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Abstract

Autonomous robots are becoming increasingly popular and
such systems has led to complex design and analysis which
brings the necessity of validation and verification. In particu-
lar, symbolic robot motion planning based on formal methods
is verifiably correct. It is the process of specifying and plan-
ning robot tasks in a discrete space, then carrying them out
in a continuous space in a manner that preserves the discrete-
level task specifications. Despite progress in symbolic mo-
tion planning, many challenges remain, including addressing
scalability for multi-robot systems and improving solutions
by incorporating human intelligence in an adaptive fashion.
On the other hand, extant works in human-robot interaction
(HRI) often lack quantitative models and real-time analytical
approaches. Here, we summarize our recent works on sym-
bolic robot motion planning with human-in-the-loop as a step
toward addressing these challenges. We specially focus on
human trust in autonomous robots and embed trust analysis
into the symbolic robot motion planning.

Trust

Trust is a key parameter in determining human’s acceptance
and hence use of a robot (Hancock et al. 2011). Considera-
tion of trust is especially important for supervisory control
of multiple robots, since the tasks must be carefully allo-
cated to ensure that time-critical issues are addressed while
human workload is kept within acceptable bounds.

In both (Spencer, Wang, and Humphrey 2016) and (Ma-
hani and Wang 2016), a quantitative and dynamic trust
model based on robot performance/faults, human perfor-
mance, and the environment is used to estimate human trust
in each of the robots throughout the scenario. This type of
time-series models characterize the dynamic relationship be-
tween human trust in the robots and the independent vari-
ables. The model is hence suitable for both real-time analy-
sis and prediction of trust for control allocation.

In (Spencer, Wang, and Humphrey 2016), robot perfor-
mance is modeled as a function of “rewards” the robot re-
ceives by detecting obstacles and reaching goals. This al-
lows the robot to earn trust as it learns details of the environ-
ment. Human performance is calculated based on workload
and the complexity of the environment surrounding the robot
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with which the human is currently collaborating. The con-
cept of utilization ratio is used to measure workload. Com-
plexity of the environment is based on the number of obsta-
cles that lie within sensing range of the collaborating robot.
The human’s superior capability in creating more detailed
paths will be enhanced in more complex environments, lead-
ing to increased performance in the presence of more ob-
stacles. On the other hand, human performance decreases
with respect to workload. Robot faults are modeled as the to-
tal number of obstacle regions the robot has entered before
sensing the corresponding obstacle. In (Mahani and Wang
2016), the robot performance is a function of the distance of
the robot to the closest obstacle and goal at each time step.
In this model the robot performance decreases as the robot
gets closer to an obstacle and further from a goal. The human
performance model also takes into account human workload
and environmental complexity.

Multi-Robot Symbolic Motion Planning

In (Spencer, Wang, and Humphrey 2016), we utilize local
communication, observation, control protocols, and compo-
sitional reasoning approaches to decompose the planning
problem to address scalability. To address solution qual-
ity and adaptability, we use the dynamic and computational
trust model to aid this decomposition and to implement real-
time switching between automated and human motion plan-
ning.

We consider an intelligence, surveillance, and reconnais-
sance (ISR) scenario in which a team of robots, supervised
by a human operator, must reach a set of goal destinations
while avoiding collisions with stationary obstacles and with
each other. The workspace is discretized into polytopic re-
gions that are labeled with relevant properties, e.g., whether
they contain an obstacle or goal. We assume a set of goal
destinations is known from the start, and each goal must be
reached by at least one robot while collisions with obstacles
and between robots are avoided. This set of requirements
forms a specification for the scenario. Our proposed plan-
ning scheme is implemented in a distributed manner, making
use of compositional reasoning approaches to decompose
the global specification. More specifically, the goal portion
of the specification is decomposed such that each robot is
assigned a subset of the goal destinations and locally syn-
thesizes a plan to reach them. For obstacle avoidance, we
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assume obstacle locations are not known a priori, and so
when a robot discovers an obstacle, it re-synthesizes a plan
to reach its remaining goals after updating its representation
of the workspace.

First we consider robot collision avoidance tasks that re-
quire collaborations between neighboring robots. This re-
quires defining the atomic propositions for each robot, which
correspond to communication, observation, and control. The
communication proposition is true if another robot is within
the communication range of the robot under considera-
tion and false otherwise. When the communication atomic
proposition is true, two robots can communicate with each
other to exchange sensing and path information. This infor-
mation can also be used to detect possible collisions between
the two robots, expressed in the observation proposition. If
it is observed that the current robot’s motion plan will cause
an imminent collision with the second robot, then the ob-
servation proposition is true; otherwise it is false. For the
control proposition, when it is true, the robot is executing a
nominal linear quadratic regulator (LQR) control law; when
false, the robot pauses, replans its path automatically or re-
quests for human intervention. When both the communica-
tion and the observation propositions are true, the robot has
detected a potential collision and communicates its path with
the involved robot. At this moment, the control proposition
is set to false, and the robot pauses, replans, or asks for hu-
man intervention dependent upon the collision type. At each
time step, the propositions are checked, and local specifica-
tions are dynamically updated. Through these propositions,
we are able to decompose the robot collision avoidance task
and guarantee there is no collision between the robots. Next,
we use a general compositional reasoning approach to show
that the robots are able to collectively fulfill the reachability
and obstacle avoidance portions of the global specification
using a distributed planning approach. Compositional rea-
soning in this context relies on concepts of interleaving of
transition systems and unconditional fairness. Last but not
least, the estimate of trust affects the specification decom-
position, with more trusted robots assigned more destina-
tions. A real-time trust-based switching between human and
automated motion planning is also proposed and designed
and implemented in (Mahani and Wang 2016) as explained
in the next section. We show that our planning approach is
guaranteed to meet the task specifications under some mild
assumptions.

Runtime Verification Framework for Switches

between Human and Robot Motion Planners

In (Mahani and Wang 2016), we investigate runtime verifi-
cation approaches for robot motion planning with human-
in-the-loop. By bringing together approaches from runtime
verification, trust model, and symbolic motion planning, we
develop a framework which guarantees that a robot is able
to safely satisfy task specifications while improving task ef-
ficiency by switches between human supervision and au-
tonomous motion planning. A simple robot model in a do-
main path planning scenario is considered and the robot is
assumed to have perfect localization capabilities. The task

domain is partitioned into a finite number of identical cells.
A computational trust model based on the robot and human
performance is used to provide a switching logic between
different modes.

The switching framework is consisted of two controllers:
autonomous baseline controller for safety and manual ad-
vanced controller for efficiency. This framework is logically
divided into five subsystems: Motion Planner, Controller,
Monitor, Checker, and Decision Maker. The advanced sub-
system is less safe but contains human-in-the-loop which
refers to the manual mode. The baseline subsystem refers to
the autonomous mode and uses a symbolic motion planner,
which is guaranteed to be correct and hence safe. In the au-
tonomous mode, the system generates plans using NuSMV.
In the Monitor subsystem, we have two modules: Filter and
Event Recognizer. The filter is designed to extract the in-
formation and send them to the event recognizer. Although
the filter can be merged with the event recognizer, but hav-
ing them separated prevents the system from the overhead
of abstracting out events from the extracted information and
consequently we can minimize intervention with the moni-
tored system run. The next module in the monitoring subsys-
tem is the event recognizer which detects an event from the
values received from the filter based on event definitions pro-
vided by a monitoring script. The monitoring script renders
the systems states to the events at the requirement level in
order to be analyzed by the system checker. Once the event
recognizer detects an event, it will send that information to
the checker module. The runtime checker uses the speci-
fications provided by the user and checks whether or not
the current execution of the system meets the requirements.
Based on the information received from the runtime checker,
the decision module determines under which mode the sys-
tem should run for motion planning and it uses the trust
model to evaluate the trust level of the system. The simu-
lation is conducted in ROS and model checking is computed
using NuSMV. Runtime verification that mainly contains the
monitor, checker, and decision module is implemented using
ROSRV.
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