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Abstract

A major challenge for robots interacting with humans in re-
alistic environments is handling robots’ uncertainty with re-
spect to the identities and properties of the people, places, and
things found in their environments: a problem compounded
when humans refer to these entities using underspecified lan-
guage. In this paper, we present a framework for generating
clarification requests in the face of both pragmatic and refer-
ential ambiguity, and show how we are able to handle several
stages of this framework by integrating a Dempster-Shafer
(DS)-theoretic pragmatic reasoning component with a proba-
bilistic reference resolution component.

Introduction

Imagine a robot named Cindy operating in a disaster relief
scenario. Cindy and her human teammate Bob have just left
a second-floor room containing a small refrigerator, a sink,
and two medical kits: one on a table and one on a counter.
After driving ten meters down the hallway, Bob says “Go
back to the kitchen and grab the medical kit.” In order to un-
derstand this command, Cindy must (1) resolve referential
uncertainty by deciding how probable it is that the previous
room was a kitchen or not, and (2) resolve referential ambi-
guity by deciding whether that room or another kitchen was
being referred to (as well as which of the two medical kits
was being referred to). In order to resolve referential un-
certainty and/or ambiguity, Cindy may need to ask for clar-
ification as a human would (Tenbrink et al. 2010). In this
scenario, for example, Cindy might say “Do you want me to
retrieve the medical kit on the counter or the medical kit on
the table?”, or “Do you mean the room we were just in, or
the kitchen on the first floor?”

In previous work, we showed how a Dempster-Shafer
(DS)-theoretic pragmatic reasoning component could be
used to generate clarification questions under intentional
uncertainty and ignorance. For example, if a robot was
told “The commander needs a medical kit”, and was unsure
of the social relationship between itself and the speaker, it
might identify two alternate interpretations and ask “Do you
want me to bring him one, or do you want to know where to
find one?” In this work, we show how this pragmatic reason-
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ing component can also be used to identify referential un-
certainty and ambiguity, and generate clarification requests
appropriately. Specifically, we present a clarification request
generation framework, and demonstrate how, by integrating
our pragmatic reasoning component with a probabilistic ref-
erence resolution component, we are able to handle several
stages of this framework.

In the next section, we discuss previous work on situated
clarification request generation. Next, we lay out a theo-
retical clarification request generation framework. We then
describe the stages of this framework handled by compo-
nents of the Distributed, Integrated, Affect, Reflection and
Cognition (DIARC) architecture (Scheutz et al. 2007), and
demonstrate those components in operation. Finally, we de-
scribe how remaining stages of the framework might be han-
dled in the future.

Related Work

Clarification request generation has been a topic of consid-
erable research in non-situated contexts (Purver, Ginzburg,
and Healey 2003; Traum 1994), but has only recently be-
come a topic of interest in the Human-Robot Interaction
community (c.f. general question asking capabilities, e.g.,
Fong, Thorpe, and Baur (2001), Rosenthal, Veloso, and Dey
(2012)). Several recent approaches have used information-
theoretic techniques to determine the best random variable
of interest to ask questions about, with questions either
framed as yes/no questions (Deits et al. 2013; Hemachan-
dra, Walter, and Teller 2014; Purver 2004) or specification
requests (e.g., “What do the words X refer to?”) (Tellex
et al. 2013; Purver 2004) However, recent experimental evi-
dence (Marge and Rudnicky 2015) suggests that people pre-
fer robots to list multiple options rather than confirm a sin-
gle referent with a yes/no question (c.f. Clark (1996)), even
when asking a yes/no question would be more efficient (c.f.
Hemachandra, Walter, and Teller (2014)).

Perhaps closest to the proposed approach is that presented
by Kruijff, Brenner, and Hawes (2008). Those authors re-
solve ambiguity using a continual planning approach that
makes use of actions generating utterances that list multi-
ple options, such as “Do you mean the blue or the red mug,
Anne?”

As we will describe, we take a similar approach. How-
ever, instead of directly planning to receive disambiguat-
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Figure 1: Clarification Framework.

ing information through communicative actions, we simply
identify points of ambiguity; DIARC’s dialogue system then
decides as part of its normal functioning to pose questions
to resolve this ambiguity, and does so in a way which ac-
counts for social context, uncertainty, and ignorance, none
of which appear to be handled by Kruijff et al.. Moreover,
because DIARC’s dialogue system uses a single set of prag-
matic rules for understanding and generation, the same rules
that allow the robot to generate clarification requests also
allow the robot to understand such requests.

There has also been much previous work in the area of
natural language generation (NLG). Most broadly relevant
perhaps are general NLG frameworks like that of Reiter,
Dale, and Feng (2000)). Dale and Reiter identify six stages
of NLG: content determination, document structuring, ag-
gregation, lexical choice, referring expression generation,
and realisation. We would argue, however, that NLG for
use in Human-Robot Interaction warrants a framework that
deviates from that used for more traditional NLG purposes.
In HRI, NLG typically needs to happen at the utterance level
rather than at the document level, which deemphasizes steps
such as document structuring and aggregation. More fun-
damentally, NL is generated for different reasons in HRI
than it is in other contexts: it is more likely in HRI than
in other contexts that utterances must be generated to solicit,
rather than provide, information, e.g., through clarification
requests. In the next section we present an NLG framework
specifically designed to facilitate clarification request gener-
ation in HRI contexts.

A Framework for Clarification

Request Generation

We identify five stages necessary for successful clarification
request generation, as shown in Fig. 1: (1) uncertainty iden-
tification, (2) decision to communicate, (3) utterance choice,
(4) surface realization, and (5) speech synthesis. In this sec-
tion we describe the actions necessary at each stage.

Uncertainty Identification

Suppose that in our original example, Bob had asked Cindy
“Can you grab the medkit?” During the stage of uncertainty
identification, Cindy must determine if she is unsure how
to interpret any part of this utterance. This may be uncer-
tainty as to what entities are being referenced, e.g., which
medkit Bob is referring to, or uncertainty as to the speaker’s
intentions, e.g., whether Bob wishes Cindy to bring him the

medkit or whether he meant something else by the utterance.
Furthermore, this uncertainty may take different forms (c.f.
Stirling (2010)): the utterance may be ambiguous (e.g., if
Cindy knows of multiple medkits) or the utterance may re-
veal ignorance (e.g., if Cindy knows of no medkits, or is
unsure whether a particular object qualifies as a “medkit”).

Decision to Communicate

If a robot has identified a point in need of clarification, it
must decide whether it would be appropriate to actually ask
for clarification. This decision will depend on a variety of
factors: Is it permissible for the robot to ask for clarification?
Is the robot’s interlocutor likely to be able to provide clari-
fication? Would obtaining clarification really be the highest
utility action at the current time (compared to, e.g., explo-
ration)? For example, if Cindy determines there are actually
two medkits that Bob could be referring to, but while coming
to this decision Bob has already engaged another teammate
in conversation, it may be necessary for Cindy to wait until
this conversation finishes before asking for clarification.

Utterance Choice

Once a robot has decided to request clarification on a par-
ticular point, it must determine what utterance form to use
to communicate its request: depending on the relationship
between the robot and its interlocutor, and the obligations
of each party, certain utterance forms may be more or less
appropriate (Brown 1987). For example, if Cindy if Bob’s
subordinate, it may be more appropriate to use an indirect
request such as “Which medkit would you like?”, whereas
if Cindy is Bob’s superior, it may be more appropriate to use
a direct request such as “Tell me which medkit you would
like.”

Surface Realization

Once a robot chooses an utterance form to use, it must de-
termine what words to use (Garoufi and Koller 2014). For
example, if Cindy decides to use an utterance of the form
“Would you like [medkit1]”, she must choose how to actu-
ally describe medkit1, e.g., by referring to it as “the medkit
in the kitchen” or perhaps as “the white medkit”. If one med-
kit is in front of Cindy, it may be more appropriate to point
to it and use a deictic expression such as “this medkit.”

Speech Synthesis

Finally, once a robot determines what word to use, it must
synthesize an appropriate sound pattern.

A DS-Pragmatic Approach

We have implemented the first three stages of the pro-
posed framework as components of the DIARC architecture
(Scheutz et al. 2007). In this section, we describe this imple-
mentation, and discuss how the fourth and fifth stages could
be handled in future work.
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Notation1

M A robot’s world model of entities {m0 . . .mn}.
Λ A set of logical formulae λ0 . . . λn, denoting (lit-

eral, direct) semantic connotation of an incoming
utterance.

V A set of free variables found in Λ.
Γ A set of bindings from variables in V to entities in
M , denoting the semantic denotation of an incom-
ing utterance.

Φ A satisfaction variable which is True iff all formu-
lae in Λ hold when bound using Γ.

Uncertainty Identification

Uncertainty may be identified at many stages along the nat-
ural language (NL) pipeline. For example, if a robot de-
termines it is unsure what words were uttered by an in-
terlocutor, it may immediately ask for clarification (Stoy-
anchev, Liu, and Hirschberg 2013). In this paper, however,
we are specifically interested in referential uncertainty and
ambiguity. In our implementation, the Resolver Component
uses the GH-POWER algorithm in order to resolve referring
expressions (Williams et al. 2016). As described in previ-
ous work, this algorithm uses a Givenness-Hierarchy (GH)
theoretic approach (Gundel, Hedberg, and Zacharski 1993)
to search models of cognitive structures (e.g., the Focus of
Attention, Short-Term Memory, and Long-Term Memory)
for the referents of referring expressions, including deictic
and anaphoric expressions. Furthermore, the GH-POWER
algorithm hypothesizes new representations for previously
unknown referents when appropriate. Long-Term Mem-
ory queries are effected using the DIST-POWER algorithm,
which allows us to distribute long term memories across het-
erogeneous knowledge bases stored on different machines
(Williams and Scheutz 2016).

In addition to potentially hypothesizing new entities,
POWER’s ultimate result is the distribution P (Φ | Γ,Λ).
That is, the probability of successful satisfaction conditioned
on binding hypotheses

{Γ0 = {γ00 . . . γ0n} . . . ,Γm = {γm0 . . . γmn}}
and semantic parse hypotheses

{Λ0 = {λ00 . . . λ0n} . . . ,Λm = {λm0 . . . λmn}}.
Note that the parser we use only currently returns a single

best parse; we use this notation to allow for the future possi-
bility of multiple semantic interpretations.

Next, consider the example utterance “Can you grab the
medkit?”. This may be parsed by Cindy into something like
QuestionY N(b, s, can(s, grab(s,X))) with additional se-
mantic content Λi = {medkit(X)}, where b=”bob” and
s=”self” (we will use these abbreviations throughout this
section). If the robot is 70% sure that the object with identi-
fier m5 is a medkit, reference resolution will produce:

P (Φ = True |Γ = {X → m5},Λ = {medkit(X)}) = 0.7

1c.f. Tellex et al. (2011)

The set of sufficiently probable referential hypotheses is
then used to create a set of bound utterances with supple-
mental semantics (BUSSes) Ψ = {ψ0 . . . ψn} where each
ψi is created by binding the free variables of the parsed utter-
ance form (e.g., QuestionY N(b, s, can(s, grab(s,X))))
and supplemental semantics (e.g., {medkit(X)}) with vari-
able bindings γi (e.g., {X → m5}), producing something
like:

{QuestionY N(b, s, can(s, grab(s,m5))) ∧medkit(m5)}.
While it would be possible to create a distribution over this

set, where P (ψi) = P (Γi,Λi | Φi) using, e.g., Bayes’ Rule,
this would only be appropriate if the next component in the
NL pipeline also used a Bayesian approach. In fact, the next
component (i.e., the pragmatic reasoning component) actu-
ally uses a Dempster-Shafer theoretic approach (Williams et
al. 2015).

Dempster-Shafer (DS) Theory is a generalization of the
Bayesian uncertainty framework that allows for elegant rea-
soning about uncertainty and ignorance even when distribu-
tional information is not available (Shafer 1976). DS Theory
is an attractive option for many robotics applications, where
agents may need to learn about new entities and concepts
from a small number of examples drawn from an unknown
distribution.

Of course, not all of a robot architecture’s components
are likely to be DS-theoretic. For some components, dis-
tributional information may be readily available, encourag-
ing the use of a Bayesian approach. To allow each archi-
tectural component to use the knowledge representation and
uncertainty management approaches most conducive to its
own operation, we must thus develop mechanisms that al-
low those components to integrate seamlessly. In the rest of
this section, we will (1) briefly provide some preliminaries
of DS Theory, (2) describe how it is used in our architecture,
and (3) describe the technique we use for interoperability be-
tween our DS-theoretic pragmatic reasoning component and
our probabilistic reference resolution component.

We can use Dempster-Shafer Theory to represent the un-
certainty of an event E using the interval [Bl(E), P l(E)].
Bl(E) and Pl(E) are the belief and plausibility of E:
lower and upper bounds on P (E) such that 0 ≤ Bl(E) ≤
P (E) ≤ Pl(E) ≤ 1. The width of this uncertainty interval
(Pl(E)−Bl(E)) indicates the degree of ignorance one has
regarding event E.

We thus take the following DS-theoretic approach. Let
Θ = {θ0, . . . , θn} be a Frame of Discernment (FoD) where
each θi is a mutually exclusive singleton hypotheses de-
scribed by ψi. Let m(·) : 2Θ → [0, 1] be a basic belief
assignment which assigns to each θi a mass:

1

Z
P (Φi | Γi,Λi), (1)

where

Z =

|Θ|∑

j=0

P (Φj | Γj ,Λj).

As mass is only assigned to singleton sets, Bl(θi) =
Pl(θi) = m(θi). The confidence interval associated with
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each hypothesis according to this mass assignment is iden-
tical to [Bl(Γi,Λi | Φi), P l(Γi,Λi | Φi)] as calculated
using Heendeni et al.’s (2016) DS-theoretic equivalent to
Bayes’ Rule (Eq. 2), assuming a uniform prior distribution
Bl(Γ,Λ) = Pl(Γ,Λ) = 1

|Θ| .

Bl(A|B) ≥ Bl(B|A)Bl(A)

Bl(B|A)Bl(A) + Pl(B|Ā)Pl(Ā)
;

Pl(A|B) ≤ Pl(B|A)Pl(A)

Pl(B|A)Pl(A) +Bl(B|Ā)Bl(Ā)
.

(2)

Before we move on, it is important to note that hypothe-
ses with probabilities below a given threshold are pruned
out during the resolution process, as described in our previ-
ous work (e.g., Williams et al. (2016)). This has the effect
of concentrating extra probability mass in the remaining hy-
potheses, leading, respectively, to higher beliefs and plausi-
bilities.

The result of the above calculations is a Frame of Discern-
ment whose singleton hypotheses can be described by the
logical conjunctions (i.e., BUSSes) ψ0 . . . ψn. However, the
next component in the DIARC NL Pipeline (i.e., the prag-
matic reasoning component) only uses the utterance form,
and not the supplemental semantics, and there may be mul-
tiple hypotheses in Θ that have the same utterance form but
different supplemental semantics.

As an example, if Bob had said “Grab the medkit that is
near the book”, and one candidate medkit (o1) is actually
near two books (o2 and o3), we could have two hypothe-
ses which can be described by BUSSes that have the same
utterance form (e.g. Instruct(b, s, grab(s, o1))) but differ-
ent supplemental semantics (e.g., {medkit(o1)∧book(o2)∧
near(o1, o2)} vs {medkit(o1)∧ book(o3)∧near(o1, o3)}.
We thus cluster these hypotheses into sets C0, . . . , Cn such
that all hypotheses associated with each set are described by
BUSSes that have the same utterance form. As an example,
if we have three singleton hypotheses {θ1, θ2 θ3}, and ψ1

and ψ2 have the same utterance form, C = {{θ1, θ2}, {θ3}}.
We can now split our Frame of Discernment Θ into a set

of |C | “binary” FoDs, one for each cluster Ci. Each binary
FoD itself has two hypotheses: (1) that the utterance form
describing all hypotheses in cluster Ci does represent what
was communicated, and (2) that it does not. This splitting
has no theoretical ramifications, but facilitates easier inte-
gration with our pragmatic inference component. Because
each cluster is mutually exclusive from all other clusters,
each binary FoD can be represented entirely by the bound
utterance structure:

〈utterance(ψi), Bl({Ci0 . . . Cin}), P l({Ci0 . . . Cin})〉.
Suppose Θ = {θ1, θ2, θ3} and Ψ = {ψ1, ψ2, ψ3}, where

ψ1 = (QuestionY N(b, s, can(s, grab(s, o1)))

∧medkit(o1) ∧ book(o2) ∧ near(o1, o2)),

ψ2 = (QuestionY N(b, s, can(s, grab(s, o1)))

∧medkit(o1) ∧ book(o3) ∧ near(o1, o3)),

ψ3 = (QuestionY N(b, s, can(s, grab(s, o4)))

∧medkit(o4) ∧ book(o2) ∧ near(o4, o2)),

and assume the example basic belief assignment shown in
the following table:

Hypothesis Mass Bl Pl
∅ 0.0 0.0 0.0
{θ1} 0.2 0.2 0.2
{θ2} 0.3 0.3 0.3
{θ3} 0.5 0.5 0.5
{θ1, θ2} 0.0 0.5 0.5
{θ2, θ3} 0.0 0.8 0.8
{θ3, θ1} 0.0 0.7 0.7
{θ1, θ2, θ3} 1.0 1.0 1.0

Because ψ1 and ψ2 have the same utterance form, C =
{{θ1, θ2}, {θ3}}. From this, the following set of bound ut-
terance structures will be created:

{〈QuestionY N(b, s, can(s, grab(s, o1))),

Bl({θ1, θ2}), P l({θ1, θ2})〉,
〈QuestionY N(b, s, can(s, grab(s, o4))),

Bl({θ3}), P l({θ3})〉} =
{〈QuestionY N(b, s, can(s, grab(s, o1))), 0.5, 0.5〉
〈QuestionY N(b, s, can(s, grab(s, o4))), 0.5, 0.5〉}

The set of bound utterance structures is sent to DIARC’s
DS-theoretic pragmatic reasoning component, which uses
contextual knowledge to determine the intentions underly-
ing these utterances (Williams et al. 2015). The pragmatic
reasoning component produces a set of intentional struc-
tures 〈I, Bl(I), P l(I)〉. If the difference between Bl(I) and
Pl(I) is sufficiently large, or if Pl(I)−Bl(I)

2 is sufficiently
close to 0.5, (assessed using Núñez et al.’s uncertainty mea-
sure (2013), shown in Eq. 3), intention I is deemed “uncer-
tain” and in need of clarification.

1+
β

K
log2

β

K
+
1− α

K
log2

1− α

K
where K = 1 + β − α.

(3)

If there are multiple intentions in need of clarification, the
agent formulates an intention-to-know (itk) which intention
is correct. This itk is denoted itk(s, or(i0, i1, . . . , in)). We
currently only handle situations with four or fewer possible
interpretations. In future work, we plan to check for cases
with five or more interpretations before they are sent through
pragmatic reasoning; in such cases, a more general clarifica-
tion request should be immediately generated.

Previously this itk only captured intentional uncertainty
(e.g., when someone says “The commander needs a medi-
cal kit”, it’s possible they intend for the speaker to retrieve
a medical kit for the commander, but it’s also possible they
intend for the speaker to inform them of where to find a med-
ical kit). Because the pragmatic inference process now re-
ceives a set of candidate utterance forms, each of which may
have different argument bindings, this process thus acknowl-
edges ambiguity, and thus captures referential uncertainty as
well.

Before we move on, we would like to point out that that
because DIARC’s reference resolution component handles
open worlds, instances in which interlocutors refer to previ-
ously unknown entities do not automatically generate clari-
fication requests. For example, if the robot is told “Go to the
room at the end of the hall” and did not previously know of
a room at the end of the hall, it will not ask for clarification,
but will rather hypothesize a new location, and carry on.
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We do not regard such situations as referentially ambigu-
ous. Here, the robot knows what entity is being referred to:
a previously unknown room at the end of the hall. It may,
of course, be valuable for the robot to ask for more infor-
mation about this location, but we believe such a decision is
not appropriate at the stage of processing we discuss in this
paper.

Decision to Communicate

Currently, any such formulated itk is asserted into the robot’s
knowledge base, automatically triggering the decision to
communicate this intention. Once it is acceptable for the
robot to accept the conversational turn (as decided by a turn-
taking algorithm), the robot will find this itk in its knowledge
base and automatically decide to communicate it, passing
the itk to the pragmatic generation component for process-
ing.

Utterance Choice

During this stage, a robot must determine a contextually ap-
propriate way to formulate its intention as a set of logical
formulae. In DIARC, this is accomplished by the pragmatic
generation component, which uses a set of DS-theoretic
pragmatic rules. Each such rule maps an utterance to an in-
tention under a particular context (these rules are also used
for pragmatic understanding) (Williams et al. 2015). Us-
ing DS-theoretic logical operators, the pragmatic genera-
tion component is able to determine a set of candidate utter-
ance forms, each of which is then forward-simulated through
pragmatic inference in order to ensure that the agent does not
accidentally communicate anything it does not actually be-
lieve to be true as a side effect of communicating its primary
illocutionary point. The best candidate utterance is then sent
to NLG for surface realization.

Because typical NLG systems do not need to account for
social and dialogue context, this stage is not typically in-
cluded. In contrast, NLG frameworks typically include a
document structuring (c.f. (Reiter, Dale, and Feng 2000))
stage in which the agent determines the order in which to
convey multiple utterances. Because situated clarification
request generation typically only involves a single utterance,
we do not currently handle this step. However, this will be
an important topic for future work, since a robot may occa-
sionally need to preface a clarification request by stating, for
example, what aspects of an utterance it did understand.

Surface Realization

This stage subsumes facets of the lexical choice, referring
expression generation, and realisation stages of Dale and Re-
iter’s framework. While NLG capabilities have been previ-
ously integrated into the DIARC architecture, and even been
used for clarification request generation (e.g., (Williams et
al. 2015)), we have not yet implemented the Referring Ex-
pression Generation mechanisms necessary for robust sur-
face realization. That is, while DIARC’s NLG component
can craft surface realizations for utterance forms such as
Statement(s, b, would like(s,medkit)) (that is, a state-
ment from an agent to bob that the agent would like a

Figure 2: Architecture Diagram. Knowledge base compo-
nents are depicted in blue; linguistic components are de-
picted in green; simulation components are depicted in pur-
ple; the action manager is depicted in yellow. The main con-
tribution of this paper is the integration of the POWER and
DIALOGUE components.

medkit), it does not yet handle utterance forms such as
Statement(s, b, need(s, obj34)), where obj34 may indeed
be a medkit, but it is up to the agent to decide how best to
describe it. We plan to integrate such mechanisms in future
work.

Speech Synthesis

In DIARC, speech synthesis is performed using the open
source MaryTTS (Schröder and Trouvain 2003) library.

Demonstration

To demonstrate the operation of the implemented framework
stages, we present a proof-of-concept interaction that occurs
in a simulated environment.

Architecture Configuration

For this interaction, we used one configuration of the DI-
ARC Architecture. In addition to components responsi-
ble for the simulation of a Pioneer robot within an office
environment, our configuration used the following compo-
nents (see Fig. 2): ASR (which performs simulated speech
recognition), NLP (which uses the C&C parser within a GH-
theoretic framework), POWER (which performs reference
resolution), AGENTS,SPEX and OBJECTS (POWER Consul-
tants (c.f. (Williams and Scheutz 2015)) providing informa-
tion about people, places, and things), DIALOGUE (which,
performs dialogue management, and includes a pragmatic
reasoning component as a submodule), BELIEF (which al-
lows DIALOGUE to assess its current context), and ACTION
(which performs goal and action management).

The interaction begins with the speaker saying to the robot
“I would like the medkit.” ASR sends this to NLP, which
parses the utterance into a dependency tree, from which it
extracts root semantic content would(X1, like(X1, X2)),
with utterance type Statement, additional semantic content
{speaker(X1) ∧ medkit(X2)}, and presumed cognitive
statuses {X1 → definite,X2 → definite}. Using this
information, POWER searches for the referents to bind to X1
and X2; for X1, POWER finds a single probable candidate:
agents1, with probability 1.0; for X2, two candidates are
found: objects1, with probability of satisfaction 0.82, and
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objects2, with probability of satisfaction 0.92. These bind-
ings are then used to create the following bound utterances2:

{Statement(bob, self, would(bob, like(bob, objects1))),

Statement(bob, self, would(bob, like(bob, objects2)))}
with corresponding probabilities3 0.82 and 0.92, respec-

tively. These are normalized (see Eq. 1) and used to create
DS-theoretic bound utterance structures, which are passed
to DIALOGUE:

{〈Statement(bob, self, would(bob, like(bob, objects1))),

0.471, 0.471〉,
〈Statement(bob, self, would(bob, like(bob, objects2))),

0.529, 0.529〉}
The pragmatic reasoning component possess the rule:

〈Statement(X,Y,would(Z, like(Z,W ))) ⇒
goal(Y, bring(Y,W,Z)), 0.9, 0.99〉, (4)

indicating that the robot is between 90 and 99% confident
in the rule; because the antecedent of this rule matches the
utterance form of each bound utterance structure, uncertain
Modus Ponens is applied in both cases, producing the set of
intentional structures:

{〈goal(self, bring(self, objects1, bob)), 0.424, 0.576〉,
〈goal(self, bring(self, objects2, bob)), 0.476, 0.524〉}

Note that at this point, belief no longer equals plausibility:
while the robot may not have encoded any ignorance with re-
spect to what utterance was heard, ignorance encoded with
respect to the context and rules the robot uses for pragmatic
inference are reflected by ignorance now encoded with re-
spect to the rules’ consequents, thus painting a better picture
of how much the robot truly knows about its interlocutor’s
intentions.

Nunez’ uncertainty rule (see Eq. 3) determines that both
of these intentions are highly uncertain. DIALOGUE thus de-
termines its own intention to know which is correct, encoded
as the structure:

〈itk(self, or(goal(self, bring(self, objects1, bob)),
goal(self, bring(self, objects2, bob)))), 1.0, 1.0〉

To decide how to communicate this intention, the bound
utterance semantic structure is passed through the pragmatic
reasoning component in reverse (Williams et al. 2015), using
a rule of the form:

〈QuestionWH(X,Y, or(Z,W )) ⇒
itk(X, or(Z,W )), 0.95, 0.95〉, (5)

Our approach allows recursive generation, allowing Eq. 5
to be chained with Eq. 4 to produce:
QuestionWH(self, bob, or(would(bob, like(bob, objects1)),

would(bob, like(bob, objects2)))).

At this point, we would ideally send this utterance form
to our NLG component for generation of referring expres-
sions for “bob”, “object1” and “object2”. As previously
discussed, this will be a point for future work.

2Here, agent1 is changed to the name of that agent for the sake
of dialogue processing.

3All beliefs and plausibilities in this section are rounded.

Conclusion

We have presented an HRI-oriented framework for clarifica-
tion request generation, and shown how the first three stages
of this framework as implemented in the DIARC architec-
ture can identify and handle both pragmatic and referential
ambiguity, both theoretically and in practice on a simulated
robot. While this demonstration serves as proof-of-concept
of the capabilities afforded by this integration effort, a full
evaluation will clearly be necessary. Once all stages of the
proposed framework have been implemented, we plan to run
an extrinsic evaluation to determine how the extent to which
the proposed algorithm benefits human-robot teaming in re-
alistic HRI scenarios.

While the primary contributions of this paper is the find-
ing that a pragmatic reasoning framework can track and ad-
dress referential ambiguity, the work presented in this paper
is also novel with respect to its integration of DS-theoretic
and Bayesian theoretic architectural components. Because
components of a robot architecture may often use different
uncertainty frameworks, it is important for us to develop the-
oretically justified mechanisms for integrating such compo-
nents. The presented approach provides one such technique
for integration; in future work, we would like to examine
others, as well as techniques to allow information to appro-
priately flow in the other direction (i.e., from DS-theoretic
to Bayesian components).

There are several other extensions we would like to make
in the near future. First, we must extend our approach in or-
der to allow for more general questions to be asked. While
prior research has shown that people prefer robots to enu-
merate options, there may be cases when it is necessary to
ask a more general question, such as when there are a very
large number of possible candidates for resolution. Future
work must also involve integration of the REG capabilities
required for the fourth stage of the proposed NLG frame-
work. This will be the immediate focus of future work.
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