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Abstract

In this paper, we propose to augment an existing video
surveillance system with a mobile robot. This robot acts as
a collaborator with a human who together monitor an envi-
ronment to both look for objects that are out of the ordinary
as well as to to describe people found near these objects. To
find anomalies, our robot must first build a dictionary describ-
ing the things that are normally seen while navigating through
each environment. We use a computational cognitive model,
ACT-R/E to learn which dictionary elements are normal for
each environment. Finally, the robot makes note of people
seen in the environment and builds a human understandable
description of each individual. When an anomaly is seen, the
robot can then report people recently seen, as they may be po-
tential witnesses or people of interest. Our system operates in
real-time, and we demonstrate operation on several examples.

Video surveillance is a simple and effective way to moni-
tor large environments for potential threats. In such systems,
a person monitors a number of cameras mounted around
a facility. They make note of anybody present, while also
looking for suspicious actions or objects. Unfortunately, the
effectiveness of these systems can be limited (Smith 2002).
Monitoring a large environment requires a lot of cameras,
and it is difficult to watch all of the video feeds at the same
time. Many of these video feeds contain nothing of interest,
and such tedious, repetitive tasks can be difficult for a human
to perform effectively (Hockey 2013). Further, if something
suspicious is seen, it is not always straightforward to fully
understand what is happening from a 2D video screen.

Automated surveillance can improve the effectiveness of
video surveillance systems by adding additional support for
detecting and understanding events. For example, such sys-
tems can look for abandoned objects anywhere in the view
of the camera and notify an operator when this event has
occurred. This alleviates the cognitive load on the human,
and ensures that high priority events are not missed. In this
paper, we propose to augment such systems with an auto-
mated surveillance robot, Octavia (see figure 1 (Breazeal et
al. 2008)). Octavia can support the human’s surveillance ef-
forts, alerting the human when events of interest occur. The
mobile nature of a robot also has the secondary advantage of
being able to move about freely and monitor any ad-hoc area
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Figure 1: Our MDS Robot, Octavia, operates as PatrolBot

as need. This allows it to monitor areas that may not be well-
covered by cameras, as well as inspecting areas around sus-
picious events with much greater scrutiny than what might
be possible using fixed cameras.

In addition to her patrol duties, Octavia should interact in
several different ways with the people around it. She should
accept instructions from a human teammate or supervisor,
and report back with a status report after its task is complete.
As a key part of this, the robot needs to be able to describe
the people it near anomalous events in a way that a human
teammate can understand.

Artificial intelligence techniques are essential to accom-
plishing both of Octavia’s functions: detecting anomalies on
a building-wide scale, and describing the people she sees in a
human-like way. In this paper, we first describe our approach
for learning about the environment and reporting anything
that is out of the ordinary. The robot first learns a normative
model of the environment by navigating through it and ex-
tracting features from small regions in each image. As our
features, we cluster deep features from the AlexNet convo-
lutional neural network architecture (Krizhevsky, Sutskever,
and Hinton 2012), which allows her to learn its normative
model in an unsupervised fashion. At the same time, the
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images are also annotated with their location (Zhou et al.
2014). When detecting anomalies, this location is used to
provide context to anomaly detection. Context is used both
distinguish between similar objects as well as locate things
that might be normal for one environment whereas they are
anomalous in another. For example, while a bag might be
normal in an office, it may be seen as highly suspicious in a
corridor or outside of a building.

We next move to describing how Octavia utilizes work in
artificial intelligence to enable natural, human-like descrip-
tions of people she encounters during her patrol. To accom-
plish this, we again leverage the AI technique of deep learn-
ing to extract ten different biometric features of human ap-
pearance, including gender, clothing and hairstyle. The pri-
mary challenge in training a deep network to provide such
description is how to make use of data that is highly biased
and not large enough to train network that is very deep. We
resolve this issue by building “shortcuts” into our networks
which bypass multiple layers in the network (He et al. 2015),
effectively permitting the network to learn better features
using less data. We also have a customized loss function,
which allows us to tolerate highly biased data.

Together, these two capabilities, built upon common arti-
ficial intelligence techniques, greatly enhance Octavia’s ca-
pabilities to patrol and ability to interact with a human super-
visor. We support this claim by describing a working demon-
stration of Octavia as PatrolBot in action. We then conclude
with a brief discussion and future extensions.

Anomaly Detection
Our overall approach to anomaly detection is to build a
model of what is normal for each environment. During pa-
trol, this model is queried to compare what is seen against
what is normal. Anomaly detection proceeds as follows
(Lawson, Hiatt, and Sullivan 2016): to properly determine
context, we first must determine the location of the robot us-
ing the PlacesCNN (Zhou et al. 2014). This CNN includes a
wide range of places such as “kitchen”, “conference room”,
and “corridor”. Figure 2 includes several examples of la-
beled scenes from the places database.

In parallel, the robot continuously analyzes the environ-
ment using patches extracted from the camera images. The
patches are of a fixed size NxN with a step-size of N/4 (in
our experiments, N = 256 for an image of size 640x480),
meaning that there is an intentional overlap in order to both
properly handle objects that straddle the boundary of multi-
ple patches as well as to see objects that are larger than a sin-
gle patch. Each patch is represented by features from a deep
convolutional neural network; a combination of a cognitive
model and per-environment dictionary of common items is
then used to determine if the image patch is anomalous of
not.

During training, the robot patrols each environment col-
lecting data to construct a dictionary of patches that nor-
mally appear within each environment. In practice, this re-
sults in an enormous amount of data (in our experience,
we generate 1.5 million patches each time the robot goes
through all environments), so we use a streaming cluster-
ing algorithm which requires only a single pass through the

Figure 2: Examples of locations encoutered from the
robot. In this case the PlacesCNN classified the loca-
tions as top row:“waiting room”, “kitchenette” and ‘bottom
row:“corridor”.

data and can add new clusters during runtime. Each patch p
is evaluated by a deep neural network (using the ”AlexNet”
architecture, fully trained on ImageNet) to generate a fea-
ture vector v for the patch from the last layer in the network.
This feature vector is then compared to the current clusters
C, and, if the patch is sufficiently close (using Euclidean dis-
tance) to an existing cluster, it is added to that cluster. If the
patch v is not similar to an existing cluster, a new cluster is
created. Using this approach, PatrolBot constructs a dictio-
nary for each environment, and new features are added as
they are encountered.

Based on this dictionary, we construct a normative model
of context from the computational cognitive architecture
ACT-R/E (Trafton et al. 2013). Context in ACT-R/E takes
the form of associations between concepts (here, the dic-
tionary of features and environment location): as the robot
traverses the world, associations between environments and
features are strengthened based on how frequently a fea-
ture appears within the environment. After training, features
that are typical for an environment have strong associations
while features that are atypical for an environment have
weak associations.

To determine the correct dictionary element, the robot
takes both the distance to the patch and the location into
consideration. We weight each observed patch by the asso-
ciation strength from the cognitive model cka for each dic-
tionary element k in scene a:

pk = exp(−dk/σ) (1)

k(a) = argmink(pkcka) (2)
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Figure 3: Sample images used to train the convolutional net-
work for attribute recognition.

where dk is the distance to cluster K, and σ is a parameter
that can be estimated from the expected distribution of the
data. A patch is marked as anomalous when k(a) falls above
a threshold.

Person Attribute Detection

When the robot encounters a potential anomaly, it first looks
up to check if the anomaly is related to a person (e.g., a per-
son is standing nearby). If a person is seen, the robot greets
them and generates a description for later use.

Our person attribute detection system uses a modified
residual deep convolutional neural network with an opti-
mization (i.e., gradient loss function) to account for imbal-
ances in the training data. In deep learning, researchers no-
ticed that adding additional layers to the their networks in-
creased accuracy, especially in difficult datasets. However,
as the network depth increased, the learning process became
more difficult, as the error gradients within the network
started to either vanish or explode, resulting in the inability
of the network to converge. While several techniques sought
to solve this problem, another problem arose: degradation of
training accuracy. The introduction of residual blocks solved
this degradation problem by making deep networks as easy
to solve as shallower networks. An upshot of this approach
is a decreased amount of training data (i.e., no need for data
augmentation tricks) leading to decreased training time.

One of the biggest problem in training a deep network
to learn pedestrian attributes is the highly unbalanced na-
ture of the data. Datasets will have hundreds, perhaps thou-
sands, of negative examples and only a few positive exam-
ples. For example, an attribute as simple as “wearing a red
shirt” may only be present in 5% of the data. When pre-
sented with an image, a naive classifier can then just always
predict “False” and produce an accurate of 95%! To solve

this problem, we need to assign more weight to those ex-
amples. To do this, we changed the loss function to incor-
porate a weighting of positive and negative samples differ-
ently so that predicting the rare example wrong is penalized
with higher cost. Finally, attribute recognition is inherently a
multi-label learning problem. Multiple pedestrian attributes
may be present in an example image and there is inherent
relationships among attributes (Zhu et al. 2015).

In person attribute detection, a single image typically con-
tains multiple attributes, thus, a multi-label loss function is
needed to learn the relationship between attributes. Assume
we are looking for M attributes to describe a person, then
the loss function is

TotalLoss =

M∑
m=1

γmlossm (3)

where lossm is the contribution of the mth attribute to the
total loss and γm controls the contribution of attribute m to
the total loss. This is useful for situations where particular
attributes are more important than others (e.g., if we find
determining gender is more important than recognizing shirt
color). While this can be tuned towards human prefers, in
our work, we assume all attributes are equally important, so
set γm = 1

M ∀m.
The individual losses are computed using a sigmoid bi-

nary cross-entropy for each attribute (see Eqn. 4). This loss
function accounts for imbalances of positive and negative
examples within an attribute using the weight wm.

lossm = − 1

N

N∑
i=1

wm(binary cross(yim, p(xi
m))) (4)

The weight wm is computed from the ratio of the posi-
tive and negative examples as shown in Eqn. 5 where pm
is the number of positive examples in the mth attribute. σ is
a control parameter. This parameter can be used to control
the number of true positives and hence control the recall in
effect.

wm =

{
exp((1− pm)/σ2) if ym = 1

exp(pm/σ2) else
(5)

Using the residual deep network with this custom loss
function we detect ten attributes including as gender, hair
length, shirt color, and the presence of a jacket.

Demonstration

PatrolBot works as follows: a human could tell the robot to
investigate an area of the environment via simple natural
language. The robot looks for keywords in verbal commu-
nications, and then drives towards the indicated area. As the
robot moves through the environment, it stops whenever it
encounters either anomalous objects or people. When it sees
a person, it will greet them while simultaneously extracting
desriptive information. In the case of an anomalous object,
it will stop and point at the object.
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Figure 4: Map of LASR

For navigation, we use the Robot Operating System
(ROS) navigation stack (Quigley et al. 2009). This frame-
work provides the capabilities needed to generate a map
of its environment, and navigate while performing object
avoidance. The primary sensor used for this navigation is a
Hokuyo UTM-30LX scanning range finder. To generate the
map (example shown in Figure 4) a ROS wrapper is used
for OpenSlam’s Gmapping (Grisetti, Stachniss, and Burgard
2007). This allows for the robot to simultaneously navigate
and map-build in an unknown environment. When operating
in a familiar environment, Adaptive Monte Carlo Localiza-
tion (AMCL) is used to reduce computational load on the
system.

We have labelled waypoints on the map and can instruct
PatrolBot to move towards any of these waypoints as de-
scribed in the preceding paragraphs. To train our anomaly
detection algorithm, initially PatrolBot navigates between
each waypoint to build a dictionary and to learn the asso-
ciated model. Once trained, she can begin patrolling. During
evaluation, she can process 390 patches per second using an
NVIDIA GTX-980, which permits her to move about the
environment and locate anomalies in real-time. When using
a similar GPU, she can determine pedestrian attributes at a
rate of 271 frames per second, meaning that she need only
look at a person for a fraction of a second before extracting
a description.

In the first case, the robot is in the waypoint “Highbay”

Figure 5: People that PatrolBot saw during patrol. The per-
son on the left was descibed as “male, red shirt”, the person
on the right was described as “male, patterned light shirt”

Figure 6: Anomalies that were seen during Patrol. In the first
case, a bag was abandoned in the hallway and in the second
a chair was in an unusual location.

and is instructed to move towards the waypoint “Desert
highbay”. During this operation, the robot encounters sev-
eral people (see figure 5, and to each she looks in the eye
and says “Excuse me, I am patrolling”. She also collects in-
formation about each person. In the case of the first person,
she saw a male wearing a red shirt. In the case of the second,
she saw a male wearing a light colored, patterned shirt.

In the second case, the robot is at the waypoint “Desert
Highbay” and is instructed to move back towards the way-
point “Elevator”. She does not encounter people this time,
but rather sees several anomalous objects (see figure 6). In
the images, each red rectangle represents a position in the
image that was seen as anomalous.

Discussion/Future Work

As we have shown, our PatrolBot is able to accurately lo-
cate anomalies and describe people in order to act as a reli-
able and effective surveillance partner. In our experience, it
is easy to train, and our experimental validation has shown
a low false positive rate. Another strength of the approach is
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that it is able to build a normative model for different envi-
ronments by leveraging the power of a computational cogni-
tive model. For example, PatrolBot might have a dictionary
element for “briefcase” which she knows that is normal for
an office, but would be abnormal in the hallway.

Anomaly detection on a moving robot is something that
can potentially be extremely advantageous in crowded envi-
ronments, but it most likely will need a greatly expanded dic-
tionary to describe a number of atypical, yet not anomalous
events. Some examples that we saw during our evaluation in-
cluded things marked anomalous when they should not have
been. For example, PatrolBot noticed that a plant had been
turned during watering and during training it was leaning in
one direction and in testing it was leaning towards the other
direction. Although noticing such subtle differences can be a
powerful advantage, in this case, PatrolBot needed to update
its dictionary to reflect this as another definition of normal.

This leads to one potential area for future work, which is
improved learning. Currently, she has a distinctive training
and operation mode. It would be beneficial for a human ob-
server to correct her in cases where she erroneously identi-
fies something as anomalous. Although the cognitive model
is capable if updating in such cases, it can be troublesome
of the patch does not match something that has already been
seen in the past. In this case, she needs to also update her dic-
tionary to add this new information. In the previous example
of the plant, a human collaborator can review the informa-
tion and inform PatrolBot that this is normal.

In the future, we also plan to incorporate biometric re-
identification. Here, PatrolBot would patrol an environment
looking for people that matched a description (e.g., “look for
a man with short hair and a red shirt”).

Acknowledgements

Wallace Lawson and J. Gregory Trafton were supported by
the Office of Naval Research, Keith Sullivan was supported
by the Naval Research Laboratory under a Karles Fellow-
ship. Laura Hiatt was supported by the Office of Naval Re-
search and the Office of the Secretary of Defense. Esube
Bekele was supported by the National Research Counsel and
the Office of Naval Research.

References

Breazeal, C.; Siegel, M.; Berlin, M.; Gray, J.; Grupen, R.;
Deegan, P.; Weber, J.; Narendran, K.; and McBean, J. 2008.
Mobile, dexterous, social robots for mobile manipulation
and human-robot interaction. In ACM SIGGRAPH 2008 new
tech demos, 27. ACM.
Grisetti, G.; Stachniss, C.; and Burgard, W. 2007. Improved
techniques for grid mapping with rao-blackwellized particle
filters. IEEE Transactions on Robotics 23(1).
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2015. Deep
residual learning for image recognition. arXiv preprint
arXiv:1512.03385.
Hockey, R. 2013. The psychology of fatigue: work, effort
and control. Cambridge University Press.

Krizhevsky, A.; Sutskever, I.; and Hinton, G. 2012. Im-
agenet classification with deep convolutional neural net-
works.
Lawson, W.; Hiatt, L.; and Sullivan, K. 2016. Detecting
anomalous objects on mobile platforms. In Proceedings
of Moving Cameras Meet Video Surveillance: From Body-
Borne Cameras to Drones Workshop at CVPR.
Quigley, M.; Conley, K.; Gerkey, B.; Faust, J.; Foote, T.;
Leibs, J.; Wheeler, R.; and Ng, A. 2009. Ros: an open-
source robot operating system. ICRA Workshop on Open
Source Software.
Smith, G. J. 2002. Behind the screens: Examining con-
structions of deviance and informal practices among CCTV
control room operators in the UK. Surveillance & Society
2(2/3).
Trafton, J. G.; Hiatt, L. M.; Harrison, A. M.; Tamborello,
II, F. P.; Khemlani, S. S.; and Schultz, A. C. 2013. ACT-
R/E: An embodied cognitive architecture for human-robot
interaction. Journal of Human-Robot Interaction 2(1):30–
55.
Zhou, B.; Lapedriza, A.; Xiao, J.; Torralba, A.; and Oliva,
A. 2014. Learning deep features for scene recognition using
places database. In Advances in Neural Information Pro-
cessing Systems (NIPS).
Zhu, J.; Liao, S.; Yi, D.; Lei, Z.; and Li, S. Z. 2015. Multi-
label cnn based pedestrian attribute learning for soft biomet-
rics. In Biometrics (ICB), 2015 International Conference on,
535–540. IEEE.

66


