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Abstract

Deaf-mute communities around the world experience a need
in effective human-robot interaction system that would act
as an interpreter in public places such as banks, hospitals,
or police stations. The focus of this work is to address the
challenges presented to hearing-impaired people by develop-
ing an interpreting robotic system required for effective com-
munication in public places. To this end, we utilize a previ-
ously developed neural network-based learning architecture
to recognize Cyrillic manual alphabet, which is used for fin-
ger spelling in Kazakhstan. In order to train and test the per-
formance of the recognition system, we collected a depth data
set of ten people and applied it to a learning-based method for
gesture recognition by modeling motion data. We report our
results that show an average accuracy of 77.2% for a complete
alphabet recognition consisting of 33 letters.

Introduction

Hearing-impaired people around the world communicate via
a sign language, which uses gestures to express meaning
and intent that include hand-shapes, arms and body, facial
expressions and lip-patterns (Tolba and Elons 2013). Simi-
lar to spoken languages, each country or region has its own
sign language of varying grammar and rules, leading to a few
hundreds of sign languages that exist today (Aran 2008). In
addition, many deaf-mute people are not able to understand
a written spoken language. Research and development on
sign language analysis and recognition started with wear-
able devices such as gloves with sensors and trackers, col-
ored gloves or colored fingers (Sahoo, Mishra, and Ravu-
lakollu 2014). In contrast, vision-based systems provide a
natural way of communicating for deaf people, however it
still remains to be a challenging problem for effective hand
detection, segmentation, and tracking (Aran 2008).

This paper describes the SLIRS project, which aims to de-
velop an interpreting robotic system of a sign language tai-
lored for Kazakhstan. Having consulted our local hearing-
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Figure 1: Sign language of Cyrillic alphabet

impaired community on their needs, SLIRS’s first priority
is to develop an interpreting system of the sign language
vocabulary required for effective communication in Centers
for Public Services (CPS). It is the place where our deaf-
mute community has to constantly seek help from relatives
or paid interpreting services to manage their identification
documents, social payments and other usually urgent and
highly significant matters.

This research seeks to create such a robotic system tack-
ling a few objectives: 1) to be able to automatically rec-
ognize sign language utilizing multi-sensory input from
Leap Motion technology i.e. robot’s depth sensor. The robot
would then 2) vocalize the recognized text with a synthe-
sized speech to be understood by the public services employ-
ees and gesticulate the response back to a hearing-impaired
individual. And finally, SLIRS aims to achieve 3) action se-
lection for social autonomy of the robot given perception
input from the first objective.

In order to tackle the first objective, the focus of this paper
is to report our method of fingerspelling recognition, which
is mainly used to spell proper nouns, scientific and foreign
borrowed terms, and other words lacking a sign represen-
tation. To this end, we utilized our previously developed
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method (Sandygulova et al. 2016) and applied it to a new
application of recognizing 33 manual gestures of Cyrillic al-
phabet. Although the learning approach is an incremental
modification of the learning algorithm proposed by Parisi,
Weber, and Wermter (2015), where we just modify the la-
beling function to return the specific letter value, this paper
reports fairly good recognition results of the Cyrillic manual
alphabet, which serves as the first milestone in the progress
of the SLIRS project.

Related Work
Robust gesture recognition is an essential objective for any
sign language interpreting system. This section presents re-
lated research efforts that have been carried out to address
this objective.

According to Suarez and Murphy (2012), the main com-
ponents of any type of sign recognition system include
image acquisition, hand localization, pose estimation and
gesture classification. Once the image is acquired from a
depth camera, it is processed using various hand local-
ization methods. The problem of segmentation has been
addressed by using depth thresholding for hand isolation
(Mo and Neumann 2006; Breuer, Eckes, and Müller 2007;
Liu and Fujimura 2004; Uebersax et al. 2011; Yoo et
al. 2010; Du and To 2011; Frati and Prattichizzo 2011;
Ren, Yuan, and Zhang 2011; Trigueiros, Ribeiro, and Lopes
2012) and by placing bounds on the number of pixels in-
spected in the area of detected hand (Li and Jarvis 2009;
Klompmaker, Nebe, and Fast 2012). Some techniques in-
volve predicting the hand location by relating it to other
body parts (Fujimura and Liu 2006).

Temporal and spatial information of hands makes the
hand tracking possible, which in turn leads to dynamic ges-
ture recognition. The research community most often uses
the NITE body tracking middleware in combination with
the Kinect SDK (Ronchetti and Avancini 2011; Bellmore,
Ptucha, and Savakis 2011; Chang, Chen, and Huang 2011;
Frati and Prattichizzo 2011; Hassani et al. 2011; Lai 2011;
Ramey, González-Pacheco, and Salichs 2011).

As the next step, various classification algorithms are
used to categorize a particular sign or hand gesture. These
algorithms take segmented hand images and their tracked
trajectories as input and make a prediction. According
to McNeill (2000), gestures can be categorized to sev-
eral types: gesticulations (used to emphasize speech), em-
blems (universal signs, e.g. the “OK" sign) and sign lan-
guage (used as a speech replacement). The most com-
monly used gesture classification algorithms include Hid-
den Markov Model (HMMs). HMMs are used for man-
ual gestures with temporal information and are known to
have high classification rates (Wang et al. 2008; Tang 2011;
Yang et al. 2012; Hassani et al. 2011)). Another popu-
lar algorithm is k-Nearest Neighbours (k-NNs), which pro-
duces high classification rates for static poses in combina-
tion with some preprocessing (Van den Bergh et al. 2011;
Feris et al. 2005)). Support Vector Machines (SVMs) are
also commonly utilized (Biswas and Basu 2011; Tang 2011;
Keskin et al. 2013). Finally, neural network algorithms have
also been previously used (Keskin et al. 2013). In general,

recent progress in the areas of Computer Vision and Ma-
chine Learning has helped advance HCI and HRI fields.

Malassiotis, Aifanti, and Strintzis (2002) developed ges-
ture classification of 20 letters from the Greek Sign Lan-
guage, primarily of numbers from 0-9. Feris et al. (2005)
addressed the problem of finger occlusion that arise in fin-
gerspelling by introducing a small modification to the cap-
ture setup. Keskin et al. (2013) utilized the object recogni-
tion by parts approach to recognize 10 digits of American
Sign Language (ASL).

Apart from recognition, sign language and gesture recog-
nition has been utilized for robot control and human-robot
interaction. Singh, Jain, and Kumar (2012) proposed a new
approach for robust automated real-time robot control tool
using Indian Sign Language. Their technique combines feed
forward back propagation neural network (FNN) and Hid-
den Markov Model (HMM) to deal with dynamic sign lan-
guage recognition, learning and interpretation of continuous
signals. The algorithm was integrated with the HOAP-2 hu-
manoid robot generated in WEBOTS. The proposed system
achieved 95.34% of recognition and interpretation accuracy
of 21 gestures offline.

Sohn, Kim, and Oh (2013) presented a 2-Tier control for a
human-robot collaborative tasks. The adult-sized humanoid
robot, Hubo, whose lower and upper bodies are controlled
separately using data from MoCap and sign language ac-
cordingly. The sign language gestures were recorded offline
using the MoCap motion capturing system and evaluated by
the Monte Carlo learning agent. As a result, the Hubo hu-
manoid robot successfully assisted the human operator in
object carrying task.

Luis-Pérez, Trujillo-Romero, and Martínez-Velazco
(2011) utilized a set of Mexican Sign Language to make
the robot perform specific tasks. The system recognizes
and interprets 23 signs of the alphabet with the accuracy of
95.8%. Sugiuchi, Morino, and Terauchi (2002) exploited
the sign language to control the multi-fingered Dual robot
hand in human mimetic approach and to perform paper
cutting and chopstick handling. However, the authors report
that despite that the sign language interpretation software
system could be effectively implemented, there were major
limitations in hardware.

Child-size humanoid robots have been exploited for
demonstration of signs and other significant components
of sign language such as facial expressions and mimicry
(Uluer, Akalın, and Köse 2015). Screen avatars have also
been used to interpret written English text into American
Sign Language (ASL) (Huenerfauth 2004; Kipp, Heloir, and
Nguyen 2011).

This paper does not focus on advancing the state of the
art in hand segmentation, localization and/or tracking, but
contributes with its approach of using previously developed
gesture classification method to classify our dataset which
was collected via inexpensive Leap Motion camera.

Data Collection

The depth data was collected on a regular day. Volunteers
were brought to the specially allocated classroom to stand
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Figure 2: Finger spelling in process: 1. Palm initial position 2. Transition between the initial position and the letter 3. Actual
letter

in front of the Leap Motion sensor in order to capture depth
data. Each session involved one participant at a time. Each
participant was asked to repeat the Cyrillic sign language
alphabet letters one by one as it was shown on the video
tutorial taken from the official website specifically designed
for those who needs to learn the sign language alphabet 1.

The Leap Motion was used to track and estimate depth
data from raw motion. The sensor was placed vertically as
opposed to traditional horizontal position. The sensor was
located in front of the subjects that had to stand and demon-
strate gestures and letters from the sign language alphabet.
The data was obtained by the method of defining coordi-
nates of the participant’s hand and movement of each finger
of this hand, precisely the x, y, and z coordinates of each
finger joint, orientation and direction of the palm, direction
of fingers, frame and hand translation for dynamic gestures.
The Leap Motion Visualizer was used for hand and finger
tracking purposes. Each letter shown by the participant was
recorded in the corresponding .csv file. Each .csv file con-
tained 500 frames of data on average and held data about the
transition from the initial position of the palm to the position
when the letter could be clearly seen (Fig. 2). The initial po-
sition of the palm was needed to ensure robust tracking of
fingers by the leap motion sensor.

A Cyrillic alphabet contains 33 letters. A depth dataset
was collected for 10 people aged between 20 and 30 years
old. Participants without physical disabilities were invited
for data collection.

At the end of the experiment the entire data set was pro-
cessed to contain an equal number of attributes for each
frame.

Learning Architecture

The learning architecture consists of 2 hierarchically ar-
ranged self-organizing neural networks (Fig. 3). The use
of hierarchical self-organization has been shown to be an
efficient and effective method for recognizing human mo-
tion (Parisi, Weber, and Wermter 2015). This method is con-
sistent with neurophysiological findings that have identified

1http://www.surdo.kz

Figure 3: Hierarchical architecture with self-organizing neu-
ral learning (GWR networks). Learning is carried out by
training a higher-level network with neuron activation tra-
jectories from a lower level network trained on hand gesture
sequences.

a specialized area for the visual processing of complex mo-
tion in the brain in a hierarchical fashion (Rolls and Caan
1982). From a computational perspective, self-organization
is an unsupervised learning mechanism that allows to learn
representations of the input by iteratively obtaining a non-
linear projection of the feature space (Kohonen 1989). Fur-
thermore, it has been found that learning plays a crucial role
in complex motion discrimination. Numerous studies have
shown that the recognition speed and accuracy of humans
have improved after a number of training sessions (Jastorff,
Kourtzi, and Giese 2006).

Hierarchical Self-Organizing Learning

The learning model consists of Growing When Required
(GWR) networks (Marsland, Shapiro, and Nehmzow 2002)
that iteratively obtain generalized representations of sensory
inputs and learn inherent spatio-temporal dependencies. The
GWR network is composed of a set of neurons and their as-
sociated weight vectors wj linked by a set of edges. The
activity of a neuron is computed as a function of the dis-
tance (usually the Euclidean distance) between the input and
its weight vector. During the training, the network dynami-
cally changes its topological structure to better match the
input space following competitive Hebbian learning (Mar-
tinetz 1993).
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Table 1: Recognition result for each letter. There are 33 letters in total.
Letter А Б В Г Д Е Ё Ж З И Й

Accuracy (%) 92 96 99 88 84.54 72.58 41.24 76.94 74.10 99.00 98.00
Letter К Л М Н О П Р С Т У Ф

Accuracy (%) 35 69 98.93 41.67 84.05 97.11 92.09 39.27 68.99 99.27 70.51
Letter Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я

Accuracy (%) 83.98 68.39 84.12 68.88 30.63 90.36 82.66 92.54 74.61 76.10 79.09
Average for all 77.2%

Figure 4: Experimental results: Classification accuracy for each letter.

Different from other models of incremental self-
organization, GWR-based learning takes into account the
number of times that a neuron has fired so that neurons that
have fired frequently are trained less. For this purpose, the
network implements a habituation counter to express how
frequently a neuron has fired based on a simplified model
of how the efficacy of an habituating synapse reduces over
time.

This mechanism allows to create new neurons whenever
it is required. The GWR algorithm will then iterate over the
training set until a given stop criterion is met, in our case
a maximum number of iterations. The standard procedure
for GWR learning is described by Algorithm 1 (except for
Steps 6.c and 7.c that are discussed in the following Section).
For GWR learning, we used the following training parame-
ters: insertion threshold aT = 0.70, learning rates εb = 0.3,
and εn = 0.006, κ = 0.5, maximum age amax = 50, fir-
ing counter parameters η0 = 1, τb = 0.3, τn = 0.1, fir-
ing threshold ηT = 0.01, 300 iterations for each network.
A thorough discussion of training parameters was presented
in (Marsland, Shapiro, and Nehmzow 2002).

The motivation for using hierarchical learning is to use
trajectories of neuron activations from one network as input
for the training for a subsequent network. This mechanism
allows to obtain specialized neurons coding spatio-temporal
dependencies of the input, consistent with the assumption
that the recognition must be selective for temporal order. Hi-
erarchical learning is carried out by training a higher-level
network with neuron activation trajectories from a lower

level network. These trajectories are obtained by computing
the best-matching neuron of the input sequence with respect
to the trained network with N neurons, so that a set of tra-
jectories of length q is given by

Ωq(xi) = {wb(xi),wb(xi−1), ...,wb(xi−q+1)} (1)

with b(xi) = argmini∈N ‖xi − wj‖ and q = 5. After train-
ing of the higher level network is completed, each neuron
will encode a sequence-selective action segment of 5 con-
secutive frames.

Classification

At recognition time, our goal is to process and classify action
sequences in terms of the sign language alphabet. For this
purpose, we extended the unsupervised GWR-based learn-
ing of the higher level network to attach labels to trained
neurons (Algorithm 1, steps 6.c and 7.c). In this case, the
network will be trained with the motion sequences in an
unsupervised fashion while attaching the labels of the in-
put λ(xt), i.e.letter, to best-matching neurons. As a result of
this process, each neuron in the higher level network encod-
ing a motion segment will be associated to a label. Differ-
ent from previous approaches using GWR-based associative
learning (Parisi, Weber, and Wermter 2015), in our approach
each label has a letter value, so that new samples can be pro-
cessed through the hierarchy and return the label values of
the best-matching sequence.
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Results

Sequential minimal optimization (SMO) algorithm for train-
ing a support vector classifier was used as a baseline for
the evaluation of the modified algorithm. As we deal with
the sequence of frames for each of 33 classes, standard 2-
class classification algorithms could not evaluate our dataset.
Therefore, the Multi-Instance Learning Kit (MILK) 2 devel-
oped for Weka (Hall et al. 2009) was used for classification.
Overall, multi-class SMO 10-fold cross validation showed
an accuracy of 12.86%.

The classification accuracy of the modified algorithm for
each letter is shown in Table 1 and Figure 4. Our system
achieved an average classification accuracy of 77.2% for
Cyrillic alphabet, which consists of 33 letters. It should be
noted that we trained our method on half of the dataset (five
people) and tested the accuracy performance on the other
half of the dataset (five other people).

As can be seen from Table 1, the classification accuracy
varies from 99% for easy letters such as В and У to 30.63%
for a rather complicated for the camera letters such as Ё
and Щ. Indeed, the latter mentioned letters differ from their
closely related pairs quite slightly, in particular since these
two signs are dynamic. As a result, these letters were rec-
ognized incorrectly. This problem will be investigated and
could be solved once we collect a larger training dataset.

These results suggest that although some letters are harder
to recognize than others, our method is suitable at achieving
successful results. As reported in previous experiments with
Leap Motion (Potter, Araullo, and Carter 2013), metrics ex-
tracted from depth information with this camera generally
contains noisy samples that may have a negative influence
on neural network learning (Parisi, Weber, and Wermter
2015).

On the other hand, although the accuracy of Leap Motion
technology is not so precise for some letters, this approach
is computationally efficient and allows to extract 3D infor-
mation in real time, thereby enabling us to recognize finger-
spelling with very low latency in a live scenario. This is in
fact a very desirable property, since we aim for real-time per-
formance of the SLIRS system in perceptually challenging
environments, where slight delays in performance will result
in dissatisfaction with the robot and negative experience.

Conclusion

In this paper we utilized our previously developed method
and applied it to a new application i.e. recognition of Cyrillic
fingerspelling consisting of 33 manual gestures. Although
the learning-based method utilized here was previously used
within a different application, these results motivate our fu-
ture work to continue modeling the hand motion based on
relevant metrics from each fingerspelling gesture. In addi-
tion, our contribution of classifying 33 gestures of the Cyril-
lic manual alphabet, is also in a larger number of classi-
fied gestures than previously reported research on finger-
spelling recognition. Future work will include collecting a
larger dataset for training and overall development of a real-

2http://www.cs.waikato.ac.nz/ ml/milk/

time interpreting autonomy for the robots to be deployed in
public spaces.
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