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Abstract 
This work presents the design and implementation of an early 
turn-taking prediction algorithm for a robotic scrub nurse sys-
tem. The turn-taking prediction algorithm analyzes surgeon’s 
implicit communication cues identifying among those surgi-
cal instrument requests before the request actually are explic-
itly evoked. Communication channels expressed through sig-
nals like EEG, EMG and physical signs were used to monitor 
surgeon’s behaviors and automatically detect implicit instru-
ment requests. Significant features were extracted from those 
signals, through an automatic feature selection process. Then 
recurrent neural networks were used for time-sensitive turn-
taking prediction. Experimental results indicated that the pro-
posed algorithm has higher prediction accuracies than human 
baseline when less than 70% of the entire action was ob-
served. This is approximately 1.4 seconds after the action 
started, and 0.6 seconds before the action ends. At an ex-
tremely early stage (only 10% of data), the proposed turn-
taking prediction algorithm achieves a F1 score of 82.8%.   

Introduction   
Surgery involves complex coordinated behaviors that are 
learnt, acquired and executed precisely in the operating 
room (OR) through experience, implicit and explicit com-
munication. In order to include a robotic assistant into this 
context, key components involving communication, task-
flow and turn-taking must be addressed accurately in such 
hybrid human-robot team. One especially challenging as-
pect is the ability to predict the partner’s intention. An ex-
ample of this challenge is surgical instruments handover 
task. A surgical nurse delivers surgical instruments to a sur-
geon based on explicit requests – the surgeon uttering the 
words “scissors” or/and implicit requests expressed by body 
language (e.g. changing posture, hand gestures, gaze, and 
head/neck movements). All these forms of expressions are 
used to inform the task partner that it is her turn to continue 
with a task. In such scenario, the main challenge is to inte-
grate the communication channels meaningfully to distin-
guish signals meant to convey intention. To this end, optical,
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physiological and neurological information are integrated 
together to characterize the operator’s intent. In this work, 
we focus on developing aspects related to the recognition of 
intent for timing and synchronization purposes rather than 
identifying the specific instrument requested which was 
subject to our previous work (Jacob, Li, & Wachs, 2012). 

Collaborative work in hybrid teams of humans and robots 
is an area that is gaining major interest especially when it 
concerns time sensitive and cognitive demanding tasks. The 
concept of having robotic assistants to work along with hu-
man operators effectively is compelling and has the poten-
tial to reduce costs and time requirements. In this environ-
ment, how to coordinate the timing during a paired collabo-
rative task is key for effective work. Haptic communication 
was used to predict intention and role of the participants in 
a joint object manipulation task by Groten (Groten, Feth, 
Klatzky, & Peer, 2013). In addition, Ehrlich (Ehrlich, 
Wykowska, Ramirez-Amaro, & Cheng, 2014) enabled a hu-
manoid to determine the right timing and proper role to en-
gage in interaction with its operators by means of gathering 
their EEG signals. In the CHARM project (Hart et al., n.d.),
a robot assistant was developed to work alongside human 
workers in a manufacturing environment, where nonverbal 
cues were used for timing coordination. Timing in multi-
modal (speech, gaze, gesture) turn-taking interactions in hu-
man-robot interaction were considered in a collaborative 
Towers of Hanoi game by Chao (Chao & Thomaz, 2012). 
All the described work consider tasks that are well struc-
tured, demand collaboration, but are not time-sensitive. That 
is, the outcome of the task does not depend on the specific 
timing as long as the turns are respected. To the best of our 
knowledge, this is the first time that timing in multimodal 
human robot interaction is studied in the context of a high-
sensitive and high-risk task such as surgery. An illustration 
of the system is shown in Figure 1.
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Turn-taking in Homogenous Human’s Team  
In this section we will describe the observation and record-
ing of human teams’ turn-taking activities during a surgical 
task. The associated experiment setup and data collection 
process will also be discussed below.

Task setup 
To better understand how turn-taking activities were regu-
lated between surgeons and nurses, we setup a simulation 
platform for surgical operations and recorded communica-
tion cues between nurses and surgeons. The team needs to 
collaborate in order to conduct the mock abdominal incision 
and closure task successfully. The detailed process of the 
surgical task is shown in Figure 2.   

The human participant acting as surgeon was given in-
structions about the surgical procedure, and then was re-
quired to conduct the task on the simulation platform. The 
surgeon was explicitly asked to use verbal commands to re-
quest each instrument. In addition to the verbal commands,

the surgeon’s body, gaze and arm motions were all used to-
gether as implicit communication cues to trigger the nurse’s 
actions (no explicit request was given to the subjects about 
this). The subject acting as the nurse must understand the 
surgeon’s turn-taking communication cues (both implicit 
and explicit) in order to react according to the surgeon’s ex-
pectations. One experiment assistant performed the role of
the scrub nurse.

In this surgical task, the instrument request event was 
treated as the main turn-taking activity. The surgeon needs 
around 14 surgical instruments to finish the task, resulting 
in around 14 turn-taking instances. These instruments are 
scalpel, hemostat, forceps, retractor, scissors and needle.  
Each participant acting as a surgeon repeats the surgical task 
5 times. In total 5 participants were recruited, with ages in 
range 20-31 (mean = 24.8, std = 4.1). In total 348 turn-taking 
instances were created and served as the basic experiment 
dataset. 

Data collection 
The communication cues emitted by the surgeon were rec-
orded for further analysis. Three different sensors were used 
together to record different aspects of communication cues, 
namely Myo armband, Epoc headband and Kinect sensor. 
The details of the recorded raw data for each sensor were
given below, as well as the dimension of each signal.  
Myo armband 

Myo armband was used to capture the motion and EMG 
signals on the surgeon’s dominant arm. The following infor-
mation were recorded together with the data dimensionality: 

Orientation, 3D 
Acceleration, 3D 
Gyroscope, 3D 
EMG signals, 8D  

Epoc headband 
Epoc headband was used to capture surgeon’s head mo-

tions and EEG signals. The following data was recorded: 
EEG signals, 14D 
Head gyro (pitch and yaw), 2D 
Emotion prediction (engagement, frustration, medi-
tation, excitement and valence), 5D  

Kinect 
Kinect was used to capture head poses and body postures 

of the surgeon. The following information were recorded: 
Face orientation (roll, pitch and yaw), 3D 
Body postures (left-right leaning and forward-back-
ward leaning), 2D 
Left hand extension (vector from joint SpineMid to 
joint lefHand), 3D 
Right hand extension (vector from joint SpineMid to 
joint rightHand), 3D 
Acoustic amplitude, 1D 

Figure 1. System setup for the robotic scrub nurse. The surgeon 
is conducting a surgery (black) when robotic nurse (orange) 

picks up the instrument from mayo stand (brown) and delivers to 
surgeon after requesting. The surgeon is monitored by Myo arm-

band (green), Epoc headband (red) and Kinect (purple).

Figure 2. Mock Abdominal Incision and Closure Procedure
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Signal Fusion 
The real-time data from all three modalities were syn-

chronized at a frame rate of 20 Hz. The raw values were 
concatenated together, forming a data level fusion. Unlike 
decision-level fusion in which each modality is classified in-
dividually, and then combined to convey a single outcome,
fusion at the data level integrates all the information from 
the get-go and a single classification procedure is con-
ducted. Such approach retains the low-level interactions be-
tween modalities and leads to models of higher expressive-
ness (Martínez & Yannakakis, 2014). For each time frame 
, the fused sensor measurement  consists of 50 values (ad-

dition of all the dimension detailed in the previous subsec-
tion).

Surgeon’s state annotation 
To establish ground truth, we annotated the recorded video 
based on different states of the surgeon. The two defined 
states of surgeon are (1) operating: engaged in the on-going 
surgical task; (2) requesting: expecting a new instrument. 
All the turn-taking activities happened during the requesting
state, thus the goal is to predict as early as possible the tran-
sition from operating state to requesting state.  

The requesting state is defined to begin at the earliest of 
the following events, and to end at the latest of the same 
events, as illustrated by Figure 3: 

Torso movement ( . Body inclination was iden-
tified as one of the key communication cues in the 
OR (Moore, Butt, Ellis-Clarke, & Cartmill, 2010) 
Gaze shift ( ). Gaze patterns were found to have 
high correlation with instrument handovers in the OR 
(MacKenzie, Ibbotson, Cao, & Lomax, 2001) 
Arm movement ( ). (Strabala et al., 2013) ana-
lyzed human-human handovers and observed a pre-
paratory arm movement for triggering the timing of 
turn-taking. 
Speech command . Though considered as 
the major source of communication errors in the OR, 
verbal command in still one of the most popular com-
munication channels in the OR (Rabøl et al., 2011). 
Hand gestures . Often hand gestures are used 
extensively in the OR to request certain type of in-
strument (Gulášová, Görnerová, Breza jr, & Breza,). 

The key moments of the requesting state were annotated,
and the remaining data between two consecutive requesting
states was considered as operating state. A primary re-
searcher segmented all the videos and labeled the requesting
segments. An additional assistant labeled 20% of randomly 
picked segments (from both requesting and operating
states) from all 5 subjects. Inter-rater reliability showed al-
most perfect agreement between the two sets of annotations 
with regard to the segmented states (Cohen’s 
(Cohen, 1960).

Early Turn-taking Prediction 
The turn-taking prediction framework is shown in Figure 4.
The surgeon was monitored through three sensing devices. 
After data-level fusion and sampling, the recorded data was 
synchronized and concatenated. The most relevant features 
were retained through an automatic feature selection pro-
cess. Then the features were temporally modelled for turn-
taking prediction. The prediction results was transferred to 
a robotic arm, which picked up and delivered the surgical 
instrument to the surgeon accordingly.  

Channel preprocessing 
The Exponentially Weighted Moving Average (EWMA) 
technique was applied on the raw signal for smoothing pur-
poses. It is a common noise reduction technique for time-
series data (Lucas & Saccucci, 1990), and is given by: 

where  is the raw sensor measurement at time ,   is the 
length of raw signal and  is the filtered measurement at 
time . The weighting parameter  controls the weight of 
raw measurement data, which was determined to be 0.2 for 
best performance in our environment. 

The smoothed signal  in each modality was normalized 
using mean and variance values, following: 

Request starts

Request ends

time

Figure 3. Illustration of the definition of request state. in-
dicates the time period when modality  is active 

Epoc Myo Kinect

Sensing devices

Sample Feature 
selection

Surgeon Delivery Robot

… t
t

Temporal
modeling

Continuous signals Selected signals Long Short Term Memory 
(LSTM) network

Prediction

Figure 4. Turn-taking prediction algorithm framework 
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where  and  are the mean and variance of signal ,
and  is the corresponding normalized signal. Notice that 
and  were calculated based on the data from both states 
(requesting and operating). This step cancels any offset be-
tween data of different states. Thus, for each time stamp ,

 consists of 50 values which is the total dimension of the 
raw information. The smoothed and normalized data 
within a time window is cumulatively denoted as a segment. 
Each segment , { } was stacked together to 
form a raw feature representation , where  is 
the length of segment  and  is the dimension of raw data 
(i.e., . For each segment , there is a correspond-
ing label  to indicate whether segment  belongs 
to requesting state ( ) or operating state .  

Feature selection 
An automatic feature selection process was conducted ini-
tially to extract the relevant information of all the channels. 
More specifically, for each segment , the  most 
salient features were selected out of the total  features 
( . This step results in a more succinct and salient 
representation. To that end, a statistics-based individual fea-
ture selection process was applied, similar to that of 
(Morency, de Kok, & Gratch, 2008). The major difference 
is that in (Morency et al., 2008), all the features were already 
binarized, but here the features have continuous values. 
Therefore, we need to encode the continuous signal into bi-
nary and then apply the feature selection procedure.  

Each information channel was binarized using K-means 
(using 2 clusters, each representing a binary level). Then, a

 test was conducted between the binarized data and the 
ground truth label. The  features were sorted based on the 
significance value of the corresponding  test, and the 
most significant features were retained as the optimal fea-
ture set, represented by . 

Early prediction 
To conduct early turn-taking prediction, we applied two 

techniques, Multi-Dimensional Dynamic Time Warping 
(MD-DTW) (ten Holt, Reinders, & Hendriks, 2007) and a
recurrent neural network model named Long Short-Term 
Memory (LSTM) (Hochreiter & Schmidhuber, 1997). The 
DTW serves as a baseline and a representative for traditional 
temporal modeling algorithms.   
Multi-Dimensional Dynamic Time Warping (MD-DTW) 

Dynamic Time Warping is one of the most traditional and 
successful temporal modelling algorithms, and has been ap-
plied to speech processing (Abdulla, Chow, & Sin, 2003),
gesture recognition (ten Holt et al., 2007) and trajectory nav-
igation in robotics (Vakanski, Mantegh, Irish, & Janabi-
Sharifi, 2012). (ten Holt et al., 2007) extended 1D-DTW to 

a multi-dimensional case and showed the superiority of MD-
DTW over any 1D-DTW systems. DTW has also been 
shown as a good technique for early prediction (Mori et al., 
2006). 

In our scenario, we applied the MD-DTW algorithm pro-
posed by (ten Holt et al., 2007). We used the 1-norm as the 
distance measure for two multi-dimensional points, i.e. the 
sum of the absolute differences in all dimensions. A Nearest 
Neighbor classification scheme was used to predict the sur-
geon’s current state based on the features described above.  

The training stage aims to find a most representative in-
stance out of all the trials for each surgeon state, known as 
the template. Assume that there are a total of  instances of 
state requesting , the template  was selected 
based on within-group consensus. The instance which 
has the least cumulative DTW distances with the rest of the 
group was chosen as the template , i.e.: 

During testing stage, for a given unknown sequence ,
its DTW distance with the templates of each state was cal-
culated. Then the label associated with the minimum dis-
tance was chosen as the prediction  for sequence , i.e.: 

Long Short-Term Memory (LSTM) 
LSTM is a recurrent neural network architecture which 

has been successfully applied to handwriting recognition 
(Graves et al., 2009) and emotion recognition (Wöllmer, 
Kaiser, Eyben, Schuller, & Rigoll, 2013) among other ap-
plications. This network structure has the intrinsic temporal 
capabilities to automatically extract spatial-temporal fea-
tures and predict an outcomes based on these values. The 
basic structure of a cell of LSTM is shown in Figure 5. 

The LSTM structure can be described by a set of formu-
las: 

,                
,                   

,                  
                  

,                                  
,                                    

Input 
gate

Output 
gate

Forget 
gate

Figure 5. Basic cell of LSTM
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where  is the input temporal sequence at time  (corre-
sponding to  defined above),  is the output of the 
memory cell at time .  are weight 
matrices, and  are bias terms respectively.  de-
notes a function,  denotes a  function and 
denotes an element-wise multiplication.  are input 
gate, forget gate, output gate and cell unit respectively. The 
memory unit is generated by the coupe of input gate and the 
forget gate. Generally speaking, LSTM can model long-
term dependencies in temporal dimension because the cell 
unit can selectively “remember” or “forget” past infor-
mation. The strategy to open or close each gates is data 
driven and is embedded in learned weights and biases. 

During training stage, the segment-label pairs 
 from 

both requesting state and operating state were supplied to-
gether into the network. The learning algorithm calculates 
the weights and biases, as the output of the training stage.  

During testing stage, the given unknown sequence  was 
delivered to the network and the memory cell output  of 
the last time step was multiplied by  and then trans-
formed by the softmax function to compute the model output 

, which is the predicted label for segment .

Experiment 
To validate the performance of the proposed early turn-

taking prediction algorithm, we conducted three experi-
ments using the recorded multimodal data and videos as de-
scribed in section Turn-taking in Homogenous Human’s 
Team. The three experiments aim to: 1) evaluate the perfor-
mance of automatic feature selection; 2) evaluate the perfor-
mance of two early prediction algorithms; 3) evaluate the 
algorithm performance when compared with a human (act-
ing as a nurse). The experiment setting follows a k-fold val-
idation scheme, with the number k= 3. Under such scheme, 
the training and testing split contains data from different tri-
als of the same subject. The F1 score for the requesting
event prediction was used as the single metric to evaluate 
performance. The average F1 score, as well as the standard 
deviation, are shown in the Figures 6 and 7. There were a
total of 348 segments of state requesting and 536 segments 
of state operating (roughly 1.5 times the size of requesting). 
All the operating events were segmented to have a window 
length equal to the median of all requesting events.

Feature selection experiment 
We conducted an experiment to compare the performance 

of using all  raw features (i.e., using ) with us-
ing the selected  optimal subset of features (i.e., using 

). There were in total 50 (i.e., ) raw channels 
of information obtained from the sensors used. For the com-
parison, we randomly draw 10% of the entire dataset, and 

conducted the feature selection process on this portion. The 
remaining 90% was left for training and testing purposes.

After running the statistics-based feature selection, we se-
lected 20% features (i.e., ) who are the most signif-
icant as indicated by the  tests. They were described in 
Table 1.

TABLE 1. SELECTED TOP FEATURES

It is shown that features automatically selected here 
match those ones which are manually selected based on lit-
erature for surgeon state annotation (Figure 3). We also in-
clude the binary encoded version of the selected subset fea-
tures as a comparison feature set. Here the performance of 
different feature sets were tested with both DTW and 
LSTM. The performance is shown in Figure 6. The best per-
formance is achieved by just using the automatically se-
lected feature subset, for both DTW and LSTM cases. The 
binary encoded version performed poorly, which was poten-
tially due to the loss of information during binarization.  

Early prediction experiment 
In this experiment we compared MD-DTW with the 

LSTM network. To evaluate early prediction performances,
only the beginning fraction of data was used. The specific 
fraction value follows a 10-grid uniform distribution from 
10% of the full data to 100% of the full data. Assume that a
segment  has window length , at fraction 

, only the data in range  was used for 
training and testing, where . In such a scenario, at 
data fraction point , we work with the sub dataset of

. All the following experiments follows such setup.  

Rank stat Feature Name Description
1 1299 myo.orientation.x Dominant hand orientation X
2 963 myo.orientation.y Dominant hand orientation Y
3 825 myo.acceleration.y Dominant hand acceleration Y
4 805 myo.gyroscope.y Dominant hand gyroscope Y
5 626 kinect.faceOrient.y Face orientation Y
6 606 kinect.faceOrient.z Face orientation Z
7 508 kinect.lean_forward Forward-backward leaning
8 478 kinect.audioConfi Acoustic amplitude
9 428 epoc.gyro.x Head gyroscope (pitch)
10 420 epoc.gyro.y Head gyroscope (yaw)

Figure 6. Comparison of different feature sets. (left) using DTW; 
(right) using LSTM
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When making early predictions, MD-DTW only calcu-
lated the distance from the beginning  fraction of the tem-
plate to the same fraction of the unknown se-
quence. In the LSTM case, the neural network was retrained 
with each beginning segment of the full data, and tested on 
the same fraction.  

The LSTM training and testing was based on Tensorflow 
library (Abadi et al., 2015). The number of iterations was set 
to be 10000,  with a learning rate of 0.001 and a hidden layer 
number of 32. The performance of the two algorithms are 
shown in Figure 7 (the human baseline curve is explained 
below). The LSTM greatly outperforms DTW in all regions.  
Human baseline comparison 
We also compared the performance of the proposed early 
prediction algorithm with that of human performance. To 
that end, we recruited the same participants in the data col-
lection process and get their early prediction performances 
when acting as nurses. Videos of recorded surgical tasks 
were played to each participant (ensuring a cross-participant 
setting, i.e. every one watched other’s videos). The video 
was played from the beginning to the end, and paused at ran-
dom time instances. When the video was paused, the partic-
ipant was asked whether they think that the surgeon intends 
to request an instrument or not. Those answers were com-
pared with the ground truth and, thus human baseline per-
formance was calculated.  

The specific time marks when the video was paused were 
determined as follows. First, the video was paused within 
each requesting state. Assume that a video clip starts at 
and ends at . It was randomly paused at time 

, according to a discrete uniform distribution of .
Second, one or two video clips (with equal probability) were 
selected as operating states at random locations between 
two consecutive requesting states. The length of each video 
clips equals to the median length of all the requesting events. 
For each video clip of operating state, the pausing time was 
determined in the same way as explained above for the re-
questing state. 

The performance of the human baseline, compared with 
the DTW and LSTM algorithms is shown in Figure 7. The 
LSTM algorithm outperforms the human baseline in frac-
tion range , performs as well as human baseline 
in fraction range , and is slightly worse than 
human baseline when full action was observed ( . The 
median length of the entire action is about 2 seconds. There-
fore the proposed algorithm can deliver better early predic-
tion performance in early stages of the action (about 1.4 sec-
onds after the action starts and 0.6 seconds before the action 
ends).  

It is worth noting that humans watch the video continu-
ously and thus gain context information about the surgical 
task. Such context information can contribute in learning to 
identify potential turn-taking instances. This occurs due to 

the correlation between consecutive events. Currently, the 
proposed early turn-taking algorithms enable decision mak-
ing based solely on a window of the segmented data and in-
dependently from the other time window, thus lacking the 
capability of utilizing contextual cues and task dynamics.  

Conclusions 
This paper presented the design and implementation of an 
early turn-taking prediction algorithm for a robotic scrub 
nurse system. Sensors were utilized to capture surgeon’s 
communication cues, automatic feature selection was car-
ried to retain significant features, and lastly LSTM networks 
were used for early turn-taking prediction. The effectiveness 
of automatic feature selection process was verified through 
three experiments. It was found that the proposed early turn-
taking prediction algorithm can outperform human perfor-
mance before 70% of entire action finishes (about 0.6 sec-
onds before the end of the event).

Future work includes proposing a more sophisticated sur-
geon state definition, giving a better spatial-temporal feature 
construction and including more contextual information to 
enrich the early prediction algorithm. We plan to validate 
the proposed turn-taking prediction algorithm and the ro-
botic scrub nurse system with surgeons in the operating 
room.
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