunct that has not appeared in the precondition of the
action).

A variable is affected by the action a in state s if there is a
rule in the form of “a causes F if G” where G is true in s and
the variable is included in the action’s effect F. If a variable
has not been affected by the action, then its value does not
change after performing the action (a.k.a Frame Assump-
tion). We define the deterministic transition corresponding
to each deterministic action more formally as follows:
Definition 3. [Deterministic transition function] Let da be a
deterministic action specified with a set of rules in the form
of “a causes F if G”. Let F (s, da) be the set of all the
effects that are activated in world state s. Let I(s, da) be the
variables that are not affected by action da and let Vars(s)
be the variables in the state s. Then, for every world state
s ∈ S, T (s, da) = s′ is the corresponding deterministic
transition function iff
• (I(s, da)∩Vars(s)) = (I(s, da)∩Vars(s′)) and F (s, da)

is true in s′.
• The transition is deterministic i.e., if T (s, da) = s′1 and

T (s, da) = s′2 then s′1 = s′2.
Therefore, there is a transition function assigned to every

deterministic action.
Each probabilistic action is represented as a probability

distribution over its deterministic actions. More formally,
the probability distribution for probabilistic actions is de-
fined as follows:
Definition 4. [Probability distribution for probabilistic ac-
tions] Let ψ1 . . . ψk be propositional formulas (called par-
titions) that divide the world states into mutually disjoint
sets. Then, PA(da|a, s) is defined as a probability distribu-
tion over possible deterministic executions da of the prob-
abilistic action a in the state s which satisfies one of the
partitions ψi (i ≤ k). More formally, when some state s sat-
isfies partition ψi then PA(da|a, s) = PAi(da), where PAi is
a probability distribution over different deterministic execu-
tions da of action a corresponding to the partition ψi.

PA(da|a, s) =

{ PA1(da) s |= ψ1

PA2(da) s |= ψ2

. . .
(1)

The prior distribution over state variables is represented
compactly in the form of a BN. A BN is a probabilis-
tic graphical model that represents the conditional indepen-
dence among the state variables Xi ∈ X in a directed
acyclic graph. Edges represent conditional dependencies;
nodes which are not connected represent variables which
are conditionally independent of each other. The condi-
tional probability of each node given its parents is denoted
by P (Xi|parents(Xi)).

For example, the graph in Figure 1(left) shows
a BN for five variables X1 . . . X5. Probability
of a world state s = x1, . . . , x5 in that BN is

01 =X

11 =X

02 =X 12 =X

1X

2X

Figure 2: (left) X1 and X2 are state variables that model the
position of the robot in the row x1 and column x2 of the
grid, respectively. (right) Bayes net that models the prior
distribution over the initial position of the robot.

computed as P (s) =
∏

i P (xi|parents(Xi)) =
P (x1)P (x2|x1)P (x3|x2)P (x4|x2)P (x5|x3, x4).1 The
reason that we choose a BN to represent the prior distri-
bution is that BNs represent probability distributions in a
compact way assuming that there is a fairly good amount of
conditional independence among the state variables.

Example 1. There is a robot moving in a 2× 2 grid (Figure
2). The position of the robot is initially unknown. We model
this with a BN whose state variables are X1 and X2. P 0(x1)
represents the probability of being at row x1, and P 0(x2) is
the probability of being at column x2 of the board. There-
fore, there are four different world states {s00, s01, s10, s11}
as being in one of the four different cells (0, 0), (0, 1), (1, 0)
and (1, 1) of the grid. The probability of the logical formula
ϕ0 = (x1x2) ∨ (¬x1¬x2) is P (ϕ0) = P (s11) + P (s00)
meaning that the robot is either at cell (1, 1) or (0, 0).
We define two deterministic actions moves and movef in
this domain with the rules “moves(x1, x2) causes (¬x1 ∧
¬x2) if true” (meaning that the robot successfully moves
diagonally) and “movef (x1, x2) causes (x1 ∧ x2) if true”
(robot stays at the current cell).
We define a probabilistic action move in this domain as a
possible execution between moves and movef . For example,
for action a = move, PA(da|a, s) = 0.2 for da = movef

and any state s.

In this setting, the inference problem is defined as com-
puting the probability of a query given a sequence of actions
and observations. A query is either a world state or a propo-
sitional formula.

In what follows, we first go over logical filtering(Amir
and Russell 2003) for compact filtering with deterministic
actions and no probabilistic prior. We later show how we use
logical filtering as a subroutine in our algorithms for filtering
with deterministic actions and a probabilistic prior.

Logical Filtering

In this section, we review the logical filtering algorithm
(Amir and Russell 2003) that is used as a subroutine in our
filtering algorithms (introduced in the next sections). Logi-
cal filtering is a specific class of filtering methods in which

1Note that we use UPPERCASE letters to represent state vari-
ables and lower case letters to represent their values.

458

belief states, actions and observations are all represented
compactly using logical formulae.

Definition 5 (Logical Filtering Semantics). Let σ be a set
of states. The filtering of σ with a sequence of determinis-
tic actions and observations (a1, o1, . . . , at, ot) is defined as
follows:
1. LogFilter[da](σ) = σ
2. LogFilter[da](σ) = {s′ | T (s, da) = s′, s ∈ σ} where

T is the transition function for deterministic actions (Def-
inition 1).

3. LogFilter[o](σ) = {s ∈ σ | o is true in s} presents a set
of world states that is possible for the agent to be in after
receiving an observation o.

4. LogFilter(dai, oi, . . . , dat, ot)[σ] =
LogFilter[dai+1, oi+1, . . . , dat, ot]

(LogFilter[oi](LogFilter[dai](σ))).
When there is no confusion, we omit action names from

the arguments of LogFilter and just implicitly mention the
action or the action sequence.

Example 2. In the moving robot scenario in Example
1, we define the following rule for a new action moved,
“moved(x1, x2) causes (¬x1 ∧ ¬x2) if x2”. Therefore,
LogFilter[moved](σ) = {s|¬x2 is true in s} meaning that
the agent will be at column 0 (¬x2) after performing action
moved. The reason is that if the agent is initially at column
1 (x2) then the agent would move to column 0 and therefore
(¬x2), and if the agent is at column 0 (¬x2) then the agent
stays at the same state (thus still satisfying ¬x2). Call this
resulting belief state σ′. Now, if an observation o = x1 is
received (i.e., the agent is at row 1), then Filter[o](σ′) is
exactly the set of worlds that satisfy x1 ∧ ¬x2.

In what follows, we first introduce algorithms for the case
that all the actions in the sequence are deterministic (Section
) and then show how we take advantage of the deterministic
filtering algorithm to answer queries for the case that the
input sequence is in an arbitrary form (Section).

Filtering with Deterministic Actions and a

Probabilistic Prior

In this section, we introduce our deterministic filtering al-
gorithms for answering queries with a deterministic action
sequence and a BN prior. The inference algorithms share a
common idea of dynamic construction of a BN at each time
step with an identical topology to the initial BN. The new
BN is constructed in terms of new nodes that are expressions
over state variables at that time (Figure 1). In essence, our
algorithms consist of two major steps: (1) deterministic fil-
tering to time t and deriving new nodes’ expressions based
on the state variables at time t (2) computing marginals in
the constructed BN with the same structure of the BN at
time zero.

We use logical filtering as a subroutine for computing the
expressions of the nodes of the new BNs. Note that we
can replace logical filtering with any other progression algo-
rithms for a sequence of deterministic actions (e.g., (Shahaf
and Amir 2007; Levesque 1998; R.E.Bryant 1992)). In this
paper, we introduce our results based on the semantics of

Figure 3: (left)1:1 transitions for Example 1. (right) The
corresponding DBN representation.

PAM from Definition 1. Notice that, we can use any differ-
ent language as long as the filtering can be done.

In what follows, we describe our algorithms for comput-
ing the posterior probability of a world state at each time step
given a sequence of actions and a BN prior. We start the sec-
tion with limiting the actions to be deterministic 1:1 to elab-
orate ideas of our algorithm. We later relax the assumption
of 1:1 action and introduce our algorithm for general deter-
ministic actions. Furthermore, we analyze the correctness
and the running time of our algorithms.

1:1 Deterministic Actions

We first restrict the deterministic actions to 1:1 transitions
between consecutive world states. The action da is 1:1 if (1)
da is deterministic; (2) every world states st

1 uniquely maps
to exactly one world state at time t + 1, i.e., if T (st

1, da) =
T (st

2, da) then st
1 = st

2. For example, flipping a light switch
is a 1:1 action while turning on the light is not.
Example 3. For the robot of Example 1, we define 1:1 ac-
tion moveo as moveo(x1, x2) causes (¬x1 ∧ ¬x2) if x2 and
moveo(x1, x2) causes (x1 ∧ ¬x2) if ¬x2. Figure 3(left)
shows the 1:1 transitions of the robot. Figure 3(right) shows
the corresponding DBN representation.

Notice that the variables in the DBN represented in Fig-
ure 3 become correlated after two steps. Therefore, even
for simple 1:1 actions all the variables become correlated
after few time steps. This makes the inference algorithm
for DBNs intractable when there are many state variables.
In what follows, we show a property of 1:1 actions and in-
troduce a tractable filtering algorithm for answering queries
given a sequence of 1:1 actions and a BN prior.

The property (proved in Lemma 1) of a 1:1 deterministic
action da is that the probability distribution over world states
does not change after filtering with action da i.e., P (st+1) =
P (st) where st+1 = LogFilter(st). This property also holds
for a set of world states σi and σj and their filtering over
time: P (σt

i) = P (σt+1
i) and P (σt+1

i |σt+1
j) = P (σt

i |σt
j)

where σt+1
i = LogFilter(σt

i) and σt+1
j = LogFilter(σt

j).
We provide an exact inference algorithm InfBasis1-1 (Fig-

ure 4) for filtering with 1:1 actions given a BN prior. The al-
gorithm dynamically constructs a new BN at each time step
that has a similar structure to the BN at time 0 but with new
nodes, called BN bases. That is, the nodes of the BN at
time 0 represent the state variables X0

i , and the nodes of
BN at time t represent the new BN bases Φt

i. We define
BN bases Φt

1, ...,Φ
t
n for 1:1 actions as propositional formu-

las over state variables Xt
1, .., X

t
n whereas every full joint

459

PROCEDURE InfBasis1-1(PAM, da1:t)
Input: PAM(BN0(X0

1 . . . X0
n), 1:1 action sequence da1:t)

Output: P (xt
1 . . . xt

n)
1. for all i:

Φt
i ← LogFilter(X0

i) and Φt
i ← LogFilter(¬X0

i)
2. BNt ← BN0 with new nodes Φt

i (Theorem 1)
3. for all i:

ϕt
i ← Φt

i(x
t
1 . . . xt

n) and ϕt
i ← Φt

i(x
t
1 . . . xt

n)
4. Return Joint ← P (ϕt

1 . . . ϕt
n) in BN t(Φt

1 . . .Φt
n)

Figure 4: InfBasis1-1 algorithm for computing joint distri-
bution for 1:1 deterministic sequence da1:t and prior BN0.

assignment to the state variables Xt
1, .., X

t
n leads to exactly

one full joint assignment to Φt
1, ...,Φ

t
n and vice versa.

The BN bases are derived from applying logical filtering
with the input 1:1 action sequence over the state variables at
time 0 i.e., Φt

i = LogFilter(X0
i) and Φt

i = LogFilter(¬X0
i).

The prior and conditional probabilities over the new BN
bases are identical to the corresponding distributions at time
0 (demonstrated in Figure 1 and proved in Theorem 1).
Example 4. We compute the new BN bases of Example 3
(Figure 3).

Φ1
1 = LogFilter(X0

1) = (x1
1x

1
2) ∨ (¬x1

1¬x1
2)

Φ1
1 = LogFilter(¬X0

1) = (x1
1¬x1

2) ∨ (¬x1
1x

1
2)

Φ1
2 = LogFilter(X0

2) = ¬x1
2

Φ1
2 = LogFilter(¬X0

2) = x1
2

From Theorem 1 we have: P (Φ1
1 = 1) = P 0(X0

1 = 1).
In summary, our algorithm for filtering with 1:1 actions,

InfBasis1-1, first updates the BN at each time step by apply-
ing logical filtering over the state variables and constructs
the new BN bases Φi and Φi. Then, InfBasis1-1 computes
ϕt

i and ϕt
i as the truth values of the Φt

i and Φt
i, respectively.

Notice that both Φt
i and Φt

i are logical formulae over state
variables at time t. Following the definition of BN bases, our
algorithm computes the probability of a full joint assignment
to BN bases to answer a query about the full joint assignment
to state variables. This means that InfBasis1-1 calls a static
inference algorithm at time t and computes the full joint dis-
tribution over the new bases at the newly constructed BN at
time t which has the same topology as BN0.
Lemma 1. Let st and st+1 be the world states at times t
and t+1, respectively. If da is a 1:1 action then, P (st+1) =
P (st) where st+1 = LogFilter[da](st).

Proof. We use the Bayes rule to compute P (st+1):
P (st+1) =

∑
s′ P (st+1|s′)P (s′) where s′ represents a

state at time t. Since da is a 1-1 action: P (st+1|s′) =
1 when s′ = st otherwise it is equal to 0. Hence, P (st+1) =
P (st).

Theorem 1. If Φt
i = LogFilter(X0

i) is the filtering of X0
i

with 1:1 transitions to time step t then
1. P (ϕt

i) = P 0(x0
i) and P (ϕt

i) = P 0(¬x0
i)

2. P (ϕt
i|parents(Φt

i)) = P 0(x0
i |parents(X0

i))

Proof. We use the property of a single 1:1 action (that the
probability of a world state does not change by performing
a 1:1 action) and generalize it to a sequence of 1:1 actions.
From Lemma 1 we know that if st+1 = LogFilter(st) with
a 1:1 action then P (st+1) = P (st).
If Φt

i = LogFilter(X0
i) with a sequence of 1:1 actions then

we want to prove part 1 of the theorem that P (ϕt
i) = P 0(x0

i)
as follows:

P 0(X0
i = x0

i) =
∑

s0|=X0
i

P (s0)

=
∑

st|=Φt
i

P (st) = P (Φt
i = ϕt

i)

because the actions are 1:1.
The second part of the theorem is proved from part (1) using
the Bayes rule.

The following theorem shows that the posterior probabil-
ity of a world state at time t 〈Xt

i 〉i≤n is computed using the
prior and conditional probabilities among the new BN bases
〈Φt

i〉i≤n in the derived BN at time t.
Theorem 2. Let Φt

i = LogFilter(X0
i) be the filtering of the

state variable X0
i with 1:1 actions and let st be a world state

at time t. If ϕt
i is the evaluation of Φt

i in a given st then,

P (st = xt
1, . . . , x

t
n) =

∏
i

P (ϕt
i|parents(Φt

i)) (2)

Proof. The proof intuition is based on the property of 1:1
actions (Lemma 1) and also the definition of the BN bases.
First notice that: P (st = xt

1 . . . xn
t) = P (st = ϕt

1 . . . ϕt
n)

where ϕt
i is uniquely derived by substituting values of xt

i in
Φt

i. Moreover, ϕt
i represents the truth value of the filtering

of X0
i with the given sequence of 1:1 actions i.e.,

ϕt
i = truth value of LogFilter(X0

i)

Therefore,

P (st = xt
1 . . . xt

n) = P (st = ϕt
1 . . . ϕt

n)

= P 0(s0 = x0
1 . . . x0

n) =
n∏

i=1

P 0(x0
i |parents(X0

i))

=
n∏

i=1

P (LogFilter(x0
i)|parents(LogFilter(X0

i)))

=
n∏

i=1

P (ϕt
i|parents(Φt

i))

Example 5. If in Figure 3(right) we add the assumption
that X0

1 depends on X0
2 at time 0. Therefore, probability

of a joint distribution at time 0 is computed as: P 0(s0 =
10) = P 0(X0

1 = 1|X0
2 = 0)P 0(X0

2 = 0). We use al-
gorithm InfBasis1-1 to compute the full joint distribution
P (s1 = 11) at time 1 given that the action described in

460

Figure 5: (left) Deterministic transitions for Example 6.
(right) The corresponding DBN representation.

example 2 is executed. We use the formulas derived in Ex-
ample 4 for the BN bases Φis.

P (s1 = 11)
= P (Φ1

1 = Φ1
1(s

1)|Φ1
2 = Φ1

2(s
1))P (Φ1

2 = Φ1
2(s

1))
= P (Φ1

1 = 1|Φ1
2 = 0)P (Φ1

2 = 0)
= P 0(X0

1 = 1|X0
2 = 0)P 0(X0

2 = 0) = P 0(s0 = 10)

The above computations show that P (s1) = P (s0) where
s1 = LogFilter(s0) for s1 = 11 and s0 = 10.

Our filtering algorithm is tractable if the logical filtering
subroutine is tractable ((Amir and Russell 2003) presents
some tractable cases). Notice that computing probability of
a state at BN at time t is O(n) since BNt has the same struc-
ture as BN0.
Corollary 1 (Running time). Let RLF be the running time
of one-step logical filtering over n state variables with 1:1
actions. The running time for computing joint distribution
after T -step of 1:1 actions is O(T · RLF + n).

For 1:1 actions that just change at most two literals the
running time of logical filtering per step is O(n2). There-
fore, the running time of our filtering algorithm with T -step
1:1 action sequence and the given prior is O(T · n2). No-
tice that, for the corresponding DBN (or HMM) for the same
sequence the inference at time t is O(T · exp(n)).

General (not 1:1) Deterministic Actions

In this section deterministic actions are no longer 1:1 and
can be any general deterministic transitions. Here, we also
use the technique of updating the BN using BN bases. Like
the previous section, every node at the updated BN is the
logical filtering of the state variables at time 0. However, the
inference algorithm at time t is not as simple as InfBasis1-1
(Figure 4). In what follows, we describe InfBasisDet (Figure
6) for general deterministic actions. We start the description
of the algorithm with an example.
Example 6. We relax the assumption that the transitions are
1:1 for the moving robot of Example 1. Figure 5 shows
the new transitions and the corresponding DBN. We per-
form logical filtering and compute the logical formulas for
the new BN bases.

Φ1
1 = LogFilter(X0

1 = 1) = x1
1x

1
2 (3)

Φ1
1 = LogFilter(X0

1 = 0) = ¬x1
1

Φ1
2 = LogFilter(X0

2 = 1) = x1
2

Φ1
2 = LogFilter(X0

2 = 0) = (¬x1
1¬x1

2) ∨ (x1
1x

1
2)

PROCEDURE InfBasisDet(PAM, da1:t)
Input: PAM(BN0(X0

1 . . . X0
n), deterministic sequence

da1:t)
Output: P (xt

1 . . . xt
n)

1. for all i:
Φt

i ← LogFilter(X0
i) and Φt

i ← LogFilter(¬X0
i)

2. BNt ← BN0 with new nodes Φt
i (Theorem 1)

3. for all i:
ϕt

i ← Φt
i(x

t
1 . . . xt

n) and ϕt
i ← Φt

i(x
t
1 . . . xt

n)
4. Return

∑
ϕt

j :Φ
t
j=Φt

j=1
P (ϕt

1 . . . ϕt
n) in BNt(Φt

1 . . .Φt
n)

Figure 6: InfBasisDet algorithm for computing joint dis-
tribution given a prior BN0 and a deterministic sequence
da1:t.

Like the previous section we build a BN at time t whose
structure is the same as the BN at time 0 but with new nodes
Φ1

1 and Φ1
2. Notice that, Φ1

i �= ¬Φ1
i because for the given

deterministic actions, two different states at time step 0 are
mapped to one state at time t.

The procedure for computing the posterior distribution
of a state at time t is different from the case of 1:1 tran-
sitions. For example, for computing the full joint distribu-
tion of P (s1 = 11) we first replace x1

1 = 1 and x1
2 = 1

in Equation 3 and derive that: ϕ1
1 = 1 and ϕ1

1 = 0,
ϕ1

2 = 1, but ϕ1
2 = 1. Then, to compute the proba-

bility of being at state s = 11 we sum over the proba-
bilities of combinations of ϕ1 and ϕ2 that are true, i.e.,
P (s1 = 11) = P (ϕ1

1ϕ
1
2) + P (ϕ1

1ϕ
1
2). Therefore, we com-

pute the above marginal to report the posterior probability
of state s1. The reason that justifies this computation is that
states s11 and s10 are both mapped to s1 = 11 (Figure 5)
and P (s1 = 11) = P 0(x0

1x
0
2) + P 0(x0

1¬x0
2). Note that

P (ϕ1
1ϕ

1
2) = P 0(x0

1x
0
2) and P (ϕ1

1¬ϕ1
2) = P 0(x0

1¬x0
2) be-

cause the transition is deterministic.

We extend the ideas described in the previous example to
introduce Algorithm InfBasisDet (Figure 6) for computing
the posterior probability of a world state given a sequence
of deterministic actions and a BN prior. Similar to our treat-
ment of 1:1 actions, logical bases Φt

1, . . . ,Φ
t
n are logical for-

mulas over state variables Xt
1, . . . , X

t
n. Unlike our analysis

of 1:1 actions, in the present case a full joint assignment to
Xt

1, . . . , X
t
n can be mapped to more than one full joint as-

signment of Φt
1, . . . ,Φ

t
n. The reason is that both ϕt

i and ϕt
i

can be true after filtering with deterministic actions.
Procedure InfBasisDet is similar to Procedure InfBasis1-1

except the last step for computing the joint distribution at
time t. Like before, every logical basis Φt

i is derived from
applying logical filtering to state variables at time step 0.
But, we replace the last step of computing the full joint dis-
tribution at time t with a more expensive procedure of com-
puting a marginal distribution at time t. This is required be-
cause given the truth values of state variables at time t both
Φt

i and Φt
i can be true.

Theorem 3. Let Φt
i = LogFilter(X0

i) and Φt
i =

461

LogFilter(¬X0
i) with the input deterministic actions. If st

is a world state at time t then,

P (st = xt
1, . . . , x

t
n) =

∑
Φt

j

∏
i

P (ϕt
i|parents(Φt

i)) (4)

where Φt
j is a BN basis where both Φt

j and Φt
j are evaluated

to true by substituting xt
1, . . . , x

t
n in them.

Proof. The intuition of the proof is that we map the
marginalization at time t to a marginalization the over state
variables at time step 0 because probability of a state at time
t is actually the summation over probabilities of states at
time step 0. Using this mapping, we show how we can write
the closed form formula for computing the formula directly
at time t.

Assume there are states sj at time 0 that map to st through
the deterministic transitions. Therefore,

P (st = xt
1 . . . xt

n) =
∑

j

P 0(s0
j) (5)

=
∑
X0

j

∏
i

P 0(x0
i |parents(X0

i))

Notice that to compute the summation over probabilities of
different sj , we marginalize over the state variables X0

j that
take both truth values, true and false. Probability of sj at
time 0 is computed in the Bayes net at time 0.

Since actions are deterministic, P 0(s0
j = x0

1 . . . x0
n) =

P (st = logFilter(X0
1) . . . logFilter(X0

n)) where logFilter
represents the truth value of the LogFilter operation. Notice
that the truth value of filtering of X0

i is either ϕt
i or ϕt

i based
on the truth value of X0

i . Therefore, we can write Equation
5 as a marginalization over logical bases. This means that
X0

j is replaced with the corresponding Φt
j where both Φt

j

and Φt
j are evaluated to true. Hence,∑

X0
j

∏
i

P 0(x0
i |parents(X0

i)) =
∑
Φt

j

∏
i

P (ϕt
i|parents(Φt

i)).

Running time of our filtering algorithm depends on (1)
running time of logical filtering over state variables (2) com-
puting marginals in the BN at time t (similar complexity
to computing marginals in the initial BN since BNt has the
same structure as BN0).

Corollary 2 (Running time). Let RLF be the running time
of one-step logical filtering over n state variables with de-
terministic actions. If the initial BN has treewidth tw, then
running time for computing joint distribution after T steps
of deterministic actions is O(T · RLF + n · exp(tw)).

Theorem 4.12 in (Amir and Russell 2003) presents that
the running time of logical filtering with a STRIPS action
da over a k-CNF formula with s clauses per step is O(s · k)
and the size of the representation remains compact. More-
over, computing marginals is tractable when the initial BN
has a low treewidth. In conclusion, the running time of

our deterministic filtering algorithm for STRIPS actions is
O(T · n · s · k + n · exp(tw)). Note that in DBNs this infer-
ences is O(T · exp(n)) where n is usually much larger than
the treewidth. For example, in Figure 1(left) the treewidth of
the graph is 2, while the number of variables is 5.

What we discussed above was about computing the pos-
terior probability of a world state at time step t given the
deterministic actions and the prior distribution. We compute
the probability of a logical formula δt over state variables at
time t by applying model counting (e.g., (Gomes, Sabhar-
wal, and Selman 2006; Chavira and Darwiche 2008)). We
enumerate all the world states (full joint assignments) that
satisfy δt at time t and then sum over the probabilities of
those full joint distributions. The exact model counting al-
gorithms are not tractable, but the good news is that we can
apply importance sampling and approximate P (δt).

Filtering with Observations

In our settings, observations 〈o0, . . . , oT 〉 are given asyn-
chronously in time without prediction of what we will ob-
serve (thus, this is different from HMMs (Rabiner 1989)
where a sensor model is given). Each observation ot is rep-
resented with a propositional formula over state variables.
When ot is observed at time t, the formula ot is true about
the state of the world at time t. We assume that a deter-
ministic execution dat of the probabilistic action at in the
sequence does not depend on the future observations.

Our algorithm collects all the observations from time 0
to time t in an expression represented with Obs. Our algo-
rithm uses logical filtering and updates the expression Obs
whenever a new observation ot is received.Notice that our
algorithm does not reconstruct the BN bases based on the
received observations. It collects all the observation in an
expression and enforces the effects of the observations in
the final computation of the joint distribution.

Our inference algorithm uses the following equation to
compute the full joint distribution given observations Obs:

P (xt
1 . . . xt

n|o1:t) =
1
Z

Θ(Xt
Obs)

∏
j

P (ϕt
j |parents(Φt

j))

where Θ is a potential function over state variables:
Θ(Xt

Obs) = 1 if Xt
Obs satisfies Obs and Θ(Xt

Obs) = 0
otherwise. The normalization factor Z for the above dis-
tribution is P (Obs). The reason is that: P (st|o1:t) =
P (st, o1:t)/P (o1:t), where Obs represents o1:t. Notice that
Obs is actually a logical formula at time t and P (Obs) is de-
rived by applying model counting to compute the probability
of the logical formula Obs.

Applying Deterministic Filtering Algorithm

for Probabilistic Transitions

In this section we apply our deterministic filtering algorithm
to answer queries given a sequence of probabilistic actions.
We improve the sampling technique, Logical Particle Fil-
tering (LPF), (Hajishirzi and Amir 2008) by removing the
regression step. This way, we improve the efficiency of the
LPF algorithm while we maintain the accuracy for a fixed

462

PROCEDURE LPF(PAM, δT , a1:T , o0:T)
Input: probabilistic sequence a1:T , observations o0:T , and
query δT

Output: P̃ (δT |a1:T , o0:T)
1. (�DA1:N , curF1:N) ← SampleAlg(a1:T , o0:T)
2. for each �DAi computeP(δT , �DAi, curFi)
3. return P̃ (δT |a1:T , o0:T) =

∑
i wiP (δT | �DAi, o

0:T).

Figure 7: LPF: approximating P (δt|a1:t, o0:t) for the prob-
abilistic sequence a1:t and observations o1:t

number of samples. We first review the logical particle filter-
ing technique and then show how our deterministic filtering
algorithm fits into this probabilistic filtering algorithm.

Logical particle filtering algorithm (Figure 7) answers
a query P (δT |a1:T , o0:T) given a sequence of probabilis-
tic actions a1:T = 〈a1, . . . , aT 〉 and observations o0:T =
〈o0, . . . , oT 〉 in a PAM. The algorithm approximates this
probability by generating samples among possible determin-
istic executions of the given probabilistic action sequence.
Then, it places those samples instead of the enumeration of
deterministic executions and marginalizes over those sam-
ples. The following equation shows the exact computation.

P (δT |a1:T , o0:T) =
∑

i

P (δT | �DAi, o
0:T)P (�DAi|a1:T , o0:T)

(6)
where �DAi is a possible execution of the sequence a1:T .

The first step of the LPF algorithm, SampleAlg, generates
a weighted particle �DAi with weight wi given the sequence
a1:T and the observations o0:T from the probability distribu-
tion P (�DAi|a1:T , o0:T).

Second step of LPF computes P (δT | �DAi, o
0:T) for each

sample �DAi by calling computeP. It first updates the current
state of the system by logical progression into curF and then
computes the posterior probability conditioned on the curF.
To compute the probability of a formula at time step t (Ha-
jishirzi and Amir 2008) regresses the query back to time 0
and derives formula δ0 where the prior distribution over state
variables exists. The regressed formula δ0 represents the set
of possible initial states, given that the final state satisfies
δt, and the logical particle �DA occurs. Thus, every state that
satisfies δ0 leads to a state satisfying δt after �DA occurs.

Finally, the algorithm uses the generated samples in place
of �DAi in Equation (6) and approximates posterior probabil-
ity of the query ϕT given the sequence a1:T and the obser-
vations o0:T by using the Monte Carlo integration (Doucet,
de Freitas, and Gordon 2001): P̃N (δT |a1:T , o0:T) =∑

i wiP (δT | �DAi, o
0:T).

To sample each logical particle, SampleAlg uses subrou-
tine computeP and computes the posterior probability of log-
ical formulas ψt

i (partitions in Definition 4) at each time step.
Recall that computeP regresses each ψt

i back to time 0 at ev-
ery time step to compute P (ψt). Therefore, sampling each
logical particle takes O(T 2 · RReg) where RReg is the run-
ning time of regressing a logical formula one step. We apply

0.0001

0.0010

0.0100

0.1000

1.0000

50 100 500 1000

Number of samples

SMC
LPF-Reg
LPF-Prog

Figure 8: Sampling accuracy: Expected KL-divergence in
reverse logarithmic scale of LPF-Prog (our algorithm),
LPF-Reg(regression at every step) and SMC with the exact
distribution vs. number of samples for depots domain.

our deterministic filtering algorithm (presented in Section)
and update computeP procedure to compute the probability
of logical formulas just with applying progression. There-
fore, the running time with just progression is O(T · RLF)
where RLF is the running time of one step filtering a logical
formula.

Empirical Results

We implemented our deterministic filtering algorithm and
used it as a subroutine in probabilistic filtering algorithm
(LPF). Like (Hajishirzi and Amir 2008) we examined our
algorithm on a planning type domain (depots) taken from
International Planning Competition at AIPS-98 and AIPS-
02 (McDermott 2000). In (Hajishirzi and Amir 2008) the
depots domain is augmented with a prior distribution and
a probability distribution for actions. Here, we use similar
action descriptions and probability distributions.

We first compared the accuracy of LPF with new deter-
ministic filtering subroutine (LPF-Prog) with LPF with re-
gression steps (LPF-Reg) in (Hajishirzi and Amir 2008) and
sequential Monte Carlo sampling (SMC) in (Doucet, de Fre-
itas, and Gordon 2001). We ran each algorithm 50 times
for a fixed number of samples and computed the Kullback-
Leibler(KL)-divergence between each approximation and
the exact posterior as a measure for accuracy. We calculated
the average over these derived KL-distances to approximate
the expected KL-divergence. Figure 8 shows that the av-
erage KL-divergence does not grow when we remove the
regression steps and replace them with just progression al-
gorithms. Moreover, the accuracy of both techniques are
much higher than the SMC algorithm for a fixed number of
samples.

We next compared the running time of LPF with progres-
sion (LPF-Prog) with LPF with regression (LPF-Reg). As
Figure 9 shows the running time of LPF-Prog is much better
than LPF-Reg. The reason is that we removed the regression
back to time 0 at every time step. Moreover, the actions are
probabilistic STRIPS and therefore progression is tractable
(polynomial in terms of number of variables).

463

0

50

100

150

200

250

300

350

400

10 100 200 400 600 800 1000

Ti
m

e
(s

)

Sequence Length

LPF-Reg

LPF-Prog

Figure 9: Running time of our algorithm LPF-Prog (just
progression) vs. LPF-Reg (regression at every step) versus
the sequence length in the depots domain.

Conclusions and Future Work

In this paper, we presented an exact filtering algorithm for
answering queries given a sequence of deterministic actions
and a probabilistic prior. Our results are for general deter-
ministic actions, but the algorithm is tractable for 1:1 and
STRIPS actions. In fact, tractability of our algorithm results
from the tractability of the logical filtering subroutine. The
algorithm dynamically applies logical filtering to variables
of the initial BN and constructs a new BN (with new bases)
whose structure is similar to the structure of the initial BN.
This way, the query answering is reduced to answering the
query in the constructed BN at time step t.

We also embedded our deterministic filtering algorithm in
a filtering algorithm with a sequence of probabilistic actions
and observations. This way, we improved the running time
of the previous general filtering algorithm by removing the
need for regressing back to time 0 at every time step.

In future, we plan to apply this representation and the in-
ference algorithm to narrative understanding in NLP. Also,
we are looking for more cases (in addition to STRIPS and
1:1 actions) that our algorithm is tractable. Moreover, in
the general sampling algorithm, we would like to use the
fact that the sampled deterministic action sequences has oc-
curred. This way, we can prune our deterministic filtering
algorithm and incorporate the knowledge about each action
while we proceed.

Acknowledgements We would like to thank the anony-
mous reviewers for their helpful comments. This work was
supported by DARPA SRI 27-001253 (PLATO project) and
NSF CAREER 05-46663 grants.

References

Amir, E., and Russell, S. 2003. Logical filtering. In Pro-
ceedings of International Joint Conference on Artificial In-
telligence (IJCAI), 75–82. Morgan Kaufmann.
Bacchus, F.; Halpern, J. Y.; and Levesque, H. J. 1999. Rea-
soning about noisy sensors and effectors in the situation cal-
culus. Artificial Intelligence 111(1–2):171–208.
Boutilier, C.; Reiter, R.; and Price, B. 2001. Symbolic dy-
namic programming for first order MDPs. In Proceedings

of International Joint Conference on Artificial Intelligence
(IJCAI), 690–700.
Chavira, M., and Darwiche, A. 2008. On probabilistic in-
ference by weighted model counting. Artificial Intelligence
172(6-7).
Dean, T., and Kanazawa, K. 1988. Probabilistic temporal
reasoning. In Proc. Conference of the Association for the
Advancement of Artificial Intelligence (AAAI), 524–528.
Domshlak, C., and Hoffmann, J. 2006. Fast probabilistic
planning through weighted model counting. In International
Conference on Automated Planning and Scheduling, 243–
252.
Domshlak, C., and Hoffmann, J. 2007. Probabilistic plan-
ning via heuristic forward search and weighted model count-
ing. Artificial Intelligence 30(565-620).
Doucet, A.; de Freitas, N.; and Gordon, N. 2001. Sequential
Monte Carlo Methods in Practice. Springer, 1st edition.
Gomes, C.; Sabharwal, A.; and Selman, B. 2006. Model
counting: A new strategy for obtaining good bounds. In
Proc. Conference of the Association for the Advancement of
Artificial Intelligence (AAAI), 54–61.
Hajishirzi, H., and Amir, E. 2008. Sampling first order
logical particles. In Proc. Conference on Uncertainty in Ar-
tificial Intelligence (UAI).
Levesque, H. 1998. A completeness result for reasoning
with incomplete first order knowledge bases. In Proc. Inter-
national Conference on Principles of Knowledge Represen-
tation and Reasoning (KR).
McDermott, D. 2000. The 1998 AI planning systems com-
petition. AI Magazine 21(2).
Murphy, K. 2002. Dynamic Bayesian Networks: Represen-
tation, Inference and Learning. Ph.D. Dissertation, Berke-
ley.
Pearl, J. 1988. Probabilistic Reasoning in Intelligent Sys-
tems : Networks of Plausible Inference. Morgan Kaufmann.
Pfeffer, A. 2001. Sufficiency, separability and temporal
probabilistic models. In Proc. UAI ’01, 421–428. MK.
Rabiner, L. R. 1989. A tutorial on HMM and selected ap-
plications in speech recognition. IEEE 77(2).
R.E.Bryant. 1992. Symbolic boolean manipulation with
ordered BDDs. ACM 24(3).
Reiter, R. 2001. Knowledge In Action: Logical Foundations
for Describing and Implementing Dynamical Systems. MIT
Press.
Shahaf, D., and Amir, E. 2007. Logical circuit filtering. In
Proceedings of International Joint Conference on Artificial
Intelligence (IJCAI), 2611–2618.

464

