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Background
Cooperative multi-agent systems refer to a class of multi-
agent systems in which a number of possibly heteroge-
neous agents collaborate autonomously through spatially-
distributed physical interactions and wireless communica-
tion networks. Compared with a monolithic system, cooper-
ative multi-agent systems offer greater efficiency and flex-
ibility due to the redundancy of functionalities, ability to
re-configure and robustness to uncertain environments, and
therefore show great potential in a wide variety of appli-
cations, ranging from power grids, transportation systems,
computer networks to robotic teams, see e.g. (Arkin 1998;
Choset et al. 2005; Fainekos et al. 2009b; Lin 2014) and the
references therein.

A key issue in cooperative multi-agent systems is how to
design local control policies for each agent as well as co-
ordination strategies among them such that certain desir-
able specifications can be satisfied. Existing methods can
roughly be divided into two categories: bottom-up and top-
down approaches. In the bottom-up design, local interac-
tions and control policies are pre-defined with inspirations
from natural or social behaviors (Zavlanos et al. 2009;
Arkin 1998), and non-trivial global behaviors emerge from
these local controllers and their interactions. Representative
examples include behaviour based robotics (Arkin 1998)
and consensus based approaches (Olfati-Saber and Murray
2004). In contrast, the top-down design relies on a “divide-
and-conquer” coordination and control scheme, and decom-
poses a global mission into local task specifications (Kari-
madini and Lin 2011) or distributes a global cost function
into local utility functions (Marden, Shamma, and others
2012) for each agent based on their individual sensing and
actuating capabilities. The bottom-up approach scales well
but generally lacks formal performance guarantees, except
for certain properties like consensus (Olfati-Saber and Mur-
ray 2004), rendezvous (Dimarogonas and Kyriakopoulos
2007) or related formation control (Fax and Murray 2004).
Top-down design, on the other hand, can provide perfor-
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Figure 1: Overall framework

mance guarantees, but lacks flexibility and scalability in lo-
cal control policy design. For example, in symbolic motion
planning the space is normally partitioned into many labeled
regions and no moving objects other than the agents are as-
sumed (Belta et al. 2007b). Therefore, it is difficult to handle
dynamic environments. Additionally, the planning complex-
ity quickly becomes prohibitively high as the number of par-
titioned regions and agents increase, which further hampers
the applicability of the abstraction based methods in many
practical circumstances.

Our Idea
Hence, we are motivated to combine top-down and bottom-
up design methods so to leverage both advantages and
pave the way towards a scalable, adaptive and automatic
design method for cooperative robotic teams with perfor-
mance guarantees. For such a purpose, cross-disciplinary ap-
proaches combining methods from control theory, machine
learning, and computational verification are pursued in our
study. More specifically, we propose a formal design frame-
work for cooperative multi-agent systems by combining top-
down mission planning with bottom-up motion-planning. In
this work, we assume that the multi-agent system is assigned
a global mission, specified as regular languages over all the
agents’ capabilities, whereas basic motion controllers for
each agent shall be designed with respect to a given envi-
ronment description. We propose to use a layered control ar-
chitecture, as illustrated in Fig. 3, for each intelligent agent.

From the top, a mission planning layer decomposes the
global mission into local tasks that are consistent with
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each agent’s individual capabilities and compositionally ver-
ifies the joint effort of the agents via an assume-guarantee
paradigm. On the other hand, corresponding to these local
missions, motion plans associated with each agent are syn-
thesized by composing basic motion primitives, which are
verified safe by differential dynamic logic (dL), through a
Satisfiability Modulo Theories (SMT) solver that searches
feasible solutions in the face of constraints due to local
task requirements and the environment description. It is
shown that the proposed framework can handle changing
environments as the motion primitives are reactive in na-
ture, making the motion planning adaptive to local envi-
ronmental changes. Furthermore, on-line mission reconfig-
uration can be triggered by the motion planning layer once
no feasible solutions can be found through the SMT solver.
Our use of SMT is inspired by recent work on SMT-based
robot motion planning (Hung et al. 2014; Saha et al. 2014;
Nedunuri et al. 2014). Instead of using SMT for motion
planning only, we also encode high-level mission specifi-
cations into SMT and solve for an integrated mission and
motion plan.

The next two sections will give more details on the top-
down mission decomposition and bottom-up motion compo-
sition with a team of mobile robots as a working example.

Cooperative Mission Decomposition of
Cooperative Multi-agent Systems

We assume that the global specification for the coopera-
tive multi-agent system is given as a prefix-closed regu-
lar language KMI over the global mission set ΣMI , where
ΣMI =

⋃
i∈NA Σi

MI and Σi
MI represents the motion prim-

itives for the i-th agent. Intuitively speaking, Σi
MI contains

those local motion/actions that the i-th agent can achieve,
where symbols in both Σi

MI and Σj
MI require collaboration

between the agent i and j.
Given KMI and Σi

MI for i ∈ NA, we pursue a top-
down design methodology and aim to decompose the global
task into feasible local tasks, based on each agent’s sens-
ing and actuating capabilities. A counterexample-guided and
learning-based formal synthesis framework was proposed in
our previous work (Dai and Lin 2014), which is shown in the
top-down layer in Fig. 3 and is illustrated in Fig. 2 in more
detail to automatically learn the local missions Ki

MI .
The automatic coordination framework executes the fol-

lowing stages iteratively to achieve cooperative task decom-
position and mission planning among the agents.

• Initial task allocation A prefix-closed and feasible local
mission Ki

MI for agent i from the global mission KMI

is initially obtained by Ki
MI = Pi(KMI), where Pi

stands for the natural projection (Cassandras and Lafor-
tune 2008b) from the global mission set ΣMI to the mis-
sion set Σi

MI of the i-th agent.

• Compositional verification We determine whether or not
the collective behaviors of each agent can satisfy the
global mission by deploying a compositional verification
(Dai and Lin 2014) procedure with each behavior module
being a component DFA that recognizes Ki

MI . In partic-

Figure 2: Learning-based coordination and mission planning
framework.

Figure 3: Overall framework

ular, to mitigate the computational complexity, we adopt
an assume-guarantee paradigm (Partovi and Lin 2014) for
the compositional verification and modify the L∗ algo-
rithm (Angluin 1987) to automatically learn appropriate
assumptions for each agent.

• Counterexample-guided synthesis If the local missions
fail to satisfy the global specification jointly, the compo-
sitional verification returns a counterexample indicating
that all the Ki

MI , i ∈ NA share a same illegal trace that
violates the global mission. We present such counterex-
amples to re-synthesize the local missions.

Bottom-up Design and Motion Planning
In the Bottom-up layer, we adopt a hierarchical planner in-
spired by behavior based robotics (Nakhaeinia and Karasfi
2013) distributed in each robot and consisting of two lay-
ers: global and local. The global layer synthesizes an in-
tegrated task and motion plan composing certificated reac-
tive controllers, which we call safe motion primitives, that
satisfies a local task specification for the respective robot.
The local layer implements the global plan executing those
primitives as planned. Hence, the performance is guaranteed
through bottom-up modular verifications. First, safe motion
primitives are designed with verified performances. Then, a
global plan is built upon these certified controllers. Since the

210



method proposed here is of a bottom-up and compositional
nature, we call it as CoSMoP (Composition of Safe Motion
Primitives).

To design safe motion primitives, we propose to formally
verify the reactive controllers that we call safe motion primi-
tives in Differential Dynamic Logic (dL) (Platzer 2010), for
which verification software tools are available, e.g., KeY-
maera (Platzer 2010). For example, we can use the Dy-
namic Window Approach (DWA) (Fox et al. 1997) as a
primitive for ground vehicles to drive a robot while avoid-
ing unexpected obstacles that can be even moving. DWA
algorithms are a widely adopted and efficient approach for
mobile robots to avoid collisions in uncertain and dynamic
environments. The safety of a DWA algorithm that extends
collision avoidance for moving obstacles has been formally
proved in (Mitsch, Ghorbal, and Platzer 2013) using dL and
hybrid system verification. This proof allows us to abstract
this primitive to the global layer, where the task and motion
plans are integrated.

To synthesize a global plan, those safe motion primitives
are abstracted as Counter Linear Temporal Logic over Con-
straint System CLTLB(D) (Bersani et al. 2010) formulas,
which we call the motion primitives specification, that is
encoded with the local task specification to a Satisfiability
Modulo Theories (SMT) solver. This plan comprises pairs
of actions (i.e. safe motion primitives) and waypoints (i.e.
goal states), which is the sequential execution of actions
that the robot must perform to ensure a task specification
formally. The CoSMoP encodes an integrated task and mo-
tion problem to SMT by extending Bounded Satisfiability
Checking (BSC) (Pradella, Morzenti, and Pietro 2013). The
BSC models consist of temporal logic rather than transi-
tion systems; thus, the problem encoding is more compact
and elegant. Moreover, when using the Counter Linear Tem-
poral Logic over Constraint System CLTLB(D) (Bersani et
al. 2010) language, it was also shown that if the constraint
system D is decidable, then so is the CLTLB(D) formula,
and it can be encoded to SMT (Bersani et al. 2010). There-
fore, encoding the integrated task and motion problem us-
ing CLTLB(D) language allows the description of a wide
range of system properties in a problem that is decidable.
Besides, using those primitives, we formally ensure that the
robot will always be in a safe state. Thus, if the environment
is fair, meaning that any moving obstacles will always even-
tually leave their actual state or an unexpected static obsta-
cle does not lead any robot to a deadlock, then the plan will
satisfy the local task specification. If not, since the robots
are always safe, we can update the environment description
adding new obstacles using the sensors readings, for exam-
ple, and search for new plans at current state in a receding
horizon strategy.

Related Work and our Contributions
Our study is influenced by recent advances in robot symbolic
motion planning, which uses formal methods to generate a
symbolic path on an abstracted quotient system to satisfy
temporal logic specifications, see e.g., (Belta et al. 2007a;
Fainekos et al. 2009a; Kress-Gazit, Fainekos, and Pappas
2009; Kloetzer and Belta 2010; Wongpiromsarn, Topcu, and

Murray 2010; Chen et al. 2012). The high-level missions are
usually specified as temporal logic formulas (Pnueli 1977)
due to their expressiveness and similarity to natural lan-
guages (Finucane, Jing, and Kress-Gazit 2010). The basic
design procedure for symbolic motion planning consists of
the following steps: First, a finite abstracted model of the
robotic system is obtained. Then, the design is carried out
in the discrete domain using methods like model check-
ing (Clarke, Grumberg, and Peled 1999; Baier, Katoen, and
Larsen 2008), reactive synthesis (Pnueli and Rosner 1989;
Piterman, Pnueli, and Saar 2006) and supervisory con-
trol theory (Ramadge and Wonham 1987; Cassandras and
Lafortune 2008a) to generate feasible runs consisting of se-
quences of discrete (symbolic) states that satisfy the tem-
poral logic specifications of concern. Finally, the generated
sequence of discrete states or symbols is used by the contin-
uous layer to construct continuous feedback control laws to
drive the robot (or physically feasible trajectories for robots
to follow). The critical step, also the most difficult part, of
symbolic motion planning is how to obtain an abstraction
of the robotic dynamics and environment. The abstracted fi-
nite model should be constructed in such a way that, once
one can find a run in the abstracted model satisfying the
specification, there must exist corresponding continuous tra-
jectories for the original robotic system satisfying the same
specification. Most of research efforts in the literature have
been devoted to answering the abstraction problem, using
bisimulation (Alur et al. 2000; Tabuada and Pappas 2003;
2006) and approximate bisimulation based abstraction (Gi-
rard and Pappas 2009; Tabuada 2009), maneuver automata
(Frazzoli, Dahleh, and Feron 2005), and multi-affine control
induced workspace partitions (Belta, Isler, and Pappas 2005;
Kloetzer and Belta 2008). To avoid abstraction, there are
some recent efforts to encode Linear Temporal Logic or Sig-
nal Temporal Logic specifications into mixed-integer con-
straints and then use optimization based approaches to find
feasible solutions (Raman et al. 2014). However, the bot-
tleneck of this method lies in its computational complexity,
as the mixed-integer constraint solver does not scale well
as the dimension of the problem increases. To mitigate the
computational complexity issue, receding horizon planning
(Wongpiromsarn, Topcu, and Murray 2012) techniques were
usually adopted. However, this restricts the method to be
effective only for bounded-time temporal formulas, as it is
generally inconclusive to just check a finite prefix of a trajec-
tory for unbounded-time properties. Furthermore, the phys-
ical dynamics that can be handled is still limited as general
non-linear constraints are difficult to handle in the mixed-
integer solver. In addition, the uncertainties handled so far
were restricted to bounded external disturbances in the phys-
ical dynamics, while a more interesting robustness/resilience
property of intelligent agents is how they adapt in unstruc-
tured and uncertain dynamic environments through learning.

In the context of literature, our main contributions lie in

• Our introduction of a new formal framework to solve both
the mission and the motion planning problems of coopera-
tive multi-agent systems, based on which provably correct
mission plans and motion controllers are designed.
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• Our proposed design framework shows good potential
in scalability. On one hand, in the top-down mission
planning stage, we use an assume-guarantee paradigm
(Păsăreanu et al. 2008) to compositionally verify the cor-
rectness of all the mission plans; on the other hand, we
synthesize the corresponding motion controllers by using
an SMT solver and thus fine partitioning of the environ-
ment is avoided.

• Our proposed design framework provides reactive solu-
tions for both mission and motion planning problems.
First, we develop a modification of the L∗ learning algo-
rithm (Angluin 1987) such that it can be applied for local
mission planning even if the agent’s model is not known a
priori; secondly, by composing simple motion primitives,
our designed motion controllers show great reactiveness
to uncertain environments.
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Păsăreanu, C. S.; Giannakopoulou, D.; Bobaru, M. G.;
Cobleigh, J. M.; and Barringer, H. 2008. Learning to di-
vide and conquer: applying the l* algorithm to automate
assume-guarantee reasoning. Formal Methods in System De-
sign 32(3):175–205.
Piterman, N.; Pnueli, A.; and Saar, Y. 2006. Synthesis of
reactive (1) designs. In Verification, Model Checking, and
Abstract Interpretation, 364–380. Springer.
Platzer, A. 2010. Logical analysis of hybrid systems: prov-
ing theorems for complex dynamics. Springer Science &
Business Media.
Pnueli, A., and Rosner, R. 1989. On the synthesis of a reac-
tive module. In Proceedings of the 16th ACM SIGPLAN-
SIGACT symposium on Principles of programming lan-
guages, 179–190. ACM.
Pnueli, A. 1977. The temporal logic of programs. In Foun-
dations of Computer Science, 1977., 18th Annual Sympo-
sium on, 46–57. IEEE.
Pradella, M.; Morzenti, A.; and Pietro, P. S. 2013. Bounded
satisfiability checking of metric temporal logic specifica-
tions. ACM Transactions on Software Engineering and
Methodology (TOSEM) 22(3):20.
Ramadge, P. J., and Wonham, W. M. 1987. Supervisory
control of a class of discrete event processes. SIAM journal
on control and optimization 25(1):206–230.
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