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Abstract

Data integrity is a property which a world state interpreted
with a world model is consistent with the real operating en-
vironment. Even a formally verified safety claim of an au-
tonomous system is prone to a malfunction caused by loss
of data integrity. From a first-person viewpoint in a con-
gested environment, some components of measurable part of
the world state may become transiently deficient or unavail-
able because of the limited capability of sensor devices. If
the system could get into a situation where the world state
becomes suddenly unobservable, existing estimation methods
may get unstable. These methods can hardly detect the loss of
data integrity and produce an incorrect estimate without any
notice. Our insight is that we can merge the original concept
of observer theory with that of automated reasoning. Firstly,
we propose a new way of unifying them into a problem of
checking satisfiability of a formula that consists of predicates
regarding the world model and decision variables regarding
unmeasurable part of the world state. We can detect a loss
of data integrity by checking if the problem is unsatisfiable.
Secondly, we replace the idea of observability in control the-
ory with identifiability with respect to a measure of tolerance
and a world model. We show a procedure of estimating the
world state with a bounded uncertainty specified by the mea-
sure of tolerance. Third, we show that a problem of sensor
fusion, a problem of reasoning a world state of discrete and
enumerated type, and a decision problem under uncertainty
in the world state are formulated as an identifiability problem.
The proposal presents a constructive basis for supporting the
degree of confidence in the estimated world state.

Introduction
A world state consists of observable and unobservable part.
Observable part of the world state consists of measurable
and directly unmeasurable part. A world model consists of
constraints on the world state. Data integrity is a property
which the world state interpreted using the world model is
consistent with the real operating environment. Without a
guarantee of data integrity, a safety claim of an autonomous
system that operates in an open and dynamic environment
may become invalid. The system may make a false decision
on the risk of hazard and may trouble determining a safe
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motion in response to the decision. We judge that presuming
data integrity is unrealistic because of five basic issues.

First, measurable part of the world state may be corrupt or
transiently unavailable from the system’s first-person view-
point because of physical limits of sensor devices. The re-
liability of a machine vision system using a stereo camera
would be impaired by poor visibility and a limited line-of-
sight. GPS signal would be blocked in a shielded area.

Second, some components of the world state are directly
unmeasurable because it lacks a valid physical mechanism.
We overcome this problem by developing a state observation
system that uses a world model and produces an estimate of
the world state. Such unmeasurable part of the world state
could be produced by, e.g., the machine vision system that
uses an artificially designed estimator called a classifier. The
correctness of the classifier is prone to bias in the sample
data set and is affected by the quality of the data supplied
to the classifier. It also depends on a way of handling the
impact of voids in the sample data set on the accuracy of the
estimate (Szegedy 2013). We hence judge that a compre-
hensive framework for robustly improving the quality of the
classifier has not been established yet.

Third, assuming that all components of the world state are
always observable is unrealistic. This is an infrequently dis-
cussed concern that it may result from that part of the world
state become transiently unobservable or that the world
model is flawed or in a transitory change. In control the-
ory, it means that we cannot find any impact of a change in
unmeasurable part of the world state on a change in mea-
surable part. In automated reasoning theory, it means that
we cannot determine a unique estimate of the world state.
In principle, we cannot reconstruct unobservable part of the
world state with a bound on its precision, regardless of high
precision of measurable part of the world states. Because the
problem of inferring the unobservable part of the world state
is under-constrained. Unfortunately, the autonomous system
needs to maintain operation in such a situation for validating
a statistical requirement on the accident frequency. We are
not sure whether it is possible to define the safety claim by
using only observable part of the world state. Thus, one pos-
sible direction is to find a good world model that consists of
reliable, empirically and statistically supported constraints
on the world state and the components of the world state that
constitute the safety claim keep observable even if either one
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of measurable part of the world state could be unavailable.

Fourth, it is unlikely that the quality of unmeasurable part
of the world state could be improved by using redundant
measurement devices and an information fusion method.
Aside from the inherent inaccuracy of the measurement de-
vices, the estimation method needs to reconstruct the world
state by using a single imperfect world model for interpre-
tation of the raw data from the redundant devices. Yet, the
statistical trend of the measurement error can hardly be sta-
tionary and the world model used for removing the error may
be inaccurate or change over time or from one location to
another. Thus, redundancy does not help avoid deviations in
the estimate of the world state from the actual state and there
are no means to detect such deviations.

Fifth, few studies exist on decision and control algorithms
for the autonomous systems that can tolerate a partially de-
ficient world state. Even a formally verified safety claim
of a decision and control logic of an autonomous system is
prone to the mismatch between the deficient world state and
the real environment. This is a single point of failure.

The real environment is inherently uncertain at the design
stage. As we can hardly predict which issue could result in
loss of data integrity, this poses a challenge to certification
(Rushby 2008). The autonomous system should be capable
of detecting the loss of data integrity at runtime, and rea-
soning which components of the world state are unreliable.
They are essential for adaptively changing the world model
without demanding an unrealistic degree of precision.

The idea of inferring unknown part of the world state us-
ing the world model together with known part of the world
state is called a state observer in control theory and auto-
mated reasoning in logic theory. Our insight is that both
techniques can be unified in a problem of checking satisfi-
ability of a formula that consists of the world state and the
world model that encodes imperfect knowledge about the
environment. Given measurable part of the world state, we
check if there exists a satisfiable assignment of the unmea-
surable part of the world states. Loss of data integrity is de-
tected if the problem is unsatisfiable. We can examine if the
world model is inconsistent with the real environment or the
measurable part of the world state is deficient. Such a for-
mulation removes the need for a tedious convergence analy-
sis of the state observer and enables a feature of adaptively
updating the world model without any re-design of the state
observer. The formulation enables a Boolean structure to be
embedded in the original observer theory and also opens a
new way of encoding imperfect knowledge about the world.

As an alternative to the notion of observability, we pro-
pose a notion of identifiability by using a measure of toler-
ance and judge the degree of confidence in the estimate. If
the unmeasurable part of the world state is identifiable even
when part of the world state is deficient or unavailable, such
a capability is a solution to the problem of making a deci-
sion under limited observability. We can monitor the valid-
ity of the safety claim subject to limited observability of the
world states by adding a predicate of the safety claim and by
checking if Boolean value of the predicate is identifiable.

Formulation of State Observation Problem
Conventional State Observer
In control theory, we split the world model into a process
model (1) and an observation model (2).

xt+1 = f(xt,ut+1) + ēt (1)

yt = g(xt) + w̄t (2)
The world state at the time t is {xt,ut,yt} where xt ∈

Rn is a state vector, an input vector ut ∈ Rm and an output
vector yt ∈ Rr. ut and yt belong to measurable part of
the world state, while xt is unmeasurable part of the world
state. We denote statistical modeling errors in (1) and (2) as
ēt ∈ Rn and w̄t ∈ Rr, respectively. We assume that they
are unmeasurable, additive, zero mean, uncorrelated Gaus-
sian processes with an error covariance matrix Qt ∈ Rn×n

and Rt ∈ Rr×r, respectively. We denote a temporal se-
ries of the world states as XT := {xt|0 ≤ t ≤ T},
UT := {ut|0 ≤ t ≤ T}, and Y T := {yt|0 ≤ t ≤ T}. We
assume that f : Rn+m → Rn and g : Rn → Rr are Lips-
chitz continuous and thus {XT ,UT ,Y T } is uniquely deter-
mined from the initial state {X0,U0,Y 0}. A state observer
produces an estimate x̂T ∈ Rn of the state vector xT by us-
ing {X̂T−1,UT−1,Y T−1} where X̂T := {x̂t|0 ≤ t ≤ T}
is an estimate of XT . A conventional state observer consists
of an update rule (3), an observer gain h : Rr → Rn, and a
predictor ŷt ∈ Rr.

x̂t+1 = f(x̂t,ut+1) +h(yt+1 − ŷt+1)∧ ŷt = g(x̂t) (3)

We can test the quality of the prediction ŷt by computing
an estimation error et ≡ xt− x̂t and wy

t := yt− ŷt. Given
{UT ,Y T }, we design the observer gain h(:) such that a
system of equations (3) (4) is stable and lim

t→∞
|et| = 0.

et+1 = f(et + x̂t,ut+1)− f(x̂t,ut+1)− h(wy
t+1) (4)

If the world model (1) (2) is a linear time invariant (LTI)
system, where ∇xf(x,u) := A ∈ Rn×n, ∇uf(x,u) :=
B ∈ Rn×m, and ∇xg(x) := C ∈ Rr×n, then we must
assume that [A,C] is observable. The combined system (4)
gets convergent by selecting a stable eigenstructure. The
condition of observability is required to guarantee that there
is an observer gain h(:) such that lim

t→∞
|et| = 0 and a stable

estimate X̂T is determined. The Extended Kalman filter
(EKF) uses a state observer (5) and a rule (6) for updating
two matrix P t|t,P t+1|t ∈ Rn×n.

h(wy
t+1) := W t+1w

y
t+1 (5)

P t+1|t ≡ ∇f(x̂t,ut+1)P t|t∇f(x̂t,ut+1)T +Qt+1

St+1 ≡ ∇g(x̂t+1)P t+1|t∇g(x̂t+1)T +Rt

W t+1 ≡ P t+1|t∇g(x̂t+1)TS
−1
t+1

P t+1|t+1 ≡ P t+1|t −W t+1St+1W
T
t+1

(6)
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The state observer using (5) gives the estimate X̂T that be-
comes an optimal solution to a quadratic error (7).

min
X̂T

T−1∑

t=0

eTt Qtet +wyT
t Rtw

y
t (7)

When yt quickly changes but convergence rate of the state
observer is slow, a large transient deviation of the estima-
tion error wy

t , et from zero is inevitable by design. If either
(1) or (2) is non-linear and the EKF cannot ensure mono-
tonic convergence, the large deviation becomes a practical
issue. The convergence analysis of non-linear systems when
either one of f , g and h in (4) is non-linear and synthesiz-
ing the observer gain have been topics of active research for
decades. Backstepping method (Smyshlyaev 2005) presents
a constructive way of building a stable Lyapunov function,
yet only when (1) satisfies an assumption of passivity.

State Observation by Solving Satisfiability Problem
An analytical convergence analysis of (4) is difficult in
general. Instead, we will check numerically if the sys-
tem of simultaneous equations (8) is satisfiable, given
{Y T ,UT }. The problem is numerically solved using a ded-
icated reformulation techniques (Nishi 2016) and the nonlin-
ear programming (NLP) solvers IPOPT (Wachter 2006) and
ANTIGONE (Misener 2014), which guarantee global con-
vergence from an arbitrary initial search point.

T−1∧
t=0

x̂t+1 − f(x̂t,ut+1) + vx
t = 0∧

yt − g(x̂t) + vy
t = 0∧

∑T−1
t=0

[
vxT
t Qtv

x
t + vyT

t Rtv
y
t

]
= s∧

s ≤ ϵ0 ∧
∑T−1

t=0 vx
t = 0 ∧

∑T−1
t=0 vy

t = 0

(8)

Unmeasurable residual vectors vx
t ∈ Rn,vy

t ∈ Rr are
comparable with et and wy

t , respectively. Contrary to et
which contains the both of an intrinsic modeling error ēt
and a transient overshoot h(wy

t+1) in (4) artificially caused
by design, we can remove the latter one from vx,y

t . We reuse
the same error covariance matrix Qt,Rt. This is one of the
assumptions placed on the world model. We compute X̂T

and {vx,y
t |0 ≤ t < T} such that the quadratic residual error

s in (8) is not greater than a given error tolerance ϵ0 > 0.
We can optimize s by iteratively lowering ϵ0, in return for
longer computation time. As long as the observability con-
dition holds, We can reconstruct a stable X̂T in a conven-
tional sense that XT resides near X̂T . Indeed, if the world
model (1) (2) is an LTI system, the condition of observability
corresponds to that the matrix on LHS of (9) is invertible.

⎡

⎢⎢⎢⎣

−A I 0 .
C 0 0 .
0 −A I .
0 C 0 .
. . . .

⎤

⎥⎥⎥⎦

⎡

⎢⎣

x̂0

x̂1

...
x̂T

⎤

⎥⎦ =

⎡

⎢⎢⎢⎣

−vx
0 +Bu1

vy
0 + y0

−vx
1 +Bu2

...
vy
T−1 + yT−1

⎤

⎥⎥⎥⎦

(9)
Here, we point out that the condition of observability can

be transiently violated, only if part of Y T gets deficient or

unavailable. If yj,k is unavailable and a correspondent com-
ponent gj(xk) becomes invalid, the conventional observer
may become unstable and produce an unreliable X̂T . A
benefit of formula (8) is that it enables us to detect situations
where the world model suddenly changes in a way that the
condition of observability is violated and the observer be-
comes unstable unless a detectability condition regarding the
world model holds. It results from that the formula (8) in the
situations is under-constrained, and there are several satisfi-
able solutions that cannot be bounded with a small tolerance.
Since formula (8) without s < ϵ0 is guaranteed to be satis-
fiable, satisfiability of (8) depends on that of the quadratic
residual error s. The residual error suggests a degree of con-
fidence in the data integrity. If the formula (8) is unsatisfi-
able, then we can detect the loss of data integrity and report
that we cannot reconstruct a stable integrity-preserved esti-
mate X̂T . On the other hand, the conventional observer may
provide a bad estimate X̂T without any noticeable warning
on the loss of data integrity, even when the quadratic error
(7) is optimal but large.

Another benefit of the formula (8) is that it allows us to
skip the convergence analysis of (4). Instead, the NLP solver
internally reproduces the recursive steps (5)(6) of computing
a series of search iterates that converge to an optimal solu-
tion of (7). The transient deviation h(wy

t+1) due to the slow
convergence rate of (4) is diminished within the NLP solver
and is not added to the estimation error of X̂T .

Yet, we can infer at most that the loss of data integrity
results from that the formula (8) is over-constrained. It can
result from either that a transient measurement error in Y T ,
that the assumption on the modeling uncertainty ēt, w̄t in
the presumed world model (1) and (2) from the actual en-
vironment is violated, or that the assumption that the world
state is observable is violated. We need more knowledge to
identify which factor resulted in the loss of data integrity.
While the first two factors are inseparable, the third one is
not. We will define a notion of identifiability of the world
state with respect to a given measure of tolerance.

Checking Identifiability
The idea of reformulating a state observation problem as a
satisfiability problem of (8) leads to a general way toward
describing the world model with imperfect knowledge. As
mentioned in regard to (9), the condition of observability is
necessary for reconstructing a stable integrity-preserved es-
timate. Yet, we can hardly guarantee that the world state is
always fully observable. We need to check the world model
and to check if the condition of observability still holds, even
if part of the world state can be transiently unavailable and
we can hardly presume perfect knowledge about the world
model. Instead of hoping for a guarantee of observability,
we propose checking identifiability subject to a measure of
tolerance. Let {X,Y } be directly unmeasurable part and
measurable part of the world state, respectively. Y can con-
tain a component of an action. Let M(X,Y ) be a formula
of the world model that consists of a collection of constraints
on the world state. The pair of the process model (1) and the
observation model (2) corresponds to this world model. Let
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Figure 1: Computing integrity-preserved estimate.

Table 1: Classification of error modes.

the predicate δ(X, X̄) be a measure of tolerance on a devi-
ation between X and a reference state X̄ .

Definition: X is identifiable with respect to the measure of
tolerance δ(X, X̄) and given Y , if and only if there exists
a satisfiable solution X = XS to M(X,Y ) and also a
formula M(X,Y ) ∧ ¬δ(X,XS) is unsatisfiable.

Figure 1 shows the procedure of computing an integrity-
preserved estimate X̂ , that of detecting a loss of data in-
tegrity, or that of detecting a violation of the assumption that
the world state is observable. The constraint on the quadratic
error regarding {vx

t ,v
y
t } in (8) corresponds to the measure

of tolerance. Even part of Y is transiently unavailable, we
can reconstruct part of X unless the world model subject
to Y is under-constrained. It is a notable benefit of remov-
ing the convergence analysis of the state observer. In case
the world state is not identifiable and thus unreliable, then
we can either relax the measure of tolerance and reiterate
the procedure, or instruct the subsequent decision system to
set a quantified predicate which encodes uncertainty in the
unidentifiable world state. Table 1 shows how the procedure
can correctly detect a loss of data integrity.

There are four cases of interest in the tables. The first
case is on rows 2, 4, 5 and 7, wherein either one of the world
model or measurable part of the world state Y is incorrect.
If we cannot compute a satisfiable solution to M(X,Y ),
we detect a loss of data integrity. The second case is on
rows 3 and 4, wherein the world model is correct but part
of the world state X is not observable. Here, although we
can find a satisfiable solution X = XS to M(X,Y ), there
may be another one X = X̃S such that δ(X̃S ,XS) is false;
thus we conclude that the estimate of X is not identifiable.
The third case is on row 2 and 7, wherein the world model

Figure 2: Three results of the estimation.

is imperfect or the measurement Y is noisy but we try to
raise the degree of confidence on the estimate by setting a
too small ϵ0. Yet the estimate is not identifiable. The fourth
case is on rows 6 and 8 wherein both of the world model and
measurable part of the world state are incorrect. In this case,
a risk of false negative arises, because there is an evident
counter-example in which data integrity of the world model
and the world state is preserved but they are greatly different
from the actual environment. Thus, we need to guarantee
that at least either the world model or the measurable part of
the world state is correct.

Observation Using Weak World Model
Sensor Fusion
Sensor fusion is a technique of computing an estimate X̂T

of unmeasurable part of the world state XT by using dis-
parate sensor devices. Each device produces a component
of measurable part of the world state Y T which follows a
different observation model g(xt) subject to a limit of ob-
servability. The devices are selected in a way that the con-
dition of observability is maintained and the modeling error
w̄t in the observation model (2) follows an independent or
weakly coupled stochastic process such that the error covari-
ance matrix Rt is sparse, or preferably, diagonal. The tech-
nique helps to reduce the joint probability of the estimation
error ēt under the assumption of the stated stochastic pro-
cess. Figure 2 shows an illustrative classification of three es-
timation results. Here, we added an assumption to the world
model that the modeling error in each observation model
w̄S0/S1/S2,t is bounded with a certain threshold, which is
formulated as |w̄S0/S1/S2,t| < ES0/S1/S2 ∈ R. This is
a problem of checking identifiability of X̂T where a com-
bined observation model (10) is the world model M(xt,Y )
and measurable part Y ≡ {yS0/S1/S2,t} is known.

∧

i=S0,S1,S2

yi,t = xt + w̄i,t ∧ |w̄i,t| < Ei (10)

Case-2 in Fig. 2 suggests that if we set a more stringent
measure of tolerance δ(:) than that in Case-1, another state
x̃t exists such that (10) is true but δ(x̃t, x̂t) is false. Case-
3 suggests that if the measurement yS1,t is wrong or the
assumption on the boundedness of the error distribution of
w̄S1,t is violated, then a loss of data integrity is detected.
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Figure 3: Estimating a world state of an enumerated type.

Reasoning Discrete and Enumerated Variables
We presumed that the world state is quantifiable, the world
model (1) (2) is given as a formula of equality, and the inher-
ently unmeasurable modeling error is either quantitatively
bounded or follows the stated stochastic process. Quantita-
tive inaccuracy of the world is of practical concern. Once we
add a world state of discrete or enumerated type, the formu-
lation of the world model is inadequate. The idea of iden-
tifiability makes it possible to describe a world model using
partial knowledge about the world, which is formulated as
weak constraints of inequality on the world state.

Figure 3 shows an illustrative example of estimating the
state of a traffic signal xsign0/1 ∈ {G(reen), R(ed)} at an
intersection where the region is denoted as RX in R2. The
world state X consists of {xvec0/1/2/3, xsign0/1} and we
assume it is observable. Three other vehicles and two traf-
fic signs that control the right-of-way are in the scope of a
vehicle whose position vector is xvec3 ∈ R2. The position
vectors xvec0/1/2/3 are produced by devices with physics-
based measurement mechanism and are thus reliable. The
world state xsign0/1 is directly unmeasurable part of the
world state produced by a machine vision system and is of-
ten unreliable. A serious false negative results from that the
machine vision system fails to clip out a picture in which
they are in scope and fails to even discover the world state
xsign0/1.

We use a world model that consists of a knowledge-
oriented predicate (11) and empirically verified predicate
(12) using a measure of tolerance (13). We compute a satis-
fiable assignment XS ≡ (xSAT

sign0/1}.

¬ [xsign0 = G ∧ xsign1 = G]∧[
xsign0/1 ∈ {G(reen), R(ed)}

] (11)

[
xsign0 = R→ xvec1/2 /∈ RX

]
∧

[xsign1 = R→ xvec0 /∈ RX ]∧
[xsign0 = G→ xvec0 /∈ RX ]∧[
xsign1 = G→ xvec1/2 /∈ RX

]
(12)

h(X,XS) ≡
∧

i=sign0,1

xSAT
i = xi (13)

We do not need to assume a perfect precision on the
knowledge about the world model and the world state. The
predicate (12) is a statistically invariant partial knowledge
about the world. The predicates (11) (12) are weak in a sense

Table 2: Results of decisions and estimated world states.

that the world state in the predicate is under-constrained. As
we can add or refine the predicate of the partial knowledge,
the world model is compostitional by design. This is a bet-
ter alternative to waiting for a constructive way of building
a reliable classifier. Rather, we need to describe the world
model in an analytically redundant way in a sense that the
world state remains identifiable even if some components in
measurable part of the world state are corrupt. The degree of
confidence is a quantifiable measure of probability in a sense
that the correctness of the estimate is supported by the prob-
ability that the world model (11) (12) is statistically valid.

Table 2 shows the results of the estimation of the case
on row 2 in Table 1 using the proposed procedure shown in
Fig. 1. The problem of automatic error localization is for-
mulated as MaxSAT (Fey 2008; Manu 2011) and solved by
computing the unsatisfiable core of the formula M(X,Y ).
Yet we may hardly determine uniquely that an error is in the
world model or in the measurement, when the world state
is not identifiable. We explore a sound resolution procedure
of recovering the world state identifiable while adaptively
updating the world model.

Decision of Safety Subject to Partial Observation
A safety criterion that represents a precursor of hazard is a
component in X . An autonomous system must monitor vi-
olations of the criterion correctly regardless of that part of
Y can be transiently unavailable or deficient. A practical
burden is that we need to enumerate a variety of errors in
Y and to implement exhaustively one error handling pro-
cedure for each. Insufficient coverage of them or incorrect
handling of the error in the implementation could result in a
false decision. We can remove the burden by combining the
world model with a predicate of the criterion and by check-
ing if Boolean value of the predicate is identifiable and true
in face of an imminent risk of hazard.

The degree of confidence in the Boolean value of the pred-
icate is vital at the system level. In negligence theory (Vil-
lasenor 2014), the system must foresee at least reasonably
known risk of hazard that the system is at least partially li-
able for and must act responsibly to avoid the risk of hazard.
The ability to foresee the risk is essentially the same as the
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ability of deciding identifiability of the Boolean value. A
loss of data integrity can impair confidence as to the risk of
hazard. The Boolean value is not identifiable if part of Y is
unavailable or if the predicates (11)(12) cannot be perfect. If
the hazard actually could result from such limits and techni-
cally justifiable, the negligence claim against the manufac-
turer should be dismissed. An economic loss resulting from
the limits should be covered by a compulsory insurance.

Related Work
In robotics field, a problem of reconstructing the world state
is called simultaneous localization and mapping (SLAM)
(Dissanayake 2001). SLAM is built on Kalman filter the-
ory. A Kalman filter attached to a LTI system is a linear
quadratic estimator. The effectiveness of the Kalman filter
(Kalman 1960) depends on the accuracy of the world model
and assumes only additive uncertainty. A robust Kalman
filtering for a LTI system with an assumption of additive,
time-varying and norm-bounded parametric uncertainty in
the world model is presented in (Xie 1994). While it sug-
gests a modified Kalman Filter with a guaranteed bound on
the quadratic error (7), it cannot detect a loss of data in-
tegrity that results from a violation of the assumption about
the world model and leaves the risk of producing a corrupt
estimate going unnoticed. We can build an estimator using
an imperfect world model with a collection of partial and
imprecise knowledge about the world. A recent work on
decision and control systems (Wolff 2012) opened a way to-
ward handling the estimate X̂ with an uncertainty bounded
by the measure of tolerance δ(X̂,XS).

A motivation of assuming the linear additive uncertainty
originates from analytical burden of convergence analysis
of the Kalman filter. The stability of EKF depends on local
linearity and the filter becomes unstable beyond the local
domain (Huang 2007). A work (Ghaoui 2001) addressed to
reliably handling the impact of an unstable EKF on SLAM.
The under-estimated mean of ēt, w̄t and the error covari-
ance matrix Qt,Rt can also result in an unstable EKF. Un-
scented Kalman filter (UKF) addresses the issue (Uhlmann
2000) and thus, UKF is a better alternative to EKF (Julier
1997). Instead, we rely on the NLP solver that produces a
globally convergent series of the search iterates and removed
the burden of the convergence analysis. Now we can adap-
tively update the world model at runtime without any change
in the state observation system.

To the best of our knowledge, the bounded quantifiable
uncertainty has been presumed for the theoretical soundness
and stability of existing estimation methods. To support the
observability condition, it is presumed that measurable part
of the world state yt is available and reliable. Once the pre-
sumptions are violated, the existing pre-designed estimators
get unstable but a consequent loss of data integrity goes un-
noticed. Thus, the idea of checking identifiability subject
to a measure of tolerance is a safer alternative. We need to
make more effort in developing a formal technique for re-
liably reconstructing the world state subject to an imperfect
world model and the mentioned limit of observability.

Conclusions
Our insight is that we can merge the original concept of
observer theory with that of automated reasoning. We pro-
posed a new way of formulating the problem of estimating
the world state as satisfiability of the world state in the world
model. A loss of data integrity is detected if the problem is
unsatisfiable. Checking identifiability and the measure of
tolerance is a better alternative to presuming observability.
We showed a procedure of reliably reasoning the world state
subject to the imperfect world model and an imprecise mea-
surable part of the world state. We can constructively sup-
port the degree of confidence in the estimated world state.
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