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Abstract

Likert items and scales are often used in human subject stud-
ies to measure subjective responses of subjects to the treat-
ment levels. In the field of human-robot interaction (HRI),
with few widely accepted quantitative metrics, researchers
often rely on Likert items and scales to evaluate their sys-
tems. However, there is a debate on what is the best statis-
tical method to evaluate the differences between experimen-
tal treatments based on Likert item or scale responses. Likert
responses are ordinal and not interval, meaning, the differ-
ences between consecutive responses to a Likert item are not
equally spaced quantitatively. Hence, parametric tests like t-
test, which require interval and normally distributed data, are
often claimed to be statistically unsound in evaluating Likert
response data. The statistical purist would use non-parametric
tests, such as the Mann-Whitney U test, to evaluate the differ-
ences in ordinal datasets; however, non-parametric tests sac-
rifice the sensitivity in detecting differences a more conserva-
tive specificity – or false positive rate. Finally, it is common
practice in the field of HRI to sum up similar individual Lik-
ert items to form a Likert scale and use the t-test or ANOVA
on the scale seeking the refuge of the central limit theorem.
In this paper, we empirically evaluate the validity of the t-
test vs. the Mann-Whitney U test for Likert items and scales.
We conduct our investigation via Monte Carlo simulation to
quantify sensitivity and specificity of the tests.

Introduction

Human-robot interaction (HRI) is a broad, interdisciplinary
field bringing together researchers in psychology, sociology,
anthropology as well as in computer science, electrical en-
gineering and mechanical engineering. Together, these re-
searchers study the interaction of humans and robots. Re-
search can typically be divided into two general types. The
first type of research focuses on the social science aspects
of interaction between humans and robots. For example, a
recent paper investigated public perceptions of sex robots
(Scheutz and Arnold 2016). The second type of research
focuses on the engineering aspects of the interaction. For
example, a paper that received a best-paper award for “en-
abling algorithms” employed a Mixed-Observable Markov
Decision Process and Inverse Reinforcement Learning to
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give a robot the ability to learn from demonstration how to
ergonomically position a surface for a human to paint (Niko-
laidis et al. 2015).

We surveyed the proceedings of HRI 2015 (HRI’15),
which consisted of 43 accepted papers. The acceptance rate
for this conference is roughly ∼ 30%. Of these 43 ac-
cepted papers, 40 of 43 (93%) involved human-subject ex-
perimentation. The other three were papers focused on sta-
tistical modeling rather than human subject experimentation.
Of these 40 papers, 23 papers (58%) used a Likert-type re-
sponse to solicit perceptions of human subjects as a function
of one or more experimental variables.

A Likert item is an ordinal scale to solicit an experimen-
tal participants level of agreement with a statement regard-
ing an experimental condition they experience. As such, best
practices dictate that one should employ a non-parametric
test, such as a Mann-Whitney U test to asses differences.
Use of a t-test, z-test, or ANOVA assumes interval data and
that the residuals are normally distributed. It is plausible that
one could argue via the Central Limit Theorem (CLT) that
summing across multiple Likert items in forming a Likert
scale provides an aggregate measure that can roughly as-
sumed to be normally distributed. However, in our review
of the proceedings for HRI’16, of the 23 papers that use a
Likert-response format to solicit perceptions from subjects,
16 (70%) applied a statistical test to individual response
item. Thus, any hope for leveraging the CLT is lost. Fur-
thermore, 21 (90%) applied a t-test or analysis of variance
(ANOVA) – both of which assume the data are interval and
normally distributed. Not a single one of these papers first
used a test for normality, such as a Chi-Squared Goodness-
of-Fit test.

Where does this leave us? Should we ignore all of the
results in HRI’15? These are the questions that we seek to
answer in the remainder of this paper. Through an extensive
set of Monte Carlo Simulations, we find that, in fact, the
papers that employ a t-test, even for single Likert items, are
likely valid. Specifically, we find that the false positive rate
is empirically less than or equal to the significance level α.
However, we also caution against the ubiquitous practice of
testing individual Likert items: The chance of falsely finding
a positive results increases exponentially.1

1The probability of a false positive result is Pr{False
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First, we start with an overview of Likert items and scales,
the central limit theorem, best practices for design of these
response formats and statistical testing. Next, we present our
experimental methods and design of our Monte Carlo simu-
lations to test the validity of common statistical practices in
HRI. We then present the results of our Monte Carlo sim-
ulations. We discuss the implications of our findings and
present a set of guidelines for authors, reviewers, and the
HRI community at large. Next, we present the limitations of
our work and proposed, future work.

Preliminaries

In this section, we first introduce the notion of a Likert
item, which can then be used to construct a Likert scale. We
present best practices in constructing these items and scales
as well as common pitfalls in their use. Finally, we present
two approaches – non-parametric and parametric – to infer
differences in factor level medians of ratings on a Likert item
or scale in the context of a single-factor, two factor level ex-
perimental design.

Likert Item

Consider a scenario where a roboticist is designing behav-
iors for a robot to make it easier for the robot to work with
a human on a joint task. The roboticist wants to know which
of the behaviors works best to facilitate the interaction. As
a first thought, the roboticist conducts an experiment with a
sample population, perhaps a small group of potential users.
The experimenter divides the sample population into two
groups: groups A and B. Group A experiences one behavior
of the robot and group B experiences a different robot be-
havior. To solicit the users’ views, the roboticist shows them
with a prompt (Figure 1), which states, ”I believe the robot
likes me.” The participants are asked to rate the degree to
which they agree or disagree with the statement. The roboti-
cist establishes a null and alternate hypothesis as follows:

• H0 - There is no difference in the average responses of
the participants between groups A and B.

• H1 - There is a difference in the average responses of par-
ticipants between groups A and B.

Finally, the experimenter would apply the appropriate statis-
tical test and draw conclusion based on that test, looking at
the data in aggregate.

This scenario is analogous to numerous experimental sce-
narios that industry practitioners and academic researchers
construct to answer important questions in their practice. In
this particular scenario, the experimenter chose an experi-
mental design with one factor (behavior mode), two factor
levels (behavior A and B), in which subjects each experi-
enced only one factor level. The method of response em-
ployed in our example scenario is known as a Likert item.
A Likert item is a statement that a human subject (i.e., an
experimental unit) is asked to evaluate along a subjective or
objective dimension. Most commonly, a Likert item gives

Positive} = 1 − (1− α)n, where n is the number of individual
items tested, and α confidence level below which a result is as-
sumed positive.

Figure 1: This figure depicts an example of a Likert item for
rating a user interface (Hoffman 2013).

Figure 2: This figure depicts an example of a Likert item for
rating pain or discomfort.

a statement, such as “I believe the robot likes me,” and the
user is asked to evaluate his or her level of agreement or
disagreement along a response scale shown below the state-
ment. However, Likert items can take other forms. For exam-
ple, the prompt can simply be to rate how much pain you are
experiencing, and the subject should select the “feeling” that
best describes how they feel, as shown in Figure 2. Because
the response format for a Likert item is often presented as a
scale, people often refer to a single Likert item as a Likert
scale, which is a misnomer.

Statistical Testing for Likert Items

Data from Likert items are inherently ordinal: While one
can know that a rating of “strongly agree” is greater than
“strongly disagree,” one cannot say that a change from
“agree” to “strongly agree”is greater than a change from
“disagree” to “neutral.” One cannot assess the distance be-
tween points along the response scale; however, one can
create a ranking of responses. As such, the data are ordi-
nal. With ordinal data, one cannot assume the data are nor-
mally distributed, therefore, mathematically, we cannot as-
sume that response xi comes from a normal distribution
xi ∼ N (μ, σ2)).

t2n−2 =
x̄A − x̄B

sxAxB

√
1
n

(1)

sxAxB =
√

s2xA
+ s2xB

(2)

sxi =

√√√√ 1

n− 1

n∑
j=1

(xi,j − x̄i)
2 (3)

If one were given this assumption of normality, one could
employ a Student’s t-test, which leverages this normality as-
sumption, to determine the likelihood p that differences in
factor level means are due to random noise. The t-test is de-
fined in equation 1, where X̄A and X̄B are the mean re-
sponses of the Likert item for subject groups A and B. The
pool sample standard deviation sxAxB

is shown in Equation
2, and the group standard deviations sa and sb are shown
in Equation 3. Finally, n is the number of subjects in each
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group. This formulation of the t-test assumes both groups
have an equal variances and an equal number of subjects n.
The subscript for t shows the degrees of freedom of the test.
The degrees of freedom for this test are 2n − 2 because we
have have have 2n subjects and lose two degree from the
estimation of the factor level means x̄A and x̄B .

After calculating the t-statistic, t2n−2, through Equation
1, one can look up the corresponding p-value given the de-
grees of freedom. This p-value is the probability that any
difference in the factor level means is due to random noise
(i.e., a Type I Error). if p is less than some confidence level
α, then we say that we reject the null hypothesis that there
are no differences in the mean response between the two fac-
tor levels (i.e., web page interfaces). Commonly, α is set to
0.05, meaning that the experimenter is willing to accept a
5% chance that a perceived difference in the results is actu-
ally erroneous. Such an error is known as a Type I error and
is typically set at α = 0.05.

Alas, we are not given the assumption of normality. In-
stead, one must use a non-parametric test, such as a Mann-
Whitney U test, to infer whether differences in the two ex-
perimental groups exist based on their subject ratings ob-
tained through the single, Likert item. This test relies on
evaluating the ranks of responses between the groups rather
than the value of the responses. The test is formulated, as
shown in Equations 4-8. Here, Ri is the sum of the overall
rank of the jth subject’s response to the Likert item from
group i (Equation 4). Ui is the a measure of this rank for
group i, and U is the lesser of U1 and U2 from groups 1 and
2 (or A and B in our web page interface example).

Ri =

ni∑
j=1

ri (4)

Ui = Ri − ni(ni + 1)

2
(5)

U = min (U1, U2) (6)

z =
U − μU

σU
(7)

μU =
n1n2

2
(8)

σU =

√
n1n2 (n1 + n2 + 1)

12
(9)

Finally, we can formulate our test statistic. As the sample
size approaches infinity, U approaches a normal distribution.
As such, we can test whether there is a difference in the fac-
tor level medians according to Equation 7, where μU is the
mean under the null hypothesis that there is no difference
in the factor level medians between the responses (Equation
8), and σU is the sample standard deviation of U under this
null hypothesis (Equation 9). This formulation of the Mann-
Whitney U test assumes that there are no ties amongst the
ranks. If ties exist, there is a correction term for σU , which
can be used instead 2

2σcorr = n1n2
12

(
(N + 1)−∑k

i=1

t3i−ti
N(N−1)

)
, where N is the

total number of subjects n1+n2, ti is the number of subjects shar-
ing ith rank, and k is the number of tied ranks.

Figure 3: This figure depicts an example of a Likert scale
(Hoffman 2013).

Unfortunately for practitioners, non-parametric tests,
such as the Mann-Whitney U test, are typically less sensi-
tive, meaning that the likelihood of rejecting the null hypoth-
esis, given that the null hypothesis is incorrect, is less than
for a parametric test. It is tempting, then, to want to apply a
parametric test, such as a t-test, for the sake of finding a sta-
tistically significant result. However, this is theoretically un-
sound. As such, what is a sound practitioner supposed to do?
The answer, according to psychologist and inventor Rensis
Likert, is a Likert Scale.

Likert Scale

A Likert scale is a summation across a set of Likert items.
Figure 3 shows an example for our robot behavior design ex-
periment. When designing a Likert scale, it is best to follow
two principles. First, each Likert item response scale should
be symmetric. The Likert item shown in Figure 3 is sym-
metric. An example of an asymmetric scale would be if the
most positive rating was “strongly agree” and the most neg-
ative rating was “neutral.” Second, a Likert scale should be
balanced: The scale should have an equal number of posi-
tive and negative prompts. In the example shown in Figure
3, the principle of symmetry is followed, but the principle
of balance is not. There are three positive statements and
zero negative statements. It would be better to make the last
prompt read “3. I feel the robot worker does not respect me.”

Likert scales also have pitfalls. First, experiment partici-
pants responding to a Likert scale are likely to respond with
a less-extreme position, for example, by responding with
“agree” when they may, in fact, “strongly agree.” It is well
known that subjects are subject to a central tendency bias,
meaning that they do not want to appear extreme or differ-
ent from the average person. Second, subjects are likely to
agree with the prompts given. This bias is known as the ac-
quiescence bias. Other pitfalls are common across many re-
sponse types, such as the experimenter-expectancy effect, in
which subjects try to respond in the way they think the ex-
perimenter desires.

Statistical Testing for Likert Scales

A Likert Scale is a powerful technique for measuring a sub-
jective perception regarding the effect of a treatment or fac-
tor because it can take advantage of the CLT. Let us assume
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that we have a function that maps each response along the
scale of the Likert item (“strongly agree” to “strongly dis-
agree”) to a numeric value. An example coding could be as
follows:

• “Strongly Agree” → 1

• “Agree” → 2

• “Neutral” →3

• “Disagree” → 4

• “Strongly Disagree” → 5

More technically, we have a function mapping f : li →
xi, where function f maps Likert response i, li ∈
{“Strongly Agree”,“Agree”,“Neutral”,“Disagree”,“Strongly
Disagree”}3 to xi ∈ R. Let us assume this mapping is mono-
tonically non-decreasing. The idea of the CLT was first pre-
sented by which was orginally developed in (Erdös and Kac
1946) and (Donsker 1951) and developed by the likes of
Billingsley, Prohorov, Skoroh, and more (Brown and others
1971). The CLT states that, as the number of samples xi in-
crease (e.g., number of items in the Likert scale increases),
the distribution of the responses approaches a normal dis-
tribution with mean of zero and variance σ2. The CLT is
shown in Equation 10. Furthermore, it has also been shown
that

√
n(Sn−μ) approaches a normal distribution with mean

0 and variance σ2, as shown in Equation 11.

lim
n→∞

S := lim
n→∞

x1 + . . .+ xn

n
→ E[xi] = μ (10)

lim
n→∞

√
n

((
1

n

n∑
i=1

xi

)
− μ

)
→ N (0, σ2) (11)

These equations hold true for random variables that are in-
dependent and identically distributed, with mean E[xi] = μ
and finite variance var[xi] = E[x2

i ]− E[xi]
2 < ∞.

What is incredibly powerful is that we can leverage this
theorem to use a parametric test (i.e., a z-test) to test for dif-
ferences in subjects’ responses to Likert scales as a function
of factor level with one catch: the number of items in the
Likert scale needs to approach infinity. We could argue that
we can correct for this assumption by using a t-test, which
accounts for small sample sizes. However, a t-test still relies
on data that are at least interval, meaning that one can mea-
sure, quantitatively, the distances between two responses on
the response scale. However, Likert items are not inherently
interval. We must then ask two questions:

1. Does a Likert item sufficiently approximate interval data
such that a t-test can be used?

2. Is a t-test robust to small Likert scales?

In the remainder of this paper, we conduct a Monte Carlo
experiment to answer these questions. We begin with a de-
scription of the methods for our computational investigation.

3The set of possible values depends on the specific likert item.
The set commonly has 5 items, but can also include 7, 9, or more.

Methods

In this section, we describe our computational experiment
to test the robustness of the t-test in scenarios where non-
interval data is treated as normally distributed interval data.
We perform a hypothetical between subjects experiment
with a single factor with two treatment levels. The responses
to Likert items are generated by virtual subjects, and the
two data sets generated are compared using the t-test and
the Mann-Whitney U test. The tests are replicated numerous
times to measure the relative performance of the two tests
under various conditions. Here, we first describe the depen-
dent variables are their levels considered for the experiment,
the response variables we measure to compare the tests and
the methodology used to conduct the experiment

Controlled Factors

We hypothesize that the difference between the tests would
depend on the following variables:
1) Response mapping - A Likert item is an ordinal type,
where the differences between equally spaced values on the
Likert response do not correspond to an equally spaced dif-
ferences on an actual response scale. We hypothesize that
an actual response scale exists, and we map response val-
ues generated on that scale back to a Likert response. We
consider four mappings for this project. These mappings
are defined by the function f(x) : x ∈ {1, 2...7} → R,
where x ∈ {1, 2...7} is a Likert response and f(x) is the
value of a hypothetical “actual” response. Each mapping
must be monotonically non-decreasing i.e. f(x1) ≥ f(x2)
if x1 > x2 and antisymmetric about the neutral point i.e.
f(xn + x) = −f(xn − 4), where xn = 4 is the neutral Lik-
ert response. The first such mapping is the linear map given
by Equation 12, where an equal difference in the Likert re-
sponse corresponds to an equal difference on the actual re-
sponse scale. We also consider a sigmoid mapping defined in
Equation 13, where the differences in the actual response are
decreasing towards the extreme end of the scale. Next, we
consider the cubic mapping defined in Equation 14, where
the differences between the actual response increase towards
the extremes of the scale, and are flat close to the center of
the scale. Finally, we consider a fifth order polynomial de-
fined in Equation 15, where the differences at the extremes
are further exaggerated, and the mapping is flatter close to
the neutral point.

f(x) =
1

6
(x− 4) (12)

f(x) =
1

1 + e−(x−4)
(13)

f(x) = (x− 4)3 (14)

f(x) = (x− 4)5 (15)

Figure 4 shows the mappings from Likert response to the
hypothetical actual responses in each of the described cases.

2) Response mean positions - The responses are gen-
erated synthetically on a hypothesized ”actual” response
curve and transformed to a Likert response. The positions
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Figure 4: Mappings from actual response to Likert response
considered

of the means of the distribution from which the data is sam-
pled are important factor in the error rates of the tests. The
means were placed uniformly at six positions between the
extremes of the Likert response scale. The positions were
μ1, μ2 = {1, 2.2, 3.4, 4.6, 5.8, 7}. While sampling the pop-
ulation means were placed at f(μ1) and f(μ2) respectively.
3) Number of respondents - As the number of Likert re-
sponses summed up to compute the mean increases, the dis-
tribution of the mean would tend toward a normal distribu-
tion as per the central limit theorem. Due to this, we consider
the number of respondents as an important independent vari-
able in the experiment. We consider three cases, where the
number of respondents are nrespondents = {5, 15, 30 These
values are typical of the number of participants in HRI stud-
ies. Certain studies where access to experimental subjects is
limited, the studies are small scale with 5 to 10 participants.
Pilot studies, which are often of an exploratory nature recruit
10 to 20 participants. Larger scale studies recruit greater than
30 participants.
4) Number of Likert items per scale - As described in
subsection the responses to multiple questions intended to
measure similar subjective measures are coded and summed
to generate a Likert scale. As more number of items are
added to form the scale, the distribution of their sums tends
to normal according to the central limit theorem. We con-
sider three cases where we construct a scale from different
number of responses, where nitems = {1, 5, 10}. The case
of nitems = 1 corresponds to the case where a Likert item
is individually being compared. The responses to the items
comprising the scale for a given treatment are drawn from
identical distributions.

Factors held constant

The following factors may affect the outcomes, but for the
scope of this project, they were held constant. They are:
1) Sampling Variance - The data is generated by sampling
from a normal distribution on the hypothetical “actual” re-
sponse scale. The variance of the data normalized by the
range of the scale is held constant i.e. σ2 = C/(fmax −
fmin), where C is held constant, in this project at C = 0.33.

This helps us obtain an even spread in the Likert responses
irrespective of the range of the actual scale. In future work,
we will vary σ2.
2) Number of test replicates - Monte Carlo methods rely
on replicating an experiment multiple times to sample a wide
range of outcomes, the response variables tend to a limiting
value as the replicates tend to infinity. However, in practice it
is impossible to generate infinite replicates. Here we conduct
ntest = 1000 replicate tests for each treatment.

Test Method

The following testing method was used

1. For each treatment level:

(a) For each test:
i. Sample responses for each Likert item from

N (f(μi), σ
2) for both treatments.

ii. Use the inverse map to generate Likert responses us-
ing the mapping function.

iii. Sum up the responses to generate the Likert Scale.
iv. Perform a t-test on the Likert scale data at α = 0.05

and record the outcome and p-value.
v. Perform a Mann-Whitney U test on the Likert scale

data at α = 0.05 and record the outcome and the p-
value.

(b) Compute the average p-value for the each test.
(c) Generate the contingency table for the data.

Considering that there are six mean locations for two fac-
tor respectively, three levels for number of respondents and
number of items in a scale, and four mappings, we have
1,296 such experimental conditions.

We also conducted an additional Monte Carlo simulation
to determine the statistical power of the respective tests. For
this, the means of the distribution from which the responses
were sampled were placed symmetrically around the neu-
tral point of the Likert response scale. This simulation had a
denser grid of the means with μ1 − 4 = −(μ2 − 4); μ2 ∈
{4, 4.3, 4.6, 4.9, 5.2, 5.5, 5.8, 6.1, 6.4, 6.7, 7} and the means
of the distribution were placed at f(μ1) and f(μ2) respec-
tively. This study was replicated for all values of the other
factor levels. This simulation had a total of 396 experimen-
tal units.

Data collection and analysis

For each experimental unit, the average p-values for the
Mann-Whitney U test and the Student’s t-test were recorded.
In addition to the average p-values, for each treatment, in-
cluding a value of μ1, μ2, nrespondents and nitems, a con-
tingency table was generated as shown in Table 1. The con-
tingency tables were analyzed using a χ2 contingency test
to check for statistically significant differences in the error
rates for the two tests. For each value of nrespondents and
nitems, the 6 × 6 matrix of the p-values of the χ2 test on
contingency tables were plotted as a heat map as depicted
in Figure 7. For each value of nrespondents and nitems, the
confusion matrix depicted in Table 2 was generated for each
of the tests.
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In addition, we also measure the false positive rates for
both the tests for all values of nrespondents, nitems in the
cases where μ1 = μ2. The false positive rates plotted against
the position of the means are depicted in figure 5. Finally, the
sensitivity of the tests is compared by measuring the average
p-value generated by the two tests in the second experiment
simulation described in subsection . The average p-values
plotted against the difference in means symmetrically placed
around the neutral response are depicted in figure 6.

t-test Mann-Whitney U Test
Correct

Incorrect

Table 1: Contingency table for test error rates

Predicted
Same Different

Actual Same
Different

Table 2: Confusion matrix for a given test

Results
In this section, we present a subset of the results of our ex-
tensive Monte Carlo simulations. A full set is provided in
Appendix I. The full paper with appendices are provided on-
line at http://tiny.cc/jdlldy.

False Positive Rate

Figure 5 depicts the false positive rates for the t-test and
Mann-Whitney U test for the extreme case for an experi-
ment with one factor, each factor level contains only five
subjects, and each subject responds to only one, 7-point Lik-
ert item. We set the significance threshold for rejecting the
null hypothesis at α = 0.05, which means that the prob-
ability of a false positive (i.e., incorrectly rejecting a null
hypothesis) is 5%. If the t-tests assumptions are violated, as
they are for testing a single Likert item, one would fear that
the test to have a high false positive rate. Fascinatingly, the
false positive for the t-test is actually at or below ∼ 0.05 for
all mappings tested. As expected, the false positive rate for
the Mann-Whitney U test is less than that of the t-test. The
evidence supports the notion that the Mann-Whitney U test
is, in fact, overly conservative for the mappings we tested.

Sensitivity (P-Values)

Figure 6 depicts the average p-values for the t-test and
Mann-Whitney U test for the extreme case for an experiment
with one factor, each factor level contains only five subjects,
and each subject responds to only one, 7-point Likert item.
We set the significance threshold for rejecting the null hy-
pothesis at α = 0.05. Because the t-test makes stronger as-
sumptions about the distribution of the data than the Mann-
Whitney U test, we would expect the average p-value for

experiments with differences in the factor level means to be
lower (i.e., the test is more likely to reject the null hypothe-
sis). We do, in fact, see evidence that the t-test is more sen-
sitive than the Mann-Whitney U test. These figures confirm
our intuition. Coupled with the results from the investigation
of the false positive rate, we are building a compelling story
that the t-test might quite robust to measuring differences in
Likert items.

Differences Between the T-test and Mann-Whitney
U Test

While we have already seen evidence that difference may ex-
ist between the t-test and Mann-Whitney U test, we sought
to statistically evaluate this hypothetical difference. Figure 7
depicts the results of this investigation. In each of the plots in
Figure 7, the x-axis represents the factor level mean for fac-
tor level 1, and the y-axis represents the factor level mean
for factor level 2. We measure the aggregate number of cor-
rect and incorrect rejections of the null hypothesis for the
t-test and Mann-Whitney U test for the extreme case of an
experiment with one factor, each factor level contains only
five subjects, and each subject responds to only one, 7-point
Likert item. Across all four mappings, we find that there is
a high-probability of differences in the proportions of cor-
rectly and incorrectly rejecting the null hypothesis for these
two tests. This data confirm our intuition that the t-test is
producing different results than the Mann-Whitney U test.
However, the story does not end there. We repeat this anal-
ysis but for a hypothetical experiment with 30 subjects per
factor level and a Likert scale comprised of 10 Likert items
(Figure 8). What we find is that the probability of differ-
ences, as measured by a Chi-squared test for independence,
largely disappear. This result is surprising, yet makes sense
considering the CLT. The results of hypothesis testing for
parametric and non-parametric tests seem to converge with
increasing replicates and size of the Likert scale despite the
ordinality and non-normality of Likert item responses.

Discussion

In our results section, we provide evidence that the t-test is
quite robust for testing for the existence of differences be-
tween responses measured by a single Likert item. Our find-
ings are, in fact, supported by prior work (Carifio and Perla
2007). First, (Glass, Peckham, and Sanders 1972) showed
that the F-test is quite robust to deviations from normality.
We know that the F-test and t-test are equivalent for a single-
factor experiment with two factor levels. Further, we know
that the Likert scale can reasonably be approximated as an
interval scale even though it is inherently ordinal (Carifio
1976; 1978). Based on our analysis, we believe that using a
t-test for testing Likert items and scales is a reasonably safe
practice with a low false positive rate. Further, as the sam-
ple size of the experiment increases, the t-test and Mann-
Whitney U test are empirically near equivalent. However,
we emphatically warn that testing multiple, individual Lik-
ert items rather than a single Likert scale greatly increases
the chance of a false positive rate. Such practices should be
discouraged unless the statistician properly controls for the
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(a) Linear mapping.

(b) Sigmoid mapping.

(c) Third-degree polynomial mapping.

(d) Fifth-degree polynomial mapping.

Figure 5: These figures depict the false positive rates for the
Mann-Whitney U test and the t-test when the significance
level is α = 0.05 for experiments with 5 subjects in each
of two factor levels and a Likert scale of only 1 Likert item.
Linear, sigmoid, 3rd-degree and 5th-degree polynomials are
shown. For these mappings, the x-axis depicts the normal-
ized value of the factor level means given that μ1 = μ2 = x.
For x = 0, the mean is “strongly disagree”, and, for x = 1,
the mean is “strongly agree.”

(a) Linear mapping.

(b) Sigmoid mapping.

(c) Third-degree polynomial mapping.

(d) Fifth-degree mapping.

Figure 6: These figures depict the average p-values for the
Mann-Whitney U test and the t-test when the significance
level is α = 0.05 for experiments with 5 subjects in each
of two factor levels and a Likert scale of only 1 Likert item.
Linear, sigmoid, 3rd-degree and 5th-degree polynomials are
shown.
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(a) Linear mapping.

(b) Sigmoid mapping.

(c) Third-degree polynomial mapping.

(d) Fifth-degree polynomial mapping.

Figure 7: These figures depict a heat map of the p-value of
a Chi-squared test for independence between the number of
correct and incorrect responses of the Mann-Whitney U test
and t-test for experiments with 5 subjects in each of two fac-
tor levels and a Likert scale of only one Likert item. Linear,
sigmoid, 3rd-degree and 5th-degree polynomials are shown.

(a) Linear mapping.

(b) Sigmoid mapping.

(c) Third-degree polynomial mapping.

(d) Fifth-degree polynomial mapping.

Figure 8: These figures depict a heat map of the p-value of
a Chi-squared test for independence between the number of
correct and incorrect responses of the Mann-Whitney U test
and t-test for experiments with 30 subjects in each of two
factor levels and a Likert scale of 10 Likert items. Linear,
sigmoid, 3rd-degree and 5th-degree polynomials are shown.
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family error rate. Further, if authors do use the F-test for Lik-
ert items and scales, one must state your assumptions with
proof those assumptions are reasonable given prior work.

Recommendations

We provide two recommendations to the HRI community:
Authors - Applying a t-test to a one-item Likert scale

may be statistically safe, but justify your assumptions with
appropriate references. Further, be warned: Testing multiple,
individual Likert items increases your false positive error
rate. Instead, use a Likert scale or an appropriate multi-test
correction.

Reviewers - Be slow to reject a paper that uses a t-test on
Likert-response data. A t-test appears to be quite robust with
a low false positive rate when applied to even a single Likert
item. However, make sure the authors appropriately justified
their analysis and controlled for the family error rate.

Limitations and Future Work

In this work, we make a number of assumptions. We assume
there exists a monotonically non-decreasing mapping from
Likert item responses to R. Without such a mapping, our
analysis would not be possible. The four mappings we con-
sidered, further assume that they are anti-symmetric about
the point of neutral response. We also assume that each vir-
tual subject in our Monte Carlo simulation shared a com-
mon mapping; however, this may not be true in reality. Fur-
ther, we consider only four such possible mappings from a
uncountably infinite set of mappings. Enumerating all such
mappings is impossible. Our approach was to consider a rep-
resentative set of mappings that capture a variety of behav-
iors. In future work, we would relax the assumption of anti-
symmetry about the neutral response point. Further, we pro-
pose a set of user studies to solicit mappings subjects feel
best represent their interpretation of Likert items.

An area of concern we were not able to address in this
paper is the high rate of pair-wise hypothesis testing with-
out controlling for the family error rate. In many instances,
researchers would conduct an experiment with more than
two factor levels and with multiple factors. While these re-
searchers would often use an ANOVA to establish that a sig-
nificance, they would then apply pair-wise F-tests or t-tests
without controlling for the family error rate. Each pair-wise
comparison increases the chance of a false positive. The fact
that researchers commonly do not use a Scheffé test, Tukey
test, or t-test applied using the Bonferonni method is alarm-
ing. Furthermore, virtually all of the papers in HRI’15 did
not test the residuals to verify that the assumption of normal-
ity when conducting the ANOVA is valid. In future work, we
plan to quantify the cost of these statistical practices.

Baxter et al. recently called into question the practice of
null hypothesis significance testing citing poor replicabil-
ity. Baxter et al. suggest using of descriptive statistics (e.g.,
confidence intervals) instead. While more drastic measures
(e.g., Baxter et al.) are critical for the advancement of sci-
ence, we are aiming for a more modest – and hopefully
achievable – goal of correcting existing practices.

Conclusion

The HRI community brings together researchers from a
broad array of fields, such as psychology and computer
science. Most papers published in this community rely on
human-subject experimentation to acquire knowledge or
validate the benefit of a new robotic technology. However,
there is a lack of consensus for how to construct experi-
ment questionnaires and perform hypothesis testing through
statistical analysis for responses to those questionnaires.
Specifically, there is a lack of consensus for constructing and
testing Likert items and Likert scales. In this paper, we sur-
vey the proceedings of HRI’15 to discuss common practices.
We then conduct an extensive computational investigation
via Monte Carlo simulation to test the robustness of para-
metric and non-parametric statistical tests for Likert items
and scales. We find that the t-test is quite robust and is a
reasonable method for testing even individual Likert items.
However, we provide a set of recommendations to the HRI
community to advocate being open-minded yet rigorous in
the defense of experimental design and statistical evaluation.
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